NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|767973897|ref|XP_011536511|]
View 

adhesion G-protein coupled receptor D1 isoform X8 [Homo sapiens]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
7tm_GPCRs super family cl28897
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ...
576-686 6.37e-57

seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections.


The actual alignment was detected with superfamily member cd15256:

Pssm-ID: 475119 [Multi-domain]  Cd Length: 260  Bit Score: 194.76  E-value: 6.37e-57
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 576 LTNFAILMQVVP----LEVNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAVVF 651
Cdd:cd15256  146 LENGAIWAFVAPalfvIVVNIGILIAVTRVISRISADNYKVHGDANAFKLTAKAVAVLLPILGSSWVFGVLAVNTHALVF 225
                         90       100       110
                 ....*....|....*....|....*....|....*
gi 767973897 652 QYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHKTK 686
Cdd:cd15256  226 QYMFAIFNSLQGFFIFLFHCLLNSEVRAAFKHKTK 260
GPS pfam01825
GPCR proteolysis site, GPS, motif; The GPS motif is found in GPCRs, and is the site for ...
542-582 8.24e-12

GPCR proteolysis site, GPS, motif; The GPS motif is found in GPCRs, and is the site for auto-proteolysis, so is thus named, GPS. The GPS motif is a conserved sequence of ~40 amino acids containing canonical cysteine and tryptophan residues, and is the most highly conserved part of the domain. In most, if not all, cell-adhesion GPCRs these undergo autoproteolysis in the GPS between a conserved aliphatic residue (usually a leucine) and a threonine, serine, or cysteine residue. In higher eukaryotes this motif is found embedded in the C-terminal beta-stranded part of a GAIN domain - GPCR-Autoproteolysis INducing (GAIN). The GAIN-GPS domain adopts a fold in which the GPS motif, at the C-terminus, forms five beta-strands that are tightly integrated into the overall GAIN domain. The GPS motif, evolutionarily conserved from tetrahymena to mammals, is the only extracellular domain shared by all human cell-adhesion GPCRs and PKD proteins, and is the locus of multiple human disease mutations. The GAIN-GPS domain is both necessary and sufficient functionally for autoproteolysis, suggesting an autoproteolytic mechanism whereby the overall GAIN domain fine-tunes the chemical environment in the GPS to catalyze peptide bond hydrolysis. In the cell-adhesion GPCRs and PKD proteins, the GPS motif is always located at the end of their long N-terminal extracellular regions, immediately before the first transmembrane helix of the respective protein.


:

Pssm-ID: 460350  Cd Length: 44  Bit Score: 60.40  E-value: 8.24e-12
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 767973897  542 CAFLDFS-SGEGVWSNHGCALTRGNLTYSVCRCTHLTNFAIL 582
Cdd:pfam01825   3 CVFWDFTnSTTGRWSTEGCTTVSLNDTHTVCSCNHLTSFAVL 44
Laminin_G_3 super family cl48183
Concanavalin A-like lectin/glucanases superfamily; This domain belongs to the Concanavalin ...
170-273 1.99e-11

Concanavalin A-like lectin/glucanases superfamily; This domain belongs to the Concanavalin A-like lectin/glucanases superfamily.


The actual alignment was detected with superfamily member pfam13385:

Pssm-ID: 463865 [Multi-domain]  Cd Length: 151  Bit Score: 62.40  E-value: 1.99e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897  170 SSGGRGSVELYTRDNSM-TWEASFSPPGPYWTHVLFTWkSKEGLKVYVNGTL--STSDPSGKVSRDYGesnvNLVIGSEQ 246
Cdd:pfam13385  51 DGDGRLRFAVNGGNGGWdTVTSGASVPLGQWTHVAVTY-DGGTLRLYVNGVLvgSSTLTGGPPPGTGG----PLYIGRSP 125
                          90       100
                  ....*....|....*....|....*..
gi 767973897  247 DqAKCYENGAFDEFIIWERALTPDEIA 273
Cdd:pfam13385 126 G-GDDYFNGLIDEVRIYDRALSAAEIA 151
 
Name Accession Description Interval E-value
7tmB2_GPR133 cd15256
orphan adhesion receptor GPR133, member of the class B2 family of seven-transmembrane G ...
576-686 6.37e-57

orphan adhesion receptor GPR133, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR133 is an orphan receptor that belongs to the group V adhesion-GPCRs together with GPR144. The function of GPR144 has not yet been characterized, whereas GPR133 is highly expressed in the pituitary gland and is coupled to the Gs protein, leading to activation of adenylyl cyclase pathway. Moreover, genetic variations in the GPR133 have been reported to be associated with adult height and heart rate. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS.


Pssm-ID: 320384 [Multi-domain]  Cd Length: 260  Bit Score: 194.76  E-value: 6.37e-57
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 576 LTNFAILMQVVP----LEVNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAVVF 651
Cdd:cd15256  146 LENGAIWAFVAPalfvIVVNIGILIAVTRVISRISADNYKVHGDANAFKLTAKAVAVLLPILGSSWVFGVLAVNTHALVF 225
                         90       100       110
                 ....*....|....*....|....*....|....*
gi 767973897 652 QYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHKTK 686
Cdd:cd15256  226 QYMFAIFNSLQGFFIFLFHCLLNSEVRAAFKHKTK 260
GPS pfam01825
GPCR proteolysis site, GPS, motif; The GPS motif is found in GPCRs, and is the site for ...
542-582 8.24e-12

GPCR proteolysis site, GPS, motif; The GPS motif is found in GPCRs, and is the site for auto-proteolysis, so is thus named, GPS. The GPS motif is a conserved sequence of ~40 amino acids containing canonical cysteine and tryptophan residues, and is the most highly conserved part of the domain. In most, if not all, cell-adhesion GPCRs these undergo autoproteolysis in the GPS between a conserved aliphatic residue (usually a leucine) and a threonine, serine, or cysteine residue. In higher eukaryotes this motif is found embedded in the C-terminal beta-stranded part of a GAIN domain - GPCR-Autoproteolysis INducing (GAIN). The GAIN-GPS domain adopts a fold in which the GPS motif, at the C-terminus, forms five beta-strands that are tightly integrated into the overall GAIN domain. The GPS motif, evolutionarily conserved from tetrahymena to mammals, is the only extracellular domain shared by all human cell-adhesion GPCRs and PKD proteins, and is the locus of multiple human disease mutations. The GAIN-GPS domain is both necessary and sufficient functionally for autoproteolysis, suggesting an autoproteolytic mechanism whereby the overall GAIN domain fine-tunes the chemical environment in the GPS to catalyze peptide bond hydrolysis. In the cell-adhesion GPCRs and PKD proteins, the GPS motif is always located at the end of their long N-terminal extracellular regions, immediately before the first transmembrane helix of the respective protein.


Pssm-ID: 460350  Cd Length: 44  Bit Score: 60.40  E-value: 8.24e-12
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 767973897  542 CAFLDFS-SGEGVWSNHGCALTRGNLTYSVCRCTHLTNFAIL 582
Cdd:pfam01825   3 CVFWDFTnSTTGRWSTEGCTTVSLNDTHTVCSCNHLTSFAVL 44
GPS smart00303
G-protein-coupled receptor proteolytic site domain; Present in latrophilin/CL-1, sea urchin ...
540-587 1.44e-11

G-protein-coupled receptor proteolytic site domain; Present in latrophilin/CL-1, sea urchin REJ and polycystin.


Pssm-ID: 197639  Cd Length: 49  Bit Score: 59.71  E-value: 1.44e-11
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|....*...
gi 767973897   540 VYCAFldFSSGEGVWSNHGCALTRGNLTYSVCRCTHLTNFAILMQVVP 587
Cdd:smart00303   3 PICVF--WDESSGEWSTRGCELLETNGTHTTCSCNHLTTFAVLMDVPP 48
Laminin_G_3 pfam13385
Concanavalin A-like lectin/glucanases superfamily; This domain belongs to the Concanavalin ...
170-273 1.99e-11

Concanavalin A-like lectin/glucanases superfamily; This domain belongs to the Concanavalin A-like lectin/glucanases superfamily.


Pssm-ID: 463865 [Multi-domain]  Cd Length: 151  Bit Score: 62.40  E-value: 1.99e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897  170 SSGGRGSVELYTRDNSM-TWEASFSPPGPYWTHVLFTWkSKEGLKVYVNGTL--STSDPSGKVSRDYGesnvNLVIGSEQ 246
Cdd:pfam13385  51 DGDGRLRFAVNGGNGGWdTVTSGASVPLGQWTHVAVTY-DGGTLRLYVNGVLvgSSTLTGGPPPGTGG----PLYIGRSP 125
                          90       100
                  ....*....|....*....|....*..
gi 767973897  247 DqAKCYENGAFDEFIIWERALTPDEIA 273
Cdd:pfam13385 126 G-GDDYFNGLIDEVRIYDRALSAAEIA 151
7tm_2 pfam00002
7 transmembrane receptor (Secretin family); This family is known as Family B, the ...
590-666 4.11e-11

7 transmembrane receptor (Secretin family); This family is known as Family B, the secretin-receptor family or family 2 of the G-protein-coupled receptors (GCPRs). They have been described in many animal species, but not in plants, fungi or prokaryotes. Three distinct sub-families are recognized. Subfamily B1 contains classical hormone receptors, such as receptors for secretin and glucagon, that are all involved in cAMP-mediated signalling pathways. Subfamily B2 contains receptors with long extracellular N-termini, such as the leukocyte cell-surface antigen CD97; calcium-independent receptors for latrotoxin, and brain-specific angiogenesis inhibitors amongst others. Subfamily B3 includes Methuselah and other Drosophila proteins. Other than the typical seven-transmembrane region, characteriztic structural features include an amino-terminal extracellular domain involved in ligand binding, and an intracellular loop (IC3) required for specific G-protein coupling.


Pssm-ID: 459625 [Multi-domain]  Cd Length: 248  Bit Score: 63.84  E-value: 4.11e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897  590 VNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVN---GCAVVFQYMFATLNSLQGLFI 666
Cdd:pfam00002 169 VNFIIFINIVRILVQKLRETNMGKSDLKQYRRLAKSTLLLLPLLGITWVFGLFAFNpenTLRVVFLYLFLILNSFQGFFV 248
PTX cd00152
Pentraxins are plasma proteins characterized by their pentameric discoid assembly and their ...
199-276 5.53e-06

Pentraxins are plasma proteins characterized by their pentameric discoid assembly and their Ca2+ dependent ligand binding, such as Serum amyloid P component (SAP) and C-reactive Protein (CRP), which are cytokine-inducible acute-phase proteins implicated in innate immunity. CRP binds to ligands containing phosphocholine, SAP binds to amyloid fibrils, DNA, chromatin, fibronectin, C4-binding proteins and glycosaminoglycans. "Long" pentraxins have N-terminal extensions to the common pentraxin domain; one group, the neuronal pentraxins, may be involved in synapse formation and remodeling, and they may also be able to form heteromultimers.


Pssm-ID: 238086  Cd Length: 201  Bit Score: 47.65  E-value: 5.53e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 199 WTHVLFTWKSKEGL-KVYVNGTLStsdPSGKVSRDY--GESNVnLVIGSEQDQAkcyeNGAFDE----------FIIWER 265
Cdd:cd00152   92 WHHICVTWESTSGIaELWVNGKLS---VRKSLKKGYtvGPGGS-IILGQEQDSY----GGGFDAtqsfvgeisdVNMWDS 163
                         90
                 ....*....|.
gi 767973897 266 ALTPDEIAMYF 276
Cdd:cd00152  164 VLSPEEIKNVY 174
PTX smart00159
Pentraxin / C-reactive protein / pentaxin family; This family form a doscoid pentameric ...
175-279 1.15e-05

Pentraxin / C-reactive protein / pentaxin family; This family form a doscoid pentameric structure. Human serum amyloid P demonstrates calcium-mediated ligand-binding.


Pssm-ID: 128463  Cd Length: 206  Bit Score: 46.88  E-value: 1.15e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897   175 GSVELYTRDNSMTWEASFSPPGpyWTHVLFTWKSKEGL-KVYVNGTLSTsdpsGKVS-RDYG-ESNVNLVIGSEQDqakC 251
Cdd:smart00159  70 GEYSLYIGGKKVQFPVPESDGK--WHHICTTWESSSGIaELWVDGKPGV----RKGLaKGYTvKPGGSIILGQEQD---S 140
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 767973897   252 YeNGAFD----------EFIIWERALTPDEIAMYFTAA 279
Cdd:smart00159 141 Y-GGGFDatqsfvgeigDLNMWDSVLSPEEIKSVYKGS 177
 
Name Accession Description Interval E-value
7tmB2_GPR133 cd15256
orphan adhesion receptor GPR133, member of the class B2 family of seven-transmembrane G ...
576-686 6.37e-57

orphan adhesion receptor GPR133, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR133 is an orphan receptor that belongs to the group V adhesion-GPCRs together with GPR144. The function of GPR144 has not yet been characterized, whereas GPR133 is highly expressed in the pituitary gland and is coupled to the Gs protein, leading to activation of adenylyl cyclase pathway. Moreover, genetic variations in the GPR133 have been reported to be associated with adult height and heart rate. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS.


Pssm-ID: 320384 [Multi-domain]  Cd Length: 260  Bit Score: 194.76  E-value: 6.37e-57
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 576 LTNFAILMQVVP----LEVNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAVVF 651
Cdd:cd15256  146 LENGAIWAFVAPalfvIVVNIGILIAVTRVISRISADNYKVHGDANAFKLTAKAVAVLLPILGSSWVFGVLAVNTHALVF 225
                         90       100       110
                 ....*....|....*....|....*....|....*
gi 767973897 652 QYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHKTK 686
Cdd:cd15256  226 QYMFAIFNSLQGFFIFLFHCLLNSEVRAAFKHKTK 260
7tmB2_GPR133-like_Adhesion_V cd15933
orphan GPR133 and related proteins, group V adhesion GPCRs, member of class B2 family of ...
576-681 3.48e-38

orphan GPR133 and related proteins, group V adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors; group V adhesion GPCRs include orphan receptors GPR133, GPR144, and closely related proteins. The function of GPR144 has not yet been characterized, whereas GPR133 is highly expressed in the pituitary gland and is coupled to the G(s) protein, leading to activation of adenylate cyclase pathway. Moreover, genetic variations in the GPR133 have been reported to be associated with adult height and heart rate. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS.


Pssm-ID: 320599 [Multi-domain]  Cd Length: 252  Bit Score: 142.47  E-value: 3.48e-38
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 576 LTNFAILMQVVP----LEVNIGILIAVTRVISQISADNYKIH-GDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAVV 650
Cdd:cd15933  142 LDDGLIWAFVGPvifiITVNTVILILVVKITVSLSTNDAKKSqGTLAQIKSTAKASVVLLPILGLTWLFGVLVVNSQTIV 221
                         90       100       110
                 ....*....|....*....|....*....|.
gi 767973897 651 FQYMFATLNSLQGLFIFLFHCLLNSEVRAAF 681
Cdd:cd15933  222 FQYIFVILNSLQGLMIFLFHCVLNSEVRSAF 252
7tmB2_Adhesion cd15040
adhesion receptors, subfamily B2 of the class B family of seven-transmembrane G ...
590-681 2.63e-24

adhesion receptors, subfamily B2 of the class B family of seven-transmembrane G protein-coupled receptors; The B2 subfamily of class B GPCRs consists of cell-adhesion receptors with 33 members in humans and vertebrates. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing a variety of structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, linked to a class B seven-transmembrane domain. These include, for example, EGF (epidermal growth factor)-like domains in CD97, Celsr1 (cadherin family member), Celsr2, Celsr3, EMR1 (EGF-module-containing mucin-like hormone receptor-like 1), EMR2, EMR3, and Flamingo; two laminin A G-type repeats and nine cadherin domains in Flamingo and its human orthologs Celsr1, Celsr2 and Celsr3; olfactomedin-like domains in the latrotoxin receptors; and five or four thrombospondin type 1 repeats in BAI1 (brain-specific angiogenesis inhibitor 1), BAI2 and BAI3. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320168 [Multi-domain]  Cd Length: 253  Bit Score: 102.65  E-value: 2.63e-24
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 590 VNIGILIAVTRVISQISADNYKihGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLF 669
Cdd:cd15040  164 VNLVIFVLVLRKLLRLSAKRNK--KKRKKTKAQLRAAVSLFFLLGLTWIFGILAIFGARVVFQYLFAIFNSLQGFFIFIF 241
                         90
                 ....*....|..
gi 767973897 670 HCLLNSEVRAAF 681
Cdd:cd15040  242 HCLRNKEVRKAW 253
7tm_classB cd13952
class B family of seven-transmembrane G protein-coupled receptors; The class B of ...
590-681 3.31e-20

class B family of seven-transmembrane G protein-coupled receptors; The class B of seven-transmembrane GPCRs is classified into three major subfamilies: subfamily B1 (secretin-like receptor family), B2 (adhesion family), and B3 (Methuselah-like family). The class B receptors have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi or prokaryotes. The B1 subfamily comprises receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the subfamily B1 receptors preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. The subfamily B2 consists of cell-adhesion receptors with 33 members in humans and vertebrates. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing a variety of structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, linked to a class B seven-transmembrane domain. These include, for example, EGF (epidermal growth factor)-like domains in CD97, Celsr1 (cadherin family member), Celsr2, Celsr3, EMR1 (EGF-module-containing mucin-like hormone receptor-like 1), EMR2, EMR3, and Flamingo; two laminin A G-type repeats and nine cadherin domains in Flamingo and its human orthologs Celsr1, Celsr2 and Celsr3; olfactomedin-like domains in the latrotoxin receptors; and five or four thrombospondin type 1 repeats in BAI1 (brain-specific angiogenesis inhibitor 1), BAI2 and BAI3. Almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Furthermore, the subfamily B3 includes Methuselah (Mth) protein, which was originally identified in Drosophila as a GPCR affecting stress resistance and aging, and its closely related proteins.


Pssm-ID: 410627 [Multi-domain]  Cd Length: 260  Bit Score: 90.73  E-value: 3.31e-20
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 590 VNIGILIAVTRVISQISADNyKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAV-NGCAVVFQYMFATLNSLQGLFIFL 668
Cdd:cd13952  169 VNLVFFILTVRILLRKLRET-PKQSERKSDRKQLRAYLKLFPLMGLTWIFGILAPfVGGSLVFWYLFDILNSLQGFFIFL 247
                         90
                 ....*....|...
gi 767973897 669 FHCLLNSEVRAAF 681
Cdd:cd13952  248 IFCLKNKEVRRLL 260
7tmB2_latrophilin-like_invertebrate cd15440
invertebrate latrophilin-like receptors, member of the class B2 family of seven-transmembrane ...
579-678 4.05e-17

invertebrate latrophilin-like receptors, member of the class B2 family of seven-transmembrane G protein-coupled receptors; This subgroup includes latrophilin-like proteins that are found in invertebrates such as insects and worms. Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of vertebrate latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320556 [Multi-domain]  Cd Length: 259  Bit Score: 81.93  E-value: 4.05e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 579 FAILMQVVPLEVNIGILIAVTRVISQIsadnyKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATL 658
Cdd:cd15440  157 VVLLANLVFLGMAIYVMCRHSSRSASK-----KDASKLKNIRGWLKGSIVLVVLLGLTWTFGLLFINQESIVMAYIFTIL 231
                         90       100
                 ....*....|....*....|
gi 767973897 659 NSLQGLFIFLFHCLLNSEVR 678
Cdd:cd15440  232 NSLQGLFIFIFHCVLNEKVR 251
7tmB2_CELSR_Adhesion_IV cd15441
cadherin EGF LAG seven-pass G-type receptors, group IV adhesion GPCRs, member of the class B2 ...
627-684 6.16e-17

cadherin EGF LAG seven-pass G-type receptors, group IV adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors; The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. Celsr3 is expressed in both the developing and adult mouse brain. It has been functionally implicated in proper neuron migration and axon guidance in the CNS.


Pssm-ID: 320557 [Multi-domain]  Cd Length: 254  Bit Score: 81.14  E-value: 6.16e-17
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 767973897 627 AVLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15441  194 FLLLPLLGATWVFGLLAVNEDSELLHYLFAGLNFLQGLFIFLFYCIFNKKVRRELKNA 251
7tmB2_GPR116-like_Adhesion_VI cd15932
orphan GPR116 and related proteins, group IV adhesion GPCRs, member of the class B2 family of ...
560-682 2.69e-14

orphan GPR116 and related proteins, group IV adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors; group VI adhesion GPCRs consist of orphan receptors GPR110, GPR111, GPR113, GPR115, GPR116, and closely related proteins. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. GPR110 possesses a SEA box in the N-terminal has been identified as an oncogene over-expressed in lung and prostate cancer. GPR113 contains a hormone binding domain and one EGF (epidermal grown factor) domain. GPR112 has extremely long N-terminus (about 2,400 amino acids) containing a number of Ser/Thr-rich glycosylation sites and a pentraxin (PTX) domain. GPR116 has two C2-set immunoglobulin-like repeats, which is found in the members of the immunoglobulin superfamily of cell surface proteins, and a SEA (sea urchin sperm protein, enterokinase, and a grin)-box, which is present in the extracellular domain of the transmembrane mucin (MUC) family and known to enhance O-glycosylation. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS.


Pssm-ID: 320598 [Multi-domain]  Cd Length: 268  Bit Score: 73.50  E-value: 2.69e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 560 ALTRGNLTYS---VCRCTHLTNFAILMQVVP----LEVNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPI 632
Cdd:cd15932  138 AATAPQGGYTrkgVCWLNWDKTKALLAFVIPalaiVVVNFIILIVVIFKLLRPSVGERPSKDEKNALVQIGKSVAILTPL 217
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|.
gi 767973897 633 LGTSWVFGV-LAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15932  218 LGLTWGFGLgTMIDPKSLAFHIIFAILNSFQGFFILVFGTLLDSKVREALL 268
7tmB2_EMR cd15439
epidermal growth factor-like module-containing mucin-like hormone receptors, member of the ...
621-682 2.87e-14

epidermal growth factor-like module-containing mucin-like hormone receptors, member of the class B2 family of seven-transmembrane G protein-coupled receptors; group II adhesion GPCRs, including the epidermal growth factor (EGF)-module-containing, mucin-like hormone receptor (EMR1-4) and the leukocyte cell-surface antigen CD97, are primarily expressed in cells of the immune system. All EGF-TM7 receptors, which belong to the B2 subfamily of adhesion GPCRs, are members of group II, except for ETL (EGF-TM7-latrophilin related protein), which is classified into group I. Members of the EGF-TM7 receptors are characterized by the presence of varying number of N-terminal EGF-like domains, which play critical roles in ligand recognition and cell adhesion, linked by a stalk region to a class B seven-transmembrane domain. In the case of EMR2, alternative splicing results in four isoforms possessing either two (EGF1,2), three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. EMR2 shares strong sequence homology with CD97, differing by only six amino acids. CD97 is widely expressed on lymphocytes, monocytes, macrophages, dendritic cells, granulocytes and smooth muscle cells as well as in a variety of human tumors including colorectal, gastric, esophageal pancreatic, and thyroid carcinoma. However, unlike CD97, EMR2 is not found in those of CD97-positive tumor cells and is not expressed on lymphocytes but instead on monocytes, macrophages and granulocytes. CD97 has three known ligands: CD55, decay-accelerating factor for regulation of complement system; chondroitin sulfate, a glycosaminoglycan found in the extracellular matrix; and the integrin alpha5beta1, which play a role in angiogenesis. Although EMR2 does not effectively interact with CD55, the fourth EGF-like domain of this receptor binds to chondroitin sulfate to mediate cell attachment.


Pssm-ID: 320555 [Multi-domain]  Cd Length: 263  Bit Score: 73.53  E-value: 2.87e-14
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 767973897 621 LTAKAVAVLLpILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15439  198 LTFKAIAQLF-ILGCTWILGLFQVGPVATVMAYLFTITNSLQGVFIFLVHCLLNRQVREEYR 258
7tmB2_EMR_Adhesion_II cd15931
EGF-like module receptors, group II adhesion GPCRs, member of class B2 family of ...
621-682 8.61e-14

EGF-like module receptors, group II adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors; group II adhesion GPCRs, including the leukocyte cell-surface antigen CD97 and the epidermal growth factor (EGF)-module-containing, mucin-like hormone receptor (EMR1-4), are primarily expressed in cells of the immune system. All EGF-TM7 receptors, which belong to the B2 subfamily B2 of adhesion GPCRs, are members of group II, except for ETL (EGF-TM7-latrophilin related protein), which is classified into group I. Members of the EGF-TM7 receptors are characterized by the presence of varying numbers of N-terminal EGF-like domains, which play critical roles in ligand recognition and cell adhesion, linked by a stalk region to a class B seven-transmembrane domain. In the case of CD97, alternative splicing results in three isoforms possessing either three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. On the other hand, EMR2 generates four isoforms possessing either two (EGF1,2), three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. For example, CD97, which is involved in angiogenesis and the migration and invasion of tumor cells, has been shown to promote cell aggregation in a GPS proteolysis-dependent manner. CD97 is widely expressed on lymphocytes, monocytes, macrophages, dendritic cells, granulocytes and smooth muscle cells as well as in a variety of human tumors including colorectal, gastric, esophageal pancreatic, and thyroid carcinoma. EMR2 shares strong sequence homology with CD97, differing by only six amino acids. However, unlike CD97, EMR2 is not found in those of CD97-positive tumor cells and is not expressed on lymphocytes but instead on monocytes, macrophages and granulocytes. CD97 has three known ligands: CD55, decay-accelerating factor for regulation of complement system; chondroitin sulfate, a glycosaminoglycan found in the extracellular matrix; and the integrin alpha5beta1, which play a role in angiogenesis. Although EMR2 does not effectively interact with CD55, the fourth EGF-like domain of this receptor binds to chondroitin sulfate to mediate cell attachment.


Pssm-ID: 320597 [Multi-domain]  Cd Length: 262  Bit Score: 72.16  E-value: 8.61e-14
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 767973897 621 LTAKAVAVLLpILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15931  198 LTFKAVAQLF-ILGCTWVLGLFQTNPVALVFQYLFTILNSLQGAFLFLVHCLLNKEVREEYI 258
7tmB2_Latrophilin_Adhesion_I cd15252
Latrophilins and similar receptors, group I adhesion GPCRs, member of class B2 family of ...
612-681 1.73e-13

Latrophilins and similar receptors, group I adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors; Group I adhesion GPCRs consist of latrophilins (also called lectomedins or latrotoxin receptors) and ETL (EGF-TM7-latrophilin-related protein. These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320380 [Multi-domain]  Cd Length: 257  Bit Score: 71.00  E-value: 1.73e-13
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 612 IHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAF 681
Cdd:cd15252  183 EVSCLENIRSWARGAIALLFLLGLTWIFGVLHINHASVVMAYLFTVSNSLQGMFIFLFHCVLSRKVRKEY 252
7tmB2_CD97 cd15438
CD97 antigen, member of the class B2 family of seven-transmembrane G protein-coupled receptors; ...
621-681 5.21e-13

CD97 antigen, member of the class B2 family of seven-transmembrane G protein-coupled receptors; group II adhesion GPCRs, including the leukocyte cell-surface antigen CD97 and the epidermal growth factor (EGF)-module-containing, mucin-like hormone receptor (EMR1-4), are primarily expressed in cells of the immune system. All EGF-TM7 receptors, which belong to the B2 subfamily B2 of adhesion GPCRs, are members of group II, except for ETL (EGF-TM7-latrophilin related protein), which is classified into group I. Members of the EGF-TM7 receptors are characterized by the presence of varying numbers of N-terminal EGF-like domains, which play critical roles in ligand recognition and cell adhesion, linked by a stalk region to a class B seven-transmembrane domain. In the case of CD97, alternative splicing results in three isoforms possessing either three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. For example, CD97, which is involved in angiogenesis and the migration and invasion of tumor cells, has been shown to promote cell aggregation in a GPS proteolysis-dependent manner. CD97 is widely expressed on lymphocytes, monocytes, macrophages, dendritic cells, granulocytes and smooth muscle cells as well as in a variety of human tumors including colorectal, gastric, esophageal pancreatic, and thyroid carcinoma. EMR2 shares strong sequence homology with CD97, differing by only six amino acids. However, unlike CD97, EMR2 is not found in those of CD97-positive tumor cells and is not expressed on lymphocytes but instead on monocytes, macrophages and granulocytes. CD97 has three known ligands: CD55, decay-accelerating factor for regulation of complement system; chondroitin sulfate, a glycosaminoglycan found in the extracellular matrix; and the integrin alpha5beta1, which play a role in angiogenesis. Although EMR2 does not effectively interact with CD55, the fourth EGF-like domain of this receptor binds to chondroitin sulfate to mediate cell attachment.


Pssm-ID: 320554 [Multi-domain]  Cd Length: 261  Bit Score: 69.79  E-value: 5.21e-13
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 767973897 621 LTAKAVAVLLpILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAF 681
Cdd:cd15438  193 LTITAIAQLC-ILGCTWIFGFFQFSDSTLVMSYLFTILNSLQGLFIFLLHCLLSKQVREEY 252
7tmB2_GPR112 cd15997
Probable G protein-coupled receptor 112, member of the class B2 family of seven-transmembrane ...
579-678 4.19e-12

Probable G protein-coupled receptor 112, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR112 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include orphan GPCRs such as GPR56, GPR64, GPR97, GPR114, and GPR126. GPR112 is specifically expressed in normal enterochromatin cells and gastrointestinal neuroendocrine carcinoma cells, but its biological function is unknown. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320663  Cd Length: 269  Bit Score: 66.99  E-value: 4.19e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 579 FAILMQVVPLEVNIGILIAVTRVISQISADNYKihgdpSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATL 658
Cdd:cd15997  168 YFCLIFLCNISMFITVLIQIRSMKAKKPSRNWK-----QGFLHDLKSVASLTFLLGLTWGFAFFAWGPVRIFFLYLFSIC 242
                         90       100
                 ....*....|....*....|
gi 767973897 659 NSLQGLFIFLFHCLLNSEVR 678
Cdd:cd15997  243 NTLQGFFIFVFHCLMKENVR 262
GPS pfam01825
GPCR proteolysis site, GPS, motif; The GPS motif is found in GPCRs, and is the site for ...
542-582 8.24e-12

GPCR proteolysis site, GPS, motif; The GPS motif is found in GPCRs, and is the site for auto-proteolysis, so is thus named, GPS. The GPS motif is a conserved sequence of ~40 amino acids containing canonical cysteine and tryptophan residues, and is the most highly conserved part of the domain. In most, if not all, cell-adhesion GPCRs these undergo autoproteolysis in the GPS between a conserved aliphatic residue (usually a leucine) and a threonine, serine, or cysteine residue. In higher eukaryotes this motif is found embedded in the C-terminal beta-stranded part of a GAIN domain - GPCR-Autoproteolysis INducing (GAIN). The GAIN-GPS domain adopts a fold in which the GPS motif, at the C-terminus, forms five beta-strands that are tightly integrated into the overall GAIN domain. The GPS motif, evolutionarily conserved from tetrahymena to mammals, is the only extracellular domain shared by all human cell-adhesion GPCRs and PKD proteins, and is the locus of multiple human disease mutations. The GAIN-GPS domain is both necessary and sufficient functionally for autoproteolysis, suggesting an autoproteolytic mechanism whereby the overall GAIN domain fine-tunes the chemical environment in the GPS to catalyze peptide bond hydrolysis. In the cell-adhesion GPCRs and PKD proteins, the GPS motif is always located at the end of their long N-terminal extracellular regions, immediately before the first transmembrane helix of the respective protein.


Pssm-ID: 460350  Cd Length: 44  Bit Score: 60.40  E-value: 8.24e-12
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 767973897  542 CAFLDFS-SGEGVWSNHGCALTRGNLTYSVCRCTHLTNFAIL 582
Cdd:pfam01825   3 CVFWDFTnSTTGRWSTEGCTTVSLNDTHTVCSCNHLTSFAVL 44
GPS smart00303
G-protein-coupled receptor proteolytic site domain; Present in latrophilin/CL-1, sea urchin ...
540-587 1.44e-11

G-protein-coupled receptor proteolytic site domain; Present in latrophilin/CL-1, sea urchin REJ and polycystin.


Pssm-ID: 197639  Cd Length: 49  Bit Score: 59.71  E-value: 1.44e-11
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|....*...
gi 767973897   540 VYCAFldFSSGEGVWSNHGCALTRGNLTYSVCRCTHLTNFAILMQVVP 587
Cdd:smart00303   3 PICVF--WDESSGEWSTRGCELLETNGTHTTCSCNHLTTFAVLMDVPP 48
Laminin_G_3 pfam13385
Concanavalin A-like lectin/glucanases superfamily; This domain belongs to the Concanavalin ...
170-273 1.99e-11

Concanavalin A-like lectin/glucanases superfamily; This domain belongs to the Concanavalin A-like lectin/glucanases superfamily.


Pssm-ID: 463865 [Multi-domain]  Cd Length: 151  Bit Score: 62.40  E-value: 1.99e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897  170 SSGGRGSVELYTRDNSM-TWEASFSPPGPYWTHVLFTWkSKEGLKVYVNGTL--STSDPSGKVSRDYGesnvNLVIGSEQ 246
Cdd:pfam13385  51 DGDGRLRFAVNGGNGGWdTVTSGASVPLGQWTHVAVTY-DGGTLRLYVNGVLvgSSTLTGGPPPGTGG----PLYIGRSP 125
                          90       100
                  ....*....|....*....|....*..
gi 767973897  247 DqAKCYENGAFDEFIIWERALTPDEIA 273
Cdd:pfam13385 126 G-GDDYFNGLIDEVRIYDRALSAAEIA 151
7tmB2_Latrophilin-1 cd16007
Latrophilin-1, member of the class B2 family of seven-transmembrane G protein-coupled ...
578-681 3.52e-11

Latrophilin-1, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320673 [Multi-domain]  Cd Length: 258  Bit Score: 64.17  E-value: 3.52e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 578 NFAILMQVVPLEVNIGILIAVTRVISQISA--DNYKihgdpsAFKLTAKAvavLLPILGTSWVFGVLAVNGCAVVFQYMF 655
Cdd:cd16007  156 SFVIVVNLVFLMVTLHKMIRSSSVLKPDSSrlDNIK------SWALGAIT---LLFLLGLTWAFGLLFINKESVVMAYLF 226
                         90       100
                 ....*....|....*....|....*.
gi 767973897 656 ATLNSLQGLFIFLFHCLLNSEVRAAF 681
Cdd:cd16007  227 TTFNAFQGMFIFIFHCALQKKVHKEY 252
7tm_2 pfam00002
7 transmembrane receptor (Secretin family); This family is known as Family B, the ...
590-666 4.11e-11

7 transmembrane receptor (Secretin family); This family is known as Family B, the secretin-receptor family or family 2 of the G-protein-coupled receptors (GCPRs). They have been described in many animal species, but not in plants, fungi or prokaryotes. Three distinct sub-families are recognized. Subfamily B1 contains classical hormone receptors, such as receptors for secretin and glucagon, that are all involved in cAMP-mediated signalling pathways. Subfamily B2 contains receptors with long extracellular N-termini, such as the leukocyte cell-surface antigen CD97; calcium-independent receptors for latrotoxin, and brain-specific angiogenesis inhibitors amongst others. Subfamily B3 includes Methuselah and other Drosophila proteins. Other than the typical seven-transmembrane region, characteriztic structural features include an amino-terminal extracellular domain involved in ligand binding, and an intracellular loop (IC3) required for specific G-protein coupling.


Pssm-ID: 459625 [Multi-domain]  Cd Length: 248  Bit Score: 63.84  E-value: 4.11e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897  590 VNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVN---GCAVVFQYMFATLNSLQGLFI 666
Cdd:pfam00002 169 VNFIIFINIVRILVQKLRETNMGKSDLKQYRRLAKSTLLLLPLLGITWVFGLFAFNpenTLRVVFLYLFLILNSFQGFFV 248
7tmB1_hormone_R cd15041
The subfamily B1 of hormone receptors (secretin-like), member of the class B family ...
585-684 6.90e-11

The subfamily B1 of hormone receptors (secretin-like), member of the class B family seven-transmembrane G protein-coupled receptors; The B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of this subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. Moreover, the B1 subfamily receptors play key roles in hormone homeostasis and are promising drug targets in various human diseases including diabetes, osteoporosis, obesity, neurodegenerative conditions (Alzheimer###s and Parkinson's), cardiovascular disease, migraine, and psychiatric disorders (anxiety, depression). Furthermore, the subfamilies B2 and B3 consist of receptors that are capable of interacting with epidermal growth factors (EGF) and the Drosophila melanogaster Methuselah gene product (Mth), respectively. The class B GPCRs have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi, or prokaryotes.


Pssm-ID: 341321 [Multi-domain]  Cd Length: 273  Bit Score: 63.40  E-value: 6.90e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 585 VVPLEVNIGILIAVTRV-ISQISADNykiHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAV---VFQYMFATLNS 660
Cdd:cd15041  170 LLALLVNLFFLINILRIlLTKLRSHP---NAEPSNYRKAVKATLILIPLFGIQYLLTIYRPPDGSEgelVYEYFNAILNS 246
                         90       100
                 ....*....|....*....|....
gi 767973897 661 LQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15041  247 SQGFFVAVIYCFLNGEVQSELKRK 270
7tmB2_Latrophilin-2 cd16006
Latrophilin-2, member of the class B2 family of seven-transmembrane G protein-coupled ...
628-681 1.02e-10

Latrophilin-2, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320672 [Multi-domain]  Cd Length: 258  Bit Score: 63.01  E-value: 1.02e-10
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 767973897 628 VLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAF 681
Cdd:cd16006  199 ALLCLLGLTWSFGLLFINEETIVMAYLFTIFNAFQGMFIFIFHCALQKKVRKEY 252
7tmB2_CELSR1 cd15991
Cadherin EGF LAG seven-pass G-type receptor 1, member of the class B2 family of ...
628-682 1.35e-10

Cadherin EGF LAG seven-pass G-type receptor 1, member of the class B2 family of seven-transmembrane G protein-coupled receptors; The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320657 [Multi-domain]  Cd Length: 254  Bit Score: 62.56  E-value: 1.35e-10
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 767973897 628 VLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15991  195 LLLLLISATWLLGLMAVNSDTLSFHYLFAIFSCLQGIFIFFFHCIFNKEVRKHLK 249
7tmB2_GPR116_Ig-Hepta cd15254
The immunoglobulin-repeat-containing receptor Ig-hepta/GPR116, member of the class B2 family ...
580-684 1.59e-10

The immunoglobulin-repeat-containing receptor Ig-hepta/GPR116, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR116 (also known as Ig-hepta) is an orphan receptor that belongs to group VI adhesion-GPCRs along with GPR110, GPR111, GPR113, and GPR115. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. GPR116 has four I-set immunoglobulin-like repeats, which is found in the members of the immunoglobulin superfamily of cell surface proteins, and a SEA (sea urchin sperm protein, enterokinase, and a grin)-box, which is present in the extracellular domain of the transmembrane mucin (MUC) family and known to enhance O-glycosylation. GPR116 is highly expressed in fetal and adult lung, and it has been shown to regulate lung surfactant levels as well as to stimulate breast cancer metastasis through a G(q)-p63-RhoGEF-Rho GTPase signaling pathway. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS.


Pssm-ID: 320382 [Multi-domain]  Cd Length: 275  Bit Score: 62.51  E-value: 1.59e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 580 AILMQVVP----LEVNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAV-NGCAVVFQYM 654
Cdd:cd15254  163 ALLAFVIPaliiVAVNSIITVVVIVKILRPSIGEKPSKQERSSLFQIIKSIGVLTPLLGLTWGFGLATViKGSSIVFHIL 242
                         90       100       110
                 ....*....|....*....|....*....|
gi 767973897 655 FATLNSLQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15254  243 FTLLNAFQGLFILVFGTLWDKKVQEALLNK 272
7tmB2_GPR144 cd15255
orphan adhesion receptor GPR114, member of the class B2 family of seven-transmembrane G ...
622-682 2.50e-10

orphan adhesion receptor GPR114, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR144 is an orphan receptor that belongs to the group V adhesion-GPCRs together with GPR133. The function of GPR144 has not yet been characterized, whereas GPR133 is highly expressed in the pituitary gland and is coupled to the Gs protein, leading to activation of adenylyl cyclase pathway. Moreover, genetic variations in the GPR133 have been reported to be associated with adult height and heart rate. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS.


Pssm-ID: 320383 [Multi-domain]  Cd Length: 263  Bit Score: 61.79  E-value: 2.50e-10
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 767973897 622 TAKAVAVLLPILGTSWVFGVLAvnGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15255  201 TAKPVLVLLPVLGLTWLCGVLV--HLSDVWAYVFITLNSFQGLYIFLVYAIYNSEVRNAIQ 259
7tmB2_Latrophilin-3 cd16005
Latrophilin-3, member of the class B2 family of seven-transmembrane G protein-coupled ...
629-681 6.76e-10

Latrophilin-3, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320671 [Multi-domain]  Cd Length: 258  Bit Score: 60.34  E-value: 6.76e-10
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 767973897 629 LLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAF 681
Cdd:cd16005  200 LLCLLGLTWAFGLMYINESTVIMAYLFTIFNSLQGMFIFIFHCVLQKKVRKEY 252
7tmB2_CELSR3 cd15993
Cadherin EGF LAG seven-pass G-type receptor 3, member of the class B2 family of ...
621-682 1.86e-09

Cadherin EGF LAG seven-pass G-type receptor 3, member of the class B2 family of seven-transmembrane G protein-coupled receptors; The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. Celsr3 is expressed in both the developing and adult mouse brain. It has been functionally implicated in proper neuronal migration and axon guidance in the CNS. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320659 [Multi-domain]  Cd Length: 254  Bit Score: 59.09  E-value: 1.86e-09
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 767973897 621 LTAKAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15993  188 MTLRSSFLLLLLISATWLFGLLAVNNSVLAFHYLHAILCCLQGLAVLLLFCVLNEEVQEAWK 249
7tmB2_GPR113 cd15253
orphan adhesion receptor GPR113, member of the class B2 family of seven-transmembrane G ...
624-684 5.06e-09

orphan adhesion receptor GPR113, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR113 is an orphan receptor that belongs to group VI adhesion-GPCRs along with GPR110, GPR111, GPR115, and GPR116. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. GPR113 contains a hormone binding domain and one EGF (epidermal grown factor) domain, and is primarily expressed in a subset of taste receptor cells. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS.


Pssm-ID: 320381 [Multi-domain]  Cd Length: 271  Bit Score: 57.85  E-value: 5.06e-09
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 767973897 624 KAVAVLLPILGTSWVFGVLAVNG-CAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15253  207 KALLVLTPVFGLTWGLGVATLTGeSSQVSHYGFAILNAFQGVFILLFGCLMDKKVREALLKR 268
7tmB2_Latrophilin cd15436
Latrophilins, member of the class B2 family of seven-transmembrane G protein-coupled receptors; ...
629-678 7.94e-09

Latrophilins, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320552 [Multi-domain]  Cd Length: 258  Bit Score: 57.11  E-value: 7.94e-09
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 767973897 629 LLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVR 678
Cdd:cd15436  200 LLFLLGLTWSFGLMFINEESVVMAYLFTIFNAFQGVFIFIFHCALQKKVR 249
7tmB1_DH_R cd15263
insect diuretic hormone receptors, member of the class B family of seven-transmembrane G ...
623-683 1.55e-08

insect diuretic hormone receptors, member of the class B family of seven-transmembrane G protein-coupled receptors; This group includes G protein-coupled receptors that specifically bind to insect diuretic hormones found in Manduca sexta (moth) and Acheta domesticus (the house cricket), among others. Insect diuretic hormone and their GPCRs play critical roles in the regulation of water and ion balance. Thus they are attractive targets for developing new insecticides. Activation of the diuretic hormone receptors stimulate adenylate cyclase, thereby increasing cAMP levels in Malpighian tube. They belong to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of Gs family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx.


Pssm-ID: 320391 [Multi-domain]  Cd Length: 272  Bit Score: 56.61  E-value: 1.55e-08
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 767973897 623 AKAVAVLLPILGTSWVFgVLAV---NGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFKH 683
Cdd:cd15263  206 AKALLVLIPLLGITYIL-VIAGpteGIAANIFEYVRAVLLSTQGFTVALFYCFLNTEVRNTLRH 268
7tmB1_CRF-R cd15264
corticotropin-releasing factor receptors, member of the class B family of seven-transmembrane ...
624-684 2.91e-08

corticotropin-releasing factor receptors, member of the class B family of seven-transmembrane G protein-coupled receptors; The vertebrate corticotropin-releasing factor (CRF) receptors are predominantly expressed in central nervous system with high levels in cortex tissue, brain stem, and pituitary. They have two isoforms as a result of alternative splicing of the same receptor gene: CRF-R1 and CRF-R2, which differ in tissue distribution and ligand binding affinities. Recently, a third CRF receptor (CRF-R3) has been identified in catfish pituitary. The catfish CRF-R1 is highly homologous to CRF-R3. CRF is a 41-amino acid neuropeptide that plays a central role in coordinating neuroendocrine, behavioral, and autonomic responses to stress by acting as the primary neuroregulator of the hypothalamic-pituitary-adrenal axis, which controls the levels of cortisol and other stress related hormones. In addition, the CRF family of neuropeptides also includes structurally related peptides such as mammalian urocortin, fish urotensin I, and frog sauvagine. The actions of CRF and CRF-related peptides are mediated through specific binding to CRF-R1 and CRF-R2. CRF and urocortin 1 bind and activate mammalian CRF-R1 with similar high affinities. By contrast, urocortin 2 and urocortin 3 do not bind to CRF-R1 or stimulate CRF-R1-mediated cAMP formation. Urocortin 1 also shows high affinity for mammalian CRF-R2, whereas CRF has significantly lower affinity for this receptor. These evidence suggest that urocortin 1 is an endogenous ligand for CRF-R1 and CRF-R2. The CRF receptors are members of the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, and parathyroid hormone (PTH). These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on its cellular location and function, CRF receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways.


Pssm-ID: 320392 [Multi-domain]  Cd Length: 265  Bit Score: 55.50  E-value: 2.91e-08
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 767973897 624 KAVAVLLPILGTSWVFGVLAVNGCAV---VFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15264  199 KATLVLLPLLGITYMLFFINPGDDKTsrlVFIYFNTFLQSFQGLFVAVFYCFLNGEVRSAIRKK 262
7tmB2_GPR111_115 cd15994
orphan adhesion receptors GPR111 and GPR115, member of the class B2 family of ...
580-682 3.92e-08

orphan adhesion receptors GPR111 and GPR115, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR111 and GPR115 are highly homologous orphan receptors that belong to group VI adhesion-GPCRs along with GPR110, GPR113, and GPR116. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. Both GPR111 and GPR5 are present only in land-living animals and are predominantly expressed in the developing skin.


Pssm-ID: 320660 [Multi-domain]  Cd Length: 267  Bit Score: 55.23  E-value: 3.92e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 580 AILMQVVPLEVNIGI-LIAVTRVI--SQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLA-VNGCAVVFQYMF 655
Cdd:cd15994  161 ALLAFIIPALSIVVVnLIVVGVVVvkTQRSSIGESCKQDVSNIIRISKNVAILTPLLGLTWGFGLATiIDSRSLPFHIIF 240
                         90       100
                 ....*....|....*....|....*..
gi 767973897 656 ATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15994  241 ALLNAFQGFFILLFGTILDRKIRIALY 267
7tmB2_ETL cd15437
Epidermal Growth Factor, latrophilin and seven transmembrane domain-containing protein 1; ...
623-678 6.53e-08

Epidermal Growth Factor, latrophilin and seven transmembrane domain-containing protein 1; member of the class B2 family of seven-transmembrane G protein-coupled receptors; ETL (EGF-TM7-latrophilin-related protein) belongs to Group I adhesion GPCRs, which also include latrophilins (also called lectomedins or latrotoxin receptors). All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. ETL, for instance, contains EGF-like repeats, which also present in other EGF-TM7 adhesion GPCRs, such as Cadherin EGF LAG seven-pass G-type receptors (CELSR1-3), EGF-like module receptors (EMR1-3), CD97, and Flamingo. ETL is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320553 [Multi-domain]  Cd Length: 258  Bit Score: 54.50  E-value: 6.53e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 767973897 623 AKAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVR 678
Cdd:cd15437  194 ARGALALLFLLGATWIFGVLHVVYGSVVTAYLFTISNAFQGMFIFIFLCVLSRKIQ 249
7tmB2_BAI_Adhesion_VII cd15251
brain-specific angiogenesis inhibitors, group VII adhesion GPCRs, member of the class B2 ...
628-682 1.06e-07

brain-specific angiogenesis inhibitors, group VII adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediate direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions.


Pssm-ID: 320379  Cd Length: 253  Bit Score: 53.80  E-value: 1.06e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 767973897 628 VLLPILGTSWVFGVLAV-NGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15251  193 VVLPLLALTWMSAVLAMtDRRSVLFQILFAVFDSLQGFVIVMVHCILRREVQDAVK 248
7tmB2_GPR64 cd15444
orphan adhesion receptor GPR64 and related proteins, member of subfamily B2 of the class B ...
624-682 1.53e-07

orphan adhesion receptor GPR64 and related proteins, member of subfamily B2 of the class B secretin-like receptors of seven-transmembrane G protein-coupled receptors; GPR64 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include orphan GPCRs such as GPR56, GPR97, GPR112, GPR114, and GPR126. GPR64 is mainly expressed in the epididymis of male reproductive tract, and targeted deletion of GPR64 causes sperm stasis and efferent duct blockage due to abnormal fluid reabsorption, resulting in male infertility. GPR64 is also over-expressed in Ewing's sarcoma (ES), as well as upregulated in other carcinomas from kidney, prostate or lung, and promotes invasiveness and metastasis in ES via the upregulation of placental growth factor (PGF) and matrix metalloproteinase (MMP) 1. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320560 [Multi-domain]  Cd Length: 271  Bit Score: 53.29  E-value: 1.53e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 767973897 624 KAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15444  210 RSVAGITFLLGITWGFAFFAWGPVNLAFMYLFAIFNTLQGFFIFIFYCVAKENVRKQWR 268
7tmB2_GPR126 cd15996
orphan adhesion receptor GPR126, member of the class B2 family of seven-transmembrane G ...
624-682 2.25e-07

orphan adhesion receptor GPR126, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR126 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include orphan GPCRs such as GPR56, GPR64, GPR97, GPR112, and GPR114. GPR126 is required in Schwann cells for proper differentiation and myelination via G-Protein Activation. GPR126 is believed to couple to G(s)-protein, which leads to activation of adenylate cyclase for cAMP production. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320662  Cd Length: 271  Bit Score: 52.97  E-value: 2.25e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 767973897 624 KAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15996  210 RSVVSLTFLLGMTWGFAFFAWGPVNLAFMYLFTIFNSLQGLFIFVFHCALKENVQKQWR 268
7tmB2_GPR126-like_Adhesion_VIII cd15258
orphan GPR126 and related proteins, group VIII adhesion GPCRs, member of the class B2 family ...
624-679 1.24e-06

orphan GPR126 and related proteins, group VIII adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Group VIII adhesion GPCRs include orphan GPCRs such as GPR56, GPR64, GPR97, GPR112, GPR114, and GPR126. GPR56 is involved in the regulation of oligodendrocyte development and myelination in the central nervous system via coupling to G(12/13) proteins, which leads to the activation of RhoA GTPase. GPR126, on the other hand, is required for Schwann cells, but not oligodendrocyte myelination in the peripheral nervous system. Gpr64 is mainly expressed in the epididymis of male reproductive tract, and targeted deletion of GPR64 causes sperm stasis and efferent duct blockage due to abnormal fluid reabsorption, resulting in male infertility. GPR64 is also over-expressed in Ewing's sarcoma (ES), as well as upregulated in other carcinomas from kidney, prostate or lung, and promotes invasiveness and metastasis in ES via the upregulation of placental growth factor (PGF) and matrix metalloproteinase (MMP) 1. GPR97 is identified as a lymphatic adhesion receptor that is specifically expressed in lymphatic endothelium, but not in blood vascular endothelium, and is shown to regulate migration of lymphatic endothelial cells via the small GTPases RhoA and cdc42. GPR112 is specifically expressed in normal enterochromatin cells and gastrointestinal neuroendocrine carcinoma cells, but its biological function is unknown. GPR114 is mainly found in granulocytes (polymorphonuclear leukocytes), and GPR114-transfected cells induced an increase in cAMP levels via coupling to G(s) protein. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320386 [Multi-domain]  Cd Length: 267  Bit Score: 50.49  E-value: 1.24e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 767973897 624 KAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRA 679
Cdd:cd15258  208 LTLLGLTFLLGLTWGLAFFAWGPFNLPFLYLFAIFNSLQGFFIFIWYCSMKENVRK 263
7tmB2_CELSR2 cd15992
Cadherin EGF LAG seven-pass G-type receptor 2, member of the class B2 family of ...
624-682 3.63e-06

Cadherin EGF LAG seven-pass G-type receptor 2, member of the class B2 family of seven-transmembrane G protein-coupled receptors; The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320658  Cd Length: 255  Bit Score: 49.05  E-value: 3.63e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 767973897 624 KAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15992  192 RTAFTVLLLVSVTCLLALLSVNSDVILFHYLFAGFNCLQGPFIFLSHVVLLKEVRKALK 250
7tmB2_BAI3 cd15989
brain-specific angiogenesis inhibitor 3, a group VII adhesion GPCR, member of the class B2 ...
628-686 4.19e-06

brain-specific angiogenesis inhibitor 3, a group VII adhesion GPCR, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediates direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions.


Pssm-ID: 320655 [Multi-domain]  Cd Length: 293  Bit Score: 49.30  E-value: 4.19e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 628 VLLPILGTSWVFGVLAV-NGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHKTK 686
Cdd:cd15989  233 VVLPLLALTWMSAVLAMtDKRSILFQILFAVFDSLQGFVIVMVHCILRREVQDAFRCRLR 292
7tmB2_BAI2 cd15988
brain-specific angiogenesis inhibitor 2, a group VII adhesion GPCR, member of the class B2 ...
628-682 5.14e-06

brain-specific angiogenesis inhibitor 2, a group VII adhesion GPCR, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediates direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions.


Pssm-ID: 320654 [Multi-domain]  Cd Length: 291  Bit Score: 48.80  E-value: 5.14e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 767973897 628 VLLPILGTSWVFGVLAV-NGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15988  231 VVLPLLALTWMSAVLAMtDRRSILFQVLFAVFNSVQGFVIITVHCFLRREVQDVVK 286
PTX cd00152
Pentraxins are plasma proteins characterized by their pentameric discoid assembly and their ...
199-276 5.53e-06

Pentraxins are plasma proteins characterized by their pentameric discoid assembly and their Ca2+ dependent ligand binding, such as Serum amyloid P component (SAP) and C-reactive Protein (CRP), which are cytokine-inducible acute-phase proteins implicated in innate immunity. CRP binds to ligands containing phosphocholine, SAP binds to amyloid fibrils, DNA, chromatin, fibronectin, C4-binding proteins and glycosaminoglycans. "Long" pentraxins have N-terminal extensions to the common pentraxin domain; one group, the neuronal pentraxins, may be involved in synapse formation and remodeling, and they may also be able to form heteromultimers.


Pssm-ID: 238086  Cd Length: 201  Bit Score: 47.65  E-value: 5.53e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 199 WTHVLFTWKSKEGL-KVYVNGTLStsdPSGKVSRDY--GESNVnLVIGSEQDQAkcyeNGAFDE----------FIIWER 265
Cdd:cd00152   92 WHHICVTWESTSGIaELWVNGKLS---VRKSLKKGYtvGPGGS-IILGQEQDSY----GGGFDAtqsfvgeisdVNMWDS 163
                         90
                 ....*....|.
gi 767973897 266 ALTPDEIAMYF 276
Cdd:cd00152  164 VLSPEEIKNVY 174
7tmB1_CRF-R1 cd15445
corticotropin-releasing factor receptor 1, member of the class B family of seven-transmembrane ...
619-684 6.28e-06

corticotropin-releasing factor receptor 1, member of the class B family of seven-transmembrane G protein-coupled receptors; The vertebrate corticotropin-releasing factor (CRF) receptors are predominantly expressed in central nervous system with high levels in cortex tissue, brain stem, and pituitary. They have two isoforms as a result of alternative splicing of the same receptor gene: CRF-R1 and CRF-R2, which differ in tissue distribution and ligand binding affinities. Recently, a third CRF receptor (CRF-R3) has been identified in catfish pituitary. The catfish CRF-R1 is highly homologous to CRF-R3. CRF is a 41-amino acid neuropeptide that plays a central role in coordinating neuroendocrine, behavioral, and autonomic responses to stress by acting as the primary neuroregulator of the hypothalamic-pituitary-adrenal axis, which controls the levels of cortisol and other stress related hormones. In addition, the CRF family of neuropeptides also includes structurally related peptides such as mammalian urocortin, fish urotensin I, and frog sauvagine. The actions of CRF and CRF-related peptides are mediated through specific binding to CRF-R1 and CRF-R2. CRF and urocortin 1 bind and activate mammalian CRF-R1 with similar high affinities. By contrast, urocortin 2 and urocortin 3 do not bind to CRF-R1 or stimulate CRF-R1-mediated cAMP formation. Urocortin 1 also shows high affinity for mammalian CRF-R2, whereas CRF has significantly lower affinity for this receptor. These evidence suggest that urocortin 1 is an endogenous ligand for CRF-R1 and CRF-R2. The CRF receptors are members of the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, and parathyroid hormone (PTH). These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on its cellular location and function, CRF receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways.


Pssm-ID: 320561 [Multi-domain]  Cd Length: 265  Bit Score: 48.39  E-value: 6.28e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767973897 619 FKLTAKAVAVLLPILGTSWVFGVLAVNG---CAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15445  194 YRKAVKATLVLLPLLGITYMLFFVNPGEdeiSRIVFIYFNSFLESFQGFFVSVFYCFLNSEVRSAVRKR 262
PTX smart00159
Pentraxin / C-reactive protein / pentaxin family; This family form a doscoid pentameric ...
175-279 1.15e-05

Pentraxin / C-reactive protein / pentaxin family; This family form a doscoid pentameric structure. Human serum amyloid P demonstrates calcium-mediated ligand-binding.


Pssm-ID: 128463  Cd Length: 206  Bit Score: 46.88  E-value: 1.15e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897   175 GSVELYTRDNSMTWEASFSPPGpyWTHVLFTWKSKEGL-KVYVNGTLSTsdpsGKVS-RDYG-ESNVNLVIGSEQDqakC 251
Cdd:smart00159  70 GEYSLYIGGKKVQFPVPESDGK--WHHICTTWESSSGIaELWVDGKPGV----RKGLaKGYTvKPGGSIILGQEQD---S 140
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 767973897   252 YeNGAFD----------EFIIWERALTPDEIAMYFTAA 279
Cdd:smart00159 141 Y-GGGFDatqsfvgeigDLNMWDSVLSPEEIKSVYKGS 177
7tmB2_BAI1 cd15990
brain-specific angiogenesis inhibitor 1, a group VII adhesion GPCR, member of the class B2 ...
515-682 2.64e-05

brain-specific angiogenesis inhibitor 1, a group VII adhesion GPCR, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediates direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions.


Pssm-ID: 320656  Cd Length: 267  Bit Score: 46.52  E-value: 2.64e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 515 ITVHLKHRLTRKQHSeATNSSNRVFVYCAFLDFSSGEGVWSNHGCALT-RGNLTYSVCrcthltnfAILMQVVPLEVNIG 593
Cdd:cd15990  100 VTGRLRNRIIRKRFL-CLGWGLPALVVAISVGFTKAKGYGTVNYCWLSlEGGLLYAFV--------GPAAAVVLVNMVIG 170
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 594 ILIaVTRVISQISADNYKIHGDPSAfklTAKAVAVLLPILGTSWVFGVLAV-NGCAVVFQYMFATLNSLQGLFIFLFHCL 672
Cdd:cd15990  171 ILV-FNKLVSKDGITDKKLKERAGA---SLWSSCVVLPLLALTWMSAVLAItDRRSALFQILFAVFDSLEGFVIVMVHCI 246
                        170
                 ....*....|
gi 767973897 673 LNSEVRAAFK 682
Cdd:cd15990  247 LRREVQDAVK 256
7tmB2_GPR124-like_Adhesion_III cd15259
orphan GPR124 and related proteins, group III adhesion GPCRs, member of class B2 family of ...
610-682 2.70e-05

orphan GPR124 and related proteins, group III adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors; group III adhesion GPCRs include orphan GPR123, GPR124, GPR125, and their closely related proteins. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. GPR123 is predominantly expressed in the CNS including thalamus, brain stem and regions containing large pyramidal cells. GPR124, also known as tumor endothelial marker 5 (TEM5), is highly expressed in tumor vessels and in the vasculature of the developing embryo. GPR124 is essentially required for proper angiogenic sprouting into neural tissue, CNS-specific vascularization, and formation of the blood-brain barrier. GPR124 also interacts with the PDZ domain of DLG1 (discs large homolog 1) through its PDZ-binding motif. Recently, studies of double-knockout mice showed that GPR124 functions as a co-activator of Wnt7a/Wnt7b-dependent beta-catenin signaling in brain endothelium. Furthermore, WNT7-stimulated beta-catenin signaling is regulated by GPR124's intracellular PDZ binding motif and leucine-rich repeats (LRR) in its N-terminal extracellular domain. GPR125 directly interacts with dishevelled (Dvl) via its intracellular C-terminus, and together, GPR125 and Dvl recruit a subset of planar cell polarity (PCP) components into membrane subdomains, a prerequisite for activation of Wnt/PCP signaling. Thus, GPR125 influences the noncanonical WNT/PCP pathway, which does not involve beta-catenin, through interacting with and modulating the distribution of Dvl.


Pssm-ID: 320387 [Multi-domain]  Cd Length: 260  Bit Score: 46.60  E-value: 2.70e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 767973897 610 YKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCA---VVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15259  182 CQLKGAPVSFQSQLRGAVITLFLYVAMWACGALAVSQRYfldLVFSCLYGATCSSLGLFVLIHHCLSREDVRQSWR 257
7tmB1_NPR_B7_insect-like cd15273
insect neuropeptide receptor subgroup B7 and related proteins, member of the class B family of ...
560-684 3.29e-05

insect neuropeptide receptor subgroup B7 and related proteins, member of the class B family of seven-transmembrane G protein-coupled receptors; This subgroup includes a neuropeptide receptor found in Nilaparvata lugens (brown planthopper) and its closely related proteins from invertebrates. They belong to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. The class B GPCRs have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi, or prokaryotes.


Pssm-ID: 320401 [Multi-domain]  Cd Length: 285  Bit Score: 46.21  E-value: 3.29e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 560 ALTRGNLTYSVCRCTHLTNFAILMQVVPLE----VNIGILIAVTRVI-----SQISADNYKihgdpsaFKLTAKAVAVLL 630
Cdd:cd15273  150 IVARILFENSLCWTTNSNLLNFLIIRIPIMisvlINFILFLNIVRVLlvklrSSVNEDSRR-------YKKWAKSTLVLV 222
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 631 PILGTSW----VFGVLAVNGCAVVFQYMF--ATLNSLQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15273  223 PLFGVHYtiflILSYLDDTNEAVELIWLFcdQLFASFQGFFVALLYCFLNGEVRAEIQRK 282
7tmB1_PTH-R_related cd15272
invertebrate parathyroid hormone-related receptors, member of the class B family of ...
590-688 4.45e-05

invertebrate parathyroid hormone-related receptors, member of the class B family of seven-transmembrane G protein-coupled receptors; This group includes parathyroid hormone (PTH)-related receptors found in invertebrates such as mollusks and annelid worms. The PTH family receptors are members of the B1 subfamily of class B GPCRs, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), and calcitonin gene-related peptide. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. The parathyroid hormone type 1 receptor (PTH1R) is found in all vertebrate species and is activated by two polypeptide ligands: parathyroid hormone (PTH), an endocrine hormone that regulates calcium homoeostasis and bone maintenance, and PTH-related peptide (PTHrP), a paracrine factor that regulates endochondral bone development. PTH1R couples predominantly to G(s)- protein that in turn activates adenylyl cyclase thereby producing cAMP, but it can also couple to several G protein subtypes, including G(q/11), G(i/o), and G(12/13), resulting in activation of multiple signaling pathways.


Pssm-ID: 320400 [Multi-domain]  Cd Length: 285  Bit Score: 45.84  E-value: 4.45e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 590 VNIGILIAVTRVI-SQISADNYKiHGDPSAFKLTAKAVAVLLPILGTSW-VFGVLAVN----GCAVVFQYMFATLNSLQG 663
Cdd:cd15272  183 INFLFFINIVRVLfTKLKASNTQ-ESRPFRYRKLAKSTLVLIPLFGVHYmVFVVLPDSmssdEAELVWLYFEMFFNSFQG 261
                         90       100
                 ....*....|....*....|....*
gi 767973897 664 LFIFLFHCLLNSEVRAAFKhktKVW 688
Cdd:cd15272  262 FIVALLFCFLNGEVQSEIK---KKW 283
7tmB1_CRF-R2 cd15446
corticotropin-releasing factor receptor 2, member of the class B family of seven-transmembrane ...
619-684 8.15e-05

corticotropin-releasing factor receptor 2, member of the class B family of seven-transmembrane G protein-coupled receptors; The vertebrate corticotropin-releasing factor (CRF) receptors are predominantly expressed in central nervous system with high levels in cortex tissue, brain stem, and pituitary. They have two isoforms as a result of alternative splicing of the same receptor gene: CRF-R1 and CRF-R2, which differ in tissue distribution and ligand binding affinities. Recently, a third CRF receptor (CRF-R3) has been identified in catfish pituitary. The catfish CRF-R1 is highly homologous to CRF-R3. CRF is a 41-amino acid neuropeptide that plays a central role in coordinating neuroendocrine, behavioral, and autonomic responses to stress by acting as the primary neuroregulator of the hypothalamic-pituitary-adrenal axis, which controls the levels of cortisol and other stress related hormones. In addition, the CRF family of neuropeptides also includes structurally related peptides such as mammalian urocortin, fish urotensin I, and frog sauvagine. The actions of CRF and CRF-related peptides are mediated through specific binding to CRF-R1 and CRF-R2. CRF and urocortin 1 bind and activate mammalian CRF-R1 with similar high affinities. By contrast, urocortin 2 and urocortin 3 do not bind to CRF-R1 or stimulate CRF-R1-mediated cAMP formation. Urocortin 1 also shows high affinity for mammalian CRF-R2, whereas CRF has significantly lower affinity for this receptor. These evidence suggest that urocortin 1 is an endogenous ligand for CRF-R1 and CRF-R2. The CRF receptors are members of the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, and parathyroid hormone (PTH). These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on its cellular location and function, CRF receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways.


Pssm-ID: 320562 [Multi-domain]  Cd Length: 264  Bit Score: 44.95  E-value: 8.15e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 767973897 619 FKLTAKAVAVLLPILGTSWVfgVLAVNG-----CAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15446  193 YRKAVKATLVLLPLLGITYM--LFFVNPgeddiSQIVFIYFNSFLQSFQGFFVSVFYCFLNGEVRSAARKR 261
7tmB3_Methuselah-like cd15039
Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G ...
590-684 1.16e-04

Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G protein-coupled receptors; The subfamily B3 of class B GPCRs consists of Methuselah (Mth) and its closely related proteins found in bilateria. Mth was originally identified in Drosophila as a GPCR affecting stress resistance and aging. In addition to the seven transmembrane helices, Mth contains an N-terminal extracellular domain involved in ligand binding, and a third intracellular loop (IC3) required for the specificity of G-protein coupling. Drosophila Mth mutants showed an increase in average lifespan by 35% and greater resistance to a variety of stress factors, including starvation, high temperature, and paraquat-induced oxidative toxicity. Moreover, mutations in two endogenous peptide ligands of Methuselah, Stunted A and B, showed an increased in lifespan and resistance to oxidative stress induced by dietary paraquat. These results strongly suggest that the Stunted-Methuselah system plays important roles in stress response and aging.


Pssm-ID: 410632 [Multi-domain]  Cd Length: 270  Bit Score: 44.52  E-value: 1.16e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 590 VNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLA-VNGCAVVFQYMFATLNSLQGLFIFL 668
Cdd:cd15039  174 FNIILFILTAIRIRKVKKETAKVQSRLRSDKQRFRLYLKLFVIMGVTWILEIISwFVGGSSVLWYIFDILNGLQGVFIFL 253
                         90
                 ....*....|....*.
gi 767973897 669 FhCLLNSEVRAAFKHK 684
Cdd:cd15039  254 I-FVCKRRVLRLLKKK 268
7tmB1_NPR_B3_insect-like cd15262
insect neuropeptide receptor subgroup B3 and related proteins belong to subfamily B1 of ...
585-682 1.55e-04

insect neuropeptide receptor subgroup B3 and related proteins belong to subfamily B1 of hormone receptors; member of the class B secretin-like seven-transmembrane G protein-coupled receptors; This subgroup includes a neuropeptide receptor found in Bombyx mori (silk worm) and its closely related proteins from arthropods. They belong to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. The class B GPCRs have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi, or prokaryotes.


Pssm-ID: 320390 [Multi-domain]  Cd Length: 270  Bit Score: 44.36  E-value: 1.55e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 585 VVPLEVNIGILIAVTRV-ISQISADNykihgDPSAFKLTAKAVAVLLPILGTSWVFGVL--AVNGCAV--VFQYMFATLN 659
Cdd:cd15262  168 LFILLVNTVLLVDIIRVlVTKLRNTE-----ENSQTKSTTRATLFLVPLFGLHFVITAYrpSTDDCDWedIYYYANYLIE 242
                         90       100
                 ....*....|....*....|...
gi 767973897 660 SLQGLFIFLFHCLLNSEVRAAFK 682
Cdd:cd15262  243 GLQGFLVAILFCYINKEVHYLIK 265
7tmB1_GHRHR2 cd15271
growth-hormone-releasing hormone receptor type 2, member of the class B family of ...
590-682 1.73e-04

growth-hormone-releasing hormone receptor type 2, member of the class B family of seven-transmembrane G protein-coupled receptors; Growth hormone-releasing hormone receptor type 2 (GHRHR2) is found in non-mammalian vertebrates such as chicken and frog. It is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include secretin, pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal peptide, and mammalian growth hormone-releasing hormone. These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. Mammalian GHRHR is a specific receptor for the growth hormone-releasing hormone (GHRH) that controls the synthesis and release of growth hormone (GH) from the anterior pituitary somatotrophs. Mutations in the gene encoding GHRHR have been connected to isolated growth hormone deficiency (IGHD), a short-stature condition caused by deficient production of GH or lack of GH action. Mammalian GHRH is preferentially coupled to a stimulatory G(s) protein, which leads to the activation of adenylate cyclase and thereby increases in intracellular cAMP level. GHRHR is found in mammals as well as zebrafish and chicken, whereas the GHRHR type 2, an ortholog of the GHRHR, has only been identified in ray-finned fish, chicken and Xenopus. Xenopus laevis GHRHR2 has been shown to interact with both endogenous GHRH and PACAP-related peptide (PRP).


Pssm-ID: 320399 [Multi-domain]  Cd Length: 267  Bit Score: 43.95  E-value: 1.73e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 590 VNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSW-VFGVLAVNGCAVVFQYMFATLNSLQGLFIFL 668
Cdd:cd15271  169 VNFLIFINVIRILVQKLKSPDVGGNDTSHYMRLAKSTLLLIPLFGVHYvVFAFFPEHVGVEARLYFELVLGSFQGFIVAL 248
                         90
                 ....*....|....
gi 767973897 669 FHCLLNSEVRAAFK 682
Cdd:cd15271  249 LYCFLNGEVQAEIK 262
7tmB2_GPR114 cd15443
orphan adhesion receptor GPR114, member of the class B2 family of seven-transmembrane G ...
591-685 3.37e-04

orphan adhesion receptor GPR114, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR114 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include GPR56, GPR64, GPR97, GPR112, and GPR126. GPR114 is mainly found in granulocytes (polymorphonuclear leukocytes), and GPR114-transfected cells induced an increase in cAMP levels via coupling to G(s) protein. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions.


Pssm-ID: 320559 [Multi-domain]  Cd Length: 268  Bit Score: 43.21  E-value: 3.37e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 591 NIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLpilGTSWVFGVLAVnGCAVVFQ-YMFATLNSLQGLFIFLF 669
Cdd:cd15443  177 NLVVLAWVVRMLRRLRSRKQELGERARRDWVTVLGLTCLL---GTTWALAFFSF-GVFLIPQlFLFTIINSLYGFFICLW 252
                         90
                 ....*....|....*.
gi 767973897 670 HCLLNSEVRAAFKHKT 685
Cdd:cd15443  253 YCTQRRRSDASAKSST 268
7tmB1_VIP-R2 cd15986
vasoactive intestinal polypeptide (VIP) receptor 2, member of the class B family of ...
578-684 4.20e-04

vasoactive intestinal polypeptide (VIP) receptor 2, member of the class B family of seven-transmembrane G protein-coupled receptors; Vasoactive intestinal peptide (VIP) receptor 2 is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include secretin, growth-hormone-releasing hormone (GHRH), and pituitary adenylate cyclase activating polypeptide (PACAP). These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. VIP and PACAP exert their effects through three G protein-coupled receptors, PACAP-R1, VIP-R1 (vasoactive intestinal receptor type 1, also known as VPAC1) and VIP-R2 (or VPAC2). PACAP-R1 binds only PACAP with high affinity, whereas VIP-R1 and -R2 specifically bind and respond to both VIP and PACAP. VIP and PACAP and their receptors are widely expressed in the brain and periphery. They are upregulated in neurons and immune cells in responses to CNS injury and/or inflammation and exert potent anti-inflammatory effects, as well as play important roles in the control of circadian rhythms and stress responses, among many others. VIP-R1 is preferentially coupled to a stimulatory G(s) protein, which leads to the activation of adenylate cyclase and thereby increases in intracellular cAMP level. However, depending on its cellular location, VIP-R1 is also capable of coupling to additional G proteins such as G(q) protein, thus leading to the activation of phospholipase C and intracellular calcium influx.


Pssm-ID: 320652 [Multi-domain]  Cd Length: 269  Bit Score: 42.87  E-value: 4.20e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 578 NFAILMQVVpleVNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFA- 656
Cdd:cd15986  162 RIPIIISII---LNFILFISIIRILLQKLRSPDVGGNDQSQYKRLAKSTLLLIPLFGVHYIVFVYFPDSSSSNYQIFFEl 238
                         90       100
                 ....*....|....*....|....*...
gi 767973897 657 TLNSLQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15986  239 CLGSFQGLVVAILYCFLNSEVQGELKRK 266
7tmB1_NPR_B4_insect-like cd15260
insect neuropeptide receptor subgroup B4 and related proteins, member of the class B family of ...
560-684 9.24e-04

insect neuropeptide receptor subgroup B4 and related proteins, member of the class B family of seven-transmembrane G protein-coupled receptors; This subgroup includes a neuropeptide receptor found in Nilaparvata lugens (brown planthopper) and its closely related proteins from mollusks and annelid worms. They belong to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. The class B GPCRs have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi, or prokaryotes.


Pssm-ID: 320388 [Multi-domain]  Cd Length: 267  Bit Score: 41.87  E-value: 9.24e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 560 ALTRGNLTYSVCRC----THLTNFAILMQVVPLEVNIGILIAVTRVI----SQISAdnykiHGDPSAFKLTAKAVAVLLP 631
Cdd:cd15260  134 AGVRASLPDDTERCwmeeSSYQWILIVPVVLSLLINLIFLINIVRVLltklRATSP-----NPAPAGLRKAVRATLILIP 208
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 767973897 632 ILGTSWVFGVLAVNGCAV---VFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15260  209 LLGLQFLLIPFRPEPGAPletIYQYVSALLTSLQGLCVAVLFCFCNGEVIAAIKRK 264
7tmB1_PTH1R cd15984
parathyroid hormone 1 receptor, member of the class B family of seven-transmembrane G ...
555-689 2.31e-03

parathyroid hormone 1 receptor, member of the class B family of seven-transmembrane G protein-coupled receptors; The parathyroid hormone (PTH) receptor family has three subtypes: PTH1R, PTH2R and PTH3R. PTH1R is expressed in bone and kidney and is activated by two polypeptide ligands: PTH, an endocrine hormone that regulates calcium homoeostasis and bone maintenance, and PTH-related peptide (PTHrP), a paracrine factor that regulates endochondral bone development. PTH1R couples predominantly to G(s)-protein that in turn activates adenylate cyclase thereby producing cAMP, but it can also couple to several G protein subtypes, including G(q/11), G(i/o), and G(12/13), resulting in activation of multiple intracellular signaling pathways. PTH1R is found in all vertebrate species, whereas PTH2R is found in mammals and fish, but not in chicken or frog. PTH3R is found in chicken and fish, but it is absent in mammals. The PTH receptors are members of the B1 (or secretin-like) subfamily of class B GPCRs, which include receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), and calcitonin gene-related peptide. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways.


Pssm-ID: 320650 [Multi-domain]  Cd Length: 290  Bit Score: 40.70  E-value: 2.31e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 555 SNHGC-ALTRGNLTYSVcrcthltNFAILMQVVpleVNIGILIAVTRVI-SQISADNYKIHGDPSAFKLTAKAVAVLLPI 632
Cdd:cd15984  161 ADTGCwDLSAGNLKWII-------QVPILAAIV---VNFILFINIVRVLaTKLRETNAGRCDTRQQYRKLLKSTLVLMPL 230
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 767973897 633 LGTSWV----FGVLAVNGCAVVFQYMFATL-NSLQGLFIFLFHCLLNSEVRAAFKhktKVWS 689
Cdd:cd15984  231 FGVHYIvfmaMPYTEVSGILWQVQMHYEMLfNSFQGFFVAIIYCFCNGEVQAEIK---KSWS 289
7tmB1_Secretin_R-like cd15930
secretin receptor-like group of hormone receptors, member of the class B family of ...
590-684 5.50e-03

secretin receptor-like group of hormone receptors, member of the class B family of seven-transmembrane G protein-coupled receptors; This group represents G protein-coupled receptors for structurally similar peptide hormones that include secretin, growth-hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating polypeptide (PACAP), and vasoactive intestinal peptide (VIP). These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. Secretin, a polypeptide secreted by entero-endocrine S cells in the small intestine, is involved in maintaining body fluid balance. This polypeptide regulates the secretion of bile and bicarbonate into the duodenum from the pancreatic and biliary ducts, as well as regulates the duodenal pH by the control of gastric acid secretion. Studies with secretin receptor-null mice indicate that secretin plays a role in regulating renal water reabsorption. Secretin mediates its biological actions by elevating intracellular cAMP via G protein-coupled secretin receptors, which are expressed in the brain, pancreas, stomach, kidney, and liver. GHRHR is a specific receptor for the growth hormone-releasing hormone (GHRH) that controls the synthesis and release of growth hormone (GH) from the anterior pituitary somatotrophs. Mutations in the gene encoding GHRHR have been connected to isolated growth hormone deficiency (IGHD), a short-stature condition caused by deficient production of GH or lack of GH action. VIP and PACAP exert their effects through three G protein-coupled receptors, PACAP-R1, VIP-R1 (vasoactive intestinal receptor type 1, also known as VPAC1) and VIP-R2 (or VPAC2). PACAP-R1 binds only PACAP with high affinity, whereas VIP-R1 and -R2 specifically bind and respond to both VIP and PACAP. VIP and PACAP and their receptors are widely expressed in the brain and periphery. They are upregulated in neurons and immune cells in responses to CNS injury and/or inflammation and exert potent anti-inflammatory effects, as well as play important roles in the control of circadian rhythms and stress responses, among many others. All B1 subfamily GPCRs are able to increase intracellular cAMP levels by coupling to adenylate cyclase via a stimulatory Gs protein. However, depending on its cellular location, some members of subfamily B1 are also capable of coupling to additional G proteins such as G(i/o) and/or G(q) proteins, thereby leading to activation of phospholipase C and intracellular calcium influx.


Pssm-ID: 320596 [Multi-domain]  Cd Length: 268  Bit Score: 39.34  E-value: 5.50e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 590 VNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSW-VFGVLAVNGCAVVFQYMFATLNSLQGLFIFL 668
Cdd:cd15930  170 VNFVLFINIIRILLQKLRSPDIGGNESSQYKRLARSTLLLIPLFGIHYiVFAFFPENISLGIRLYFELCLGSFQGFVVAV 249
                         90
                 ....*....|....*.
gi 767973897 669 FHCLLNSEVRAAFKHK 684
Cdd:cd15930  250 LYCFLNGEVQAEIKRK 265
7tmB1_GlucagonR-like cd15929
glucagon receptor-like subfamily, member of the class B family of seven-transmembrane G ...
576-684 5.89e-03

glucagon receptor-like subfamily, member of the class B family of seven-transmembrane G protein-coupled receptors; This group represents the glucagon receptor family of G protein-coupled receptors, which includes glucagon receptor (GCGR), glucagon-like peptide-1 receptor (GLP1R), GLP2R, and closely related receptors. These receptors are activated by the members of the glucagon (GCG) peptide family including GCG, glucagon-like peptide 1 (GLP1), and GLP2, which are derived from the large proglucagon precursor. GCGR regulates blood glucose levels by control of hepatic glycogenolysis and gluconeogenesis and by regulation of insulin secretion from the pancreatic beta-cells. Activation of GLP1R stimulates glucose-dependent insulin secretion from pancreatic beta cells, whereas activation of GLP2R stimulates intestinal epithelial proliferation and increases villus height in the small intestine. Receptors in this group belong to the B1 (or secretin-like) subfamily of class B GPCRs, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on their cellular location, GCGR and GLP receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways.


Pssm-ID: 341353 [Multi-domain]  Cd Length: 279  Bit Score: 39.34  E-value: 5.89e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767973897 576 LTNFAILMQVvplevnIGILIAVTRViSQISADNYKihgdpsaFKLtAKAVAVLLPILGTSWVFGVLAVNGCA---VVFQ 652
Cdd:cd15929  178 LINFFIFVRI------LKILVSKLRA-NQMCKTDYK-------FRL-AKSTLTLIPLLGVHEVVFAFVTDEQArgtLRFI 242
                         90       100       110
                 ....*....|....*....|....*....|....
gi 767973897 653 YMFATL--NSLQGLFIFLFHCLLNSEVRAAFKHK 684
Cdd:cd15929  243 KLFFELflSSFQGLLVAVLYCFANKEVQSELRKK 276
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH