NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1034563024|ref|XP_016858211|]
View 

tumor necrosis factor receptor superfamily member 18 isoform X1 [Homo sapiens]

Protein Classification

tumor necrosis factor receptor family protein( domain architecture ID 10194119)

tumor necrosis factor receptor (TNFR) family protein may interact with TNF superfamily (TNFSF) ligands (TNFL) to control key cellular processes such as differentiation, proliferation, apoptosis, and cell growth; similar to Rattus norvegicus tumor necrosis factor receptor superfamily member 8

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
TNFRSF18 cd13417
Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as ...
56-180 7.66e-61

Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR); TNFRSF18 (also known as activation-inducible TNF receptor (AITR), glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR), CD357, GITR-D) has increased expression upon T-cell activation, and is thought to play a key role in dominant immunological self-tolerance maintained by CD25(+)CD4(+) regulatory T cells. In inflammatory cells, GITR expression indicates a possible molecular link between steroid use and complicated acute sigmoid diverticulitis; increased MMP-9 expression by GITR signaling might explain morphological changes in the colonic wall in diverticulitis. Its ligand, GITRL, activates GITR which could then influence the activity of effector and regulatory T cells, participating in the development of several autoimmune and inflammatory diseases, including autoimmune thyroid disease and rheumatoid arthritis. In systemic lupus erythematosus (SLE) patients, serum GITRL levels are increased compared with healthy controls. GITR and its ligand, GITRL, are possibly involved in the pathogenesis of primary Sjogren's syndrome (pSS). GITR is inactivated during tumor progression in Multiple Myeloma (MM); restoration of GITR expression in GITR deficient MM cells leads to inhibition of MM proliferation and induction of apoptosis, thus playing a pivotal role in MM pathogenesis and disease progression. Regulatory T-cells (Tregs) in liver tumor up-regulate the expression of GITR compared with Tregs in tumor-free liver tissue and blood. Regulatory single nucleotide polymorphisms (SNPs) in the promoter regions of the TNFRSF18 gene have been identified in a group of male Gabonese individuals exposed to a wide array of parasitic diseases such as malaria, filariasis and schistosomiasis, and may serve as a basis to study parasite susceptibility in association studies.


:

Pssm-ID: 276922 [Multi-domain]  Cd Length: 130  Bit Score: 191.06  E-value: 7.66e-61
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  56 RCCRDYPGEECCSEW-----DCMCVQPEFHCGDPCCTTCRHHPCPPGQGVQSQGKFSFGFQCIDCASGTFSGGHEGHCKP 130
Cdd:cd13417     1 RCCRKCPSEEADAPCcdaegDCKCVQPGFHCGDPQCKTCKKHPCPPGQEVQRQGKFDFGFECVPCANGTFSDGHDGHCKP 80
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|
gi 1034563024 131 WTDCTQFGFLTVFPGNKTHNAVCVPGSPPAEPLGWLTVVLLAVAACVLLL 180
Cdd:cd13417    81 WTDCSQFGFLTIFPGNKTHNAVCGPGPPPPEEDGHLTILAIPTAACILVL 130
PRK07764 super family cl35613
DNA polymerase III subunits gamma and tau; Validated
250-344 4.51e-03

DNA polymerase III subunits gamma and tau; Validated


The actual alignment was detected with superfamily member PRK07764:

Pssm-ID: 236090 [Multi-domain]  Cd Length: 824  Bit Score: 38.81  E-value: 4.51e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024 250 DRQRRRGGWETCGCEPGRPPGPPTAASPSPGAPQAAGALRSALGRALLPWQQkwvqeggsdqrPGPCSSAAAAGPCRRER 329
Cdd:PRK07764  379 ERLERRLGVAGGAGAPAAAAPSAAAAAPAAAPAPAAAAPAAAAAPAPAAAPQ-----------PAPAPAPAPAPPSPAGN 447
                          90
                  ....*....|....*
gi 1034563024 330 ETQSWPPSSLAGPDG 344
Cdd:PRK07764  448 APAGGAPSPPPAAAP 462
 
Name Accession Description Interval E-value
TNFRSF18 cd13417
Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as ...
56-180 7.66e-61

Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR); TNFRSF18 (also known as activation-inducible TNF receptor (AITR), glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR), CD357, GITR-D) has increased expression upon T-cell activation, and is thought to play a key role in dominant immunological self-tolerance maintained by CD25(+)CD4(+) regulatory T cells. In inflammatory cells, GITR expression indicates a possible molecular link between steroid use and complicated acute sigmoid diverticulitis; increased MMP-9 expression by GITR signaling might explain morphological changes in the colonic wall in diverticulitis. Its ligand, GITRL, activates GITR which could then influence the activity of effector and regulatory T cells, participating in the development of several autoimmune and inflammatory diseases, including autoimmune thyroid disease and rheumatoid arthritis. In systemic lupus erythematosus (SLE) patients, serum GITRL levels are increased compared with healthy controls. GITR and its ligand, GITRL, are possibly involved in the pathogenesis of primary Sjogren's syndrome (pSS). GITR is inactivated during tumor progression in Multiple Myeloma (MM); restoration of GITR expression in GITR deficient MM cells leads to inhibition of MM proliferation and induction of apoptosis, thus playing a pivotal role in MM pathogenesis and disease progression. Regulatory T-cells (Tregs) in liver tumor up-regulate the expression of GITR compared with Tregs in tumor-free liver tissue and blood. Regulatory single nucleotide polymorphisms (SNPs) in the promoter regions of the TNFRSF18 gene have been identified in a group of male Gabonese individuals exposed to a wide array of parasitic diseases such as malaria, filariasis and schistosomiasis, and may serve as a basis to study parasite susceptibility in association studies.


Pssm-ID: 276922 [Multi-domain]  Cd Length: 130  Bit Score: 191.06  E-value: 7.66e-61
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  56 RCCRDYPGEECCSEW-----DCMCVQPEFHCGDPCCTTCRHHPCPPGQGVQSQGKFSFGFQCIDCASGTFSGGHEGHCKP 130
Cdd:cd13417     1 RCCRKCPSEEADAPCcdaegDCKCVQPGFHCGDPQCKTCKKHPCPPGQEVQRQGKFDFGFECVPCANGTFSDGHDGHCKP 80
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|
gi 1034563024 131 WTDCTQFGFLTVFPGNKTHNAVCVPGSPPAEPLGWLTVVLLAVAACVLLL 180
Cdd:cd13417    81 WTDCSQFGFLTIFPGNKTHNAVCGPGPPPPEEDGHLTILAIPTAACILVL 130
PRK07764 PRK07764
DNA polymerase III subunits gamma and tau; Validated
250-344 4.51e-03

DNA polymerase III subunits gamma and tau; Validated


Pssm-ID: 236090 [Multi-domain]  Cd Length: 824  Bit Score: 38.81  E-value: 4.51e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024 250 DRQRRRGGWETCGCEPGRPPGPPTAASPSPGAPQAAGALRSALGRALLPWQQkwvqeggsdqrPGPCSSAAAAGPCRRER 329
Cdd:PRK07764  379 ERLERRLGVAGGAGAPAAAAPSAAAAAPAAAPAPAAAAPAAAAAPAPAAAPQ-----------PAPAPAPAPAPPSPAGN 447
                          90
                  ....*....|....*
gi 1034563024 330 ETQSWPPSSLAGPDG 344
Cdd:PRK07764  448 APAGGAPSPPPAAAP 462
 
Name Accession Description Interval E-value
TNFRSF18 cd13417
Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as ...
56-180 7.66e-61

Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR); TNFRSF18 (also known as activation-inducible TNF receptor (AITR), glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR), CD357, GITR-D) has increased expression upon T-cell activation, and is thought to play a key role in dominant immunological self-tolerance maintained by CD25(+)CD4(+) regulatory T cells. In inflammatory cells, GITR expression indicates a possible molecular link between steroid use and complicated acute sigmoid diverticulitis; increased MMP-9 expression by GITR signaling might explain morphological changes in the colonic wall in diverticulitis. Its ligand, GITRL, activates GITR which could then influence the activity of effector and regulatory T cells, participating in the development of several autoimmune and inflammatory diseases, including autoimmune thyroid disease and rheumatoid arthritis. In systemic lupus erythematosus (SLE) patients, serum GITRL levels are increased compared with healthy controls. GITR and its ligand, GITRL, are possibly involved in the pathogenesis of primary Sjogren's syndrome (pSS). GITR is inactivated during tumor progression in Multiple Myeloma (MM); restoration of GITR expression in GITR deficient MM cells leads to inhibition of MM proliferation and induction of apoptosis, thus playing a pivotal role in MM pathogenesis and disease progression. Regulatory T-cells (Tregs) in liver tumor up-regulate the expression of GITR compared with Tregs in tumor-free liver tissue and blood. Regulatory single nucleotide polymorphisms (SNPs) in the promoter regions of the TNFRSF18 gene have been identified in a group of male Gabonese individuals exposed to a wide array of parasitic diseases such as malaria, filariasis and schistosomiasis, and may serve as a basis to study parasite susceptibility in association studies.


Pssm-ID: 276922 [Multi-domain]  Cd Length: 130  Bit Score: 191.06  E-value: 7.66e-61
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  56 RCCRDYPGEECCSEW-----DCMCVQPEFHCGDPCCTTCRHHPCPPGQGVQSQGKFSFGFQCIDCASGTFSGGHEGHCKP 130
Cdd:cd13417     1 RCCRKCPSEEADAPCcdaegDCKCVQPGFHCGDPQCKTCKKHPCPPGQEVQRQGKFDFGFECVPCANGTFSDGHDGHCKP 80
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|
gi 1034563024 131 WTDCTQFGFLTVFPGNKTHNAVCVPGSPPAEPLGWLTVVLLAVAACVLLL 180
Cdd:cd13417    81 WTDCSQFGFLTIFPGNKTHNAVCGPGPPPPEEDGHLTILAIPTAACILVL 130
TNFRSF4 cd13406
Tumor necrosis factor receptor superfamily member 4 (TNFRSF4), also known as CD134 or OXO40; ...
86-157 6.50e-12

Tumor necrosis factor receptor superfamily member 4 (TNFRSF4), also known as CD134 or OXO40; TNFRSF4 (also known as OX40, ACT35, CD134, IMD16, TXGP1L) activates NF-kappaB through its interaction with adaptor proteins TRAF2 and TRAF5. It also promotes the expression of apoptosis inhibitors BCL2 and BCL2lL1/BCL2-XL, and thus suppresses apoptosis. It is primarily expressed on activated CD4+ and CD8+ T cells, where it is transiently expressed and upregulated on the most recently antigen-activated T cells within inflammatory lesions. This makes it an attractive target to modulate immune responses, i.e. TNFRSF4 (OX40) blocking agents to inhibit adverse inflammation or agonists to enhance immune responses. An artificially created biologic fusion protein, OX40-immunoglobulin (OX40-Ig), prevents OX40 from reaching the T-cell receptors, thus reducing the T-cell response. Some single nucleotide polymorphisms (SNPs) of its natural ligand OX40 ligand (OX40L, CD252), which is also found on activated T cells, have been associated with systemic lupus erythematosus.


Pssm-ID: 276911 [Multi-domain]  Cd Length: 142  Bit Score: 62.42  E-value: 6.50e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1034563024  86 CTTCRHHPCPPGqgVQSQGKFSFGFQCIDCASGTFSGGHEGHCKPWTDCTQFGFLTVFPGNKTHNAVCVPGS 157
Cdd:cd13406    73 KTSDTVCRCRPG--TQPLDSYKPGVDCVPCPPGHFSRGDNQACKPWTNCSLAGKRTLRPGSSTSDAVCEDRS 142
TNFRSF5_teleost cd13422
Tumor necrosis factor receptor superfamily member 5 (TNFRSF5) in teleosts; also known as CD40; ...
72-154 2.68e-11

Tumor necrosis factor receptor superfamily member 5 (TNFRSF5) in teleosts; also known as CD40; TNFRSF5 (commonly known as CD40 and also as CDW40, p50, Bp50) is widely expressed in diverse cell types including B lymphocytes, dendritic cells, platelets, monocytes, endothelial cells, and fibroblasts. It is essential in mediating a wide variety of immune and inflammatory responses, including T cell-dependent immunoglobulin class switching, memory B cell development, and germinal center formation. Its natural immunomodulating ligand is CD40L, and a primary defect in the CD40/CD40L system is associated with X-linked hyper-IgM (XHIM) syndrome. It is also involved in tumorigenesis; CD40 expression is significantly higher in gastric carcinomas and it is associated with the lymphatic metastasis of cancer cells and their tumor node metastasis (TNM) classification. Upregulated levels of CD40/CD40L on B cells and T cells may play an important role in the immune pathogenesis of breast cancer. Consequently, the CD40/CD40L system serves as a link between tumorigenesis, atherosclerosis, and the immune system, and offers a potential target for drug therapy for related diseases, such as cancer, atherosclerosis, diabetes mellitus, and immunological rejection. Salmon CD40 and CD40L are widely expressed, particularly in immune tissues, and their importance for the immune response is indicated by their relatively high expression in salmon lymphoid organs and gills.


Pssm-ID: 276927 [Multi-domain]  Cd Length: 161  Bit Score: 61.29  E-value: 2.68e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  72 CMCvQPEFHCGDPCCTTCR-HHPCPPGQGVQSQGKFSFGFQCIDCASGTFSGGH--EGHCKPWTDCTQfGFLTVFPGNKT 148
Cdd:cd13422    78 CKC-KPGFHCSSEECLTCVpHTTCGPGQGVKSKGNHIRDTVCEECPDGTFSNNSsaEGVCKKWTECES-GYKVEAAGTNT 155

                  ....*.
gi 1034563024 149 HNAVCV 154
Cdd:cd13422   156 SDNICV 161
TNFRSF5 cd13407
Tumor necrosis factor receptor superfamily member 5 (TNFRSF5), also known as CD40; TNFRSF5 ...
72-153 4.20e-09

Tumor necrosis factor receptor superfamily member 5 (TNFRSF5), also known as CD40; TNFRSF5 (commonly known as CD40 and also as CDW40, p50, Bp50) is widely expressed in diverse cell types including B lymphocytes, dendritic cells, platelets, monocytes, endothelial cells, and fibroblasts. It is essential in mediating a wide variety of immune and inflammatory responses, including T cell-dependent immunoglobulin class switching, memory B cell development, and germinal center formation. Its natural immunomodulating ligand is CD40L, and a primary defect in the CD40/CD40L system is associated with X-linked hyper-IgM (XHIM) syndrome. It is also involved in tumorigenesis; CD40 expression is significantly higher in gastric carcinomas and it is associated with the lymphatic metastasis of cancer cells and their tumor node metastasis (TNM) classification. Upregulated levels of CD40/CD40L on B cells and T cells may play an important role in the immune pathogenesis of breast cancer. Consequently, the CD40/CD40L system serves as a link between tumorigenesis, atherosclerosis, and the immune system, and offers a potential target for drug therapy for related diseases, such as cancer, atherosclerosis, diabetes mellitus, and immunological rejection.


Pssm-ID: 276912 [Multi-domain]  Cd Length: 161  Bit Score: 55.10  E-value: 4.20e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  72 CMCVQPEfHCGDPCCTTCRHH-PCPPGQGVQSQGKFSFGFQCIDCASGTFSGGHEGH--CKPWTDCTQFGFLTVFPGNKT 148
Cdd:cd13407    78 CTCQEGQ-HCTSEACETCALHtSCKPGFGVKQIATGVSDTICEPCPVGFFSNVSSAFekCHPWTSCETKGLVELQAGTNK 156

                  ....*
gi 1034563024 149 HNAVC 153
Cdd:cd13407   157 TDVVC 161
TNFRSF6B cd10575
Tumor necrosis factor receptor superfamily member 6B (TNFRSF6B), also known as decoy receptor ...
72-153 6.07e-08

Tumor necrosis factor receptor superfamily member 6B (TNFRSF6B), also known as decoy receptor 3 (DcR3); The subfamily TNFRSF6B is also known as decoy receptor 3 (DcR3), M68, or TR6. This protein is a soluble receptor without death domain and cytoplasmic domain, and secreted by cells. It acts as a decoy receptor that competes with death receptors for ligand binding. It is a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases, and cancer. Over-expression of this gene has been noted in several cancers, including pancreatic carcinoma, and gastrointestinal tract tumors. It can neutralize the biological effects of three tumor necrosis factor superfamily (TNFSF) members: TNFSF6 (Fas ligand/FasL/CD95L) and TNFSF14 (LIGHT) which are both involved in apoptosis and inflammation, and TNFSF15 (TNF-like molecule 1A/TL1A), which is a T cell co-stimulator and involved in gut inflammation. DcR3 is a novel inflammatory marker; higher DcR3 levels strongly correlate with inflammation and independently predict cardiovascular and all-cause mortality in chronic kidney disease (CKD) patients on hemodialysis. Increased synovial inflammatory cells infiltration in rheumatoid arthritis and ankylosing spondylitis is also associated with the elevated DcR3 expression. In cartilaginous fish, mRNA expression of DcR3 in the thymus and leydig, which are the representative lymphoid tissues of elasmobranchs, suggests that DcR3 may act as a modulator in the immune system. Interestingly, in banded dogfish (Triakis scyllia), DcR3 mRNA is strongly expressed in the gill, compared with human expression in the normal lung; both are respiratory organs, suggesting potential relevance of DcR3 to respiratory function.


Pssm-ID: 276901 [Multi-domain]  Cd Length: 163  Bit Score: 51.64  E-value: 6.07e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  72 CMCvQPEFHCGDPCCTtcRHHPCPPGQGVQSQGKFSFGFQCIDCASGTFSGGHEG--HCKPWTDCTQFGFLTVFPGNKTH 149
Cdd:cd10575    80 CEC-KPGYYMEHGFCL--RHSSCPPGEGVIKLGTPYSDTQCEPCPPGFFSASSSStePCQPHTNCTQGGLETNVPGNDYH 156

                  ....
gi 1034563024 150 NAVC 153
Cdd:cd10575   157 DTLC 160
TNFRSF9 cd13410
Tumor necrosis factor receptor superfamily member 9 (TNFRSF9), also known as CD137; TNFRSF9 ...
72-155 4.58e-06

Tumor necrosis factor receptor superfamily member 9 (TNFRSF9), also known as CD137; TNFRSF9 (also known as CD137, ILA, 4-1BB) plays a role in the immunobiology of human cancer where it is preferentially expressed on tumor-reactive subset of tumor-infiltrating lymphocytes. It can be expressed by activated T cells, but to a larger extent on CD8 than on CD4 T cells. In addition, CD137 expression is found on dendritic cells, follicular dendritic cells, natural killer cells, granulocytes and cells of blood vessel walls at sites of inflammation. It transduces signals that lead to the activation of NF-kappaB, mediated by the TRAF adaptor proteins. CD137 contributes to the clonal expansion, survival, and development of T cells. It can also induce proliferation in peripheral monocytes, enhance T cell apoptosis induced by TCR/CD3 triggered activation, and regulate CD28 co-stimulation to promote Th1 cell responses. CD137 is modulated by SAHA treatment in breast cancer cells, suggesting that the combination of SAHA with this receptor could be a new therapeutic approach for the treatment of tumors.


Pssm-ID: 276915 [Multi-domain]  Cd Length: 138  Bit Score: 45.50  E-value: 4.58e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  72 CMCVqPEFHCGDPCCTTCRHHpCPPGQGVQSQGkfsfgfqCIDCASGTFSGGHEGHCKPWTDCTQFGFLTVFPGNKTHNA 151
Cdd:cd13410    64 CECV-PGFHCLGPGCSMCEPD-CKQGQELTKEG-------CKDCSFGTFNDQEGGVCRPWTNCSLDGKSVLVNGTKERDV 134

                  ....
gi 1034563024 152 VCVP 155
Cdd:cd13410   135 VCGP 138
TNFRSF21 cd10583
Tumor necrosis factor receptor superfamily member 21 (TNFRSF21), also known as death receptor ...
72-153 5.93e-06

Tumor necrosis factor receptor superfamily member 21 (TNFRSF21), also known as death receptor (DR6); TNFRSF21 (also known as death receptor 6 (DR6), CD358, BM-018) is highly expressed in differentiating neurons as well as in the adult brain, and is upregulated in injured neurons. DR6 negatively regulates neurondendrocyte, axondendrocyte, and oligodendrocyte survival, hinders axondendrocyte and oligodendrocyte regeneration and its inhibition has a neuro-protective effect in nerve injury. It activates nuclear factor kappa-B (NFkB) and mitogen-activated protein kinase 8 (MAPK8, also called c-Jun N-terminal kinase 1), and induces cell apoptosis by associating with TNFRSF1A-associated via death domain (TRADD), which is known to mediate signal transduction of tumor necrosis factor receptors. TNFRSF21 plays a role in T-helper cell activation, and may be involved in inflammation and immune regulation. Its possible ligand is alpha-amyloid precursor protein (APP), hence probably involved in the development of Alzheimer's disease; when released, APP binds in an autocrine/paracrine manner to activate a caspase-dependent self-destruction program that removes unnecessary or connectionless axons. Increasing beta-catenin levels in brain endothelium upregulates TNFRSF21 and TNFRSF19, indicating that these death receptors are downstream target genes of Wnt/beta-catenin signaling, which has been shown to be required for blood-brain barrier development. DR6 is up-regulated in numerous solid tumors as well as in tumor vascular cells, including ovarian cancer and may be a clinically useful diagnostic and predictive serum biomarker for some adult sarcoma subtypes.


Pssm-ID: 276909 [Multi-domain]  Cd Length: 159  Bit Score: 45.90  E-value: 5.93e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  72 CMCVQPEFHCGDPCCttcRHHPCPPGQGVQSQGKFSFGFQCIDCASGTFSGGHEG--HCKPWTDCTQFGFLTVFPGNKTH 149
Cdd:cd10583    79 CTCPPGTFLSNDTCV---PHSVCPVGWGVRKKGTETEDVRCKPCPRGTFSDVPSSvlKCKTYTDCLGLGLVVIKPGTKET 155

                  ....
gi 1034563024 150 NAVC 153
Cdd:cd10583   156 DNVC 159
TNFRSF cd00185
Tumor necrosis factor receptor superfamily (TNFRSF); Members of TNFR superfamily (TNFRSF) ...
93-154 1.96e-05

Tumor necrosis factor receptor superfamily (TNFRSF); Members of TNFR superfamily (TNFRSF) interactions with TNF superfamily (TNFSF) ligands (TNFL) control key cellular processes such as differentiation, proliferation, apoptosis, and cell growth. Dysregulation of these pathways has been shown to result in a wide range of pathological conditions, including autoimmune diseases, inflammation, cancer, and viral infection. There are 29 very diverse family members of TNFRSF reported in humans: 22 are type I transmembrane receptors (single pass with the N terminus on extracellular side of the cell membrane) and have a clear signal peptide; the remaining 7 members are either type III transmembrane receptors (single pass with the N terminus on extracellular side of the membrane but no signal sequence; TNFR13B, TNFR13C, TNFR17, and XEDAR), or attached to the membrane via a glycosylphosphatidylinositol (GPI) linker (TNFR10C), or secreted as soluble receptors (TNFR11B and TNFR6B). All TNFRs contain relatively short cysteine-rich domains (CRDs) in the ectodomain, and are involved in interaction with the TNF homology domain (THD) of their ligands. TNFRs often have multiple CRDs (between one and six), with the most frequent configurations of three or four copies; most CRDs possess three disulfide bridges, but could have between one and four. Localized or genome-wide duplication and evolution of the TNFRSF members appear to have paralleled the emergence of the adaptive immune system; teleosts (i.e. ray-finned, bony fish), which possess an immune system with B and T cells, possess primary and secondary lymphoid organs, and are capable of adaptive responses to pathogens also display several characteristics that are different from the mammalian immune system, making teleost TNFSF orthologs and paralogs of interest to better understand immune system evolution and the immunological pathways elicited to pathogens.


Pssm-ID: 276900 [Multi-domain]  Cd Length: 87  Bit Score: 42.58  E-value: 1.96e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1034563024  93 PCPPGQGVQSQGKFSFGFQCIDCASGTFSG--GHEGHCKPWTDCTQFGFLTVFPGNKTHNAVCV 154
Cdd:cd00185     4 RCPPGEYLSSDCTATTDTVCSPCPPGTYSEswNSLSKCLPCTTCGGGNQVEKTPCTATDNRCCT 67
TNFRSF11A cd13411
Tumor necrosis factor receptor superfamily member 11A (TNFRSF11A), also known as receptor ...
72-153 3.22e-04

Tumor necrosis factor receptor superfamily member 11A (TNFRSF11A), also known as receptor activator of nuclear factor-kappaB (RANK); TNFRSF11A (also known as RANK, FEO, OFE, ODFR, OSTS, PDB2, CD26, OPTB7, TRANCER, LOH18CR1) induces the activation of NF-kappa B and MAPK8/JNK through interactions with various TRAF adaptor proteins. This receptor and its ligand are important regulators of the interaction between T cells and dendritic cells. The receptor is also an essential mediator for osteoclast and lymph node development. Mutations at this locus have been associated with familial expansile osteolysis, autosomal recessive osteopetrosis, and Juvenile Paget's disease (JPD) of bone. Alternatively spliced transcript variants have been described for this locus. Mutation analysis may improve diagnosis, prognostication, recurrence risk assessment, and perhaps treatment selection among the monogenic disorders of RANKL/OPG/RANK activation.


Pssm-ID: 276916 [Multi-domain]  Cd Length: 163  Bit Score: 40.93  E-value: 3.22e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  72 CMCVQpEFHCGDPCCTTCRHHPCPPGQGVQSQGKFSFGFQCIDCASGTFSGGHEG--HCKPWTDCTQFGFLTVFPGNKTH 149
Cdd:cd13411    80 CACTA-GYHWSEDCDCCRRNTECAPGFGAQHPVQLNKDTVCEPCLVGYFSDVFSStdKCKPWTNCTILGLEEAVPGTNKS 158

                  ....
gi 1034563024 150 NAVC 153
Cdd:cd13411   159 DVVC 162
TNFRSF1B cd10577
Tumor necrosis factor receptor superfamily member 1B (TNFRSF1B), also known as TNFR2; TNFRSF1B ...
64-153 6.51e-04

Tumor necrosis factor receptor superfamily member 1B (TNFRSF1B), also known as TNFR2; TNFRSF1B (also known as TNFR2, type 2 TNFR, TNFBR, TNFR80, TNF-R75, TNF-R-II, p75, CD120b) binds TNF-alpha, but lacks the death domain (DD) that is associated with the cytoplasmic domain of TNFRSF1A (TNFR1). It is inducible and expressed exclusively by oligodendrocytes, astrocytes, T cells, thymocytes, myocytes, endothelial cells, and in human mesenchymal stem cells. TNFRSF1B protects oligodendrocyte progenitor cells (OLGs) against oxidative stress, and induces the up-regulation of cell survival genes. While pro-inflammatory and pathogen-clearing activities of TNF are mediated mainly through activation of TNFRSF1A, a strong activator of NF-kappaB, TNFRSF1B is more responsible for suppression of inflammation. Although the affinities of both receptors for soluble TNF are similar, TNFRSF1B is sometimes more abundantly expressed and thought to associate with TNF, thereby increasing its concentration near TNFRSF1A receptors, and making TNF available to activate TNFRSF1A (a ligand-passing mechanism).


Pssm-ID: 276903 [Multi-domain]  Cd Length: 163  Bit Score: 39.77  E-value: 6.51e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  64 EECCSEWDCMC-VQPEFHCGDPCCTTCR----HHPCPPGQGVQSQGKFSFGFQCIDCASGTFSG--GHEGHCKPWTDCTq 136
Cdd:cd10577    70 QACTRQQNRICsCKPGWYCVLKLQEGCRqcrpLKKCGPGFGVARPGTASSDVECKPCAPGTFSDttSSTDTCRPHRICS- 148
                          90
                  ....*....|....*..
gi 1034563024 137 fgfLTVFPGNKTHNAVC 153
Cdd:cd10577   149 ---SVAIPGNASMDAVC 162
PRK07764 PRK07764
DNA polymerase III subunits gamma and tau; Validated
250-344 4.51e-03

DNA polymerase III subunits gamma and tau; Validated


Pssm-ID: 236090 [Multi-domain]  Cd Length: 824  Bit Score: 38.81  E-value: 4.51e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024 250 DRQRRRGGWETCGCEPGRPPGPPTAASPSPGAPQAAGALRSALGRALLPWQQkwvqeggsdqrPGPCSSAAAAGPCRRER 329
Cdd:PRK07764  379 ERLERRLGVAGGAGAPAAAAPSAAAAAPAAAPAPAAAAPAAAAAPAPAAAPQ-----------PAPAPAPAPAPPSPAGN 447
                          90
                  ....*....|....*
gi 1034563024 330 ETQSWPPSSLAGPDG 344
Cdd:PRK07764  448 APAGGAPSPPPAAAP 462
PHA03247 PHA03247
large tegument protein UL36; Provisional
229-344 9.19e-03

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 38.00  E-value: 9.19e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1034563024  229 RCRRRPKTPEAASSPRKSGASDRQRRRGGWETCGC--------EPGRPPGPP----TAASPSPGAPQAAGALRSALGRAL 296
Cdd:PHA03247  2660 RVSRPRRARRLGRAAQASSPPQRPRRRAARPTVGSltsladppPPPPTPEPAphalVSATPLPPGPAAARQASPALPAAP 2739
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|....*...
gi 1034563024  297 LPwqqkwvqeggsdqRPGPCSSAAAAGPCRRERETQSWPPSSLAGPDG 344
Cdd:PHA03247  2740 AP-------------PAVPAGPATPGGPARPARPPTTAGPPAPAPPAA 2774
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH