aarF domain-containing protein kinase 1 isoform X3 [Homo sapiens]
protein kinase family protein( domain architecture ID 229378)
protein kinase family protein may catalyze the transfer of the gamma-phosphoryl group from ATP to substrates such as serine/threonine and/or tyrosine residues on proteins, or may be a pseudokinase
List of domain hits
Name | Accession | Description | Interval | E-value | |||
PKc_like super family | cl21453 | Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the ... |
16-142 | 4.47e-76 | |||
Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the catalytic domains of serine/threonine-specific and tyrosine-specific protein kinases. It also includes RIO kinases, which are atypical serine protein kinases, aminoglycoside phosphotransferases, and choline kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to hydroxyl groups in specific substrates such as serine, threonine, or tyrosine residues of proteins. The actual alignment was detected with superfamily member cd13969: Pssm-ID: 473864 [Multi-domain] Cd Length: 253 Bit Score: 232.76 E-value: 4.47e-76
|
|||||||
Name | Accession | Description | Interval | E-value | |||
ADCK1-like | cd13969 | aarF domain containing kinase 1 and similar proteins; This subfamily is composed of ... |
16-142 | 4.47e-76 | |||
aarF domain containing kinase 1 and similar proteins; This subfamily is composed of uncharacterized ABC1 kinase-like proteins including the human protein called aarF domain containing kinase 1 (ADCK1). Eukaryotes contain at least three ABC1-like proteins: in humans, these are ADCK3 and the putative protein kinases named ADCK1 and ADCK2. Yeast Abc1p and its human homolog ADCK3 are atypical protein kinases required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. In algae and higher plants, ABC1 kinases have proliferated to more than 15 subfamilies, most of which are located in plastids or mitochondria. Plant subfamilies 14 and 15 (ABC1K14-15) belong to the same group of ABC1 kinases as human ADCK1. ABC1 kinases are not related to the ATP-binding cassette (ABC) membrane transporter family. Pssm-ID: 270871 [Multi-domain] Cd Length: 253 Bit Score: 232.76 E-value: 4.47e-76
|
|||||||
ABC1 | pfam03109 | ABC1 atypical kinase-like domain; This family includes ABC1 from yeast and AarF from E. coli. ... |
17-138 | 1.86e-54 | |||
ABC1 atypical kinase-like domain; This family includes ABC1 from yeast and AarF from E. coli. These proteins have a nuclear or mitochondrial subcellular location in eukaryotes. The exact molecular functions of these proteins is not clear, however yeast ABC1 suppresses a cytochrome b mRNA translation defect and is essential for the electron transfer in the bc 1 complex and E. coli AarF is required for ubiquinone production. It has been suggested that members of the ABC1 family are novel chaperonins. These proteins are unrelated to the ABC transporter proteins. Pssm-ID: 427143 [Multi-domain] Cd Length: 245 Bit Score: 177.04 E-value: 1.86e-54
|
|||||||
AarF | COG0661 | Predicted protein kinase regulating ubiquinone biosynthesis, AarF/ABC1/UbiB family [Coenzyme ... |
18-142 | 3.49e-26 | |||
Predicted protein kinase regulating ubiquinone biosynthesis, AarF/ABC1/UbiB family [Coenzyme transport and metabolism, Signal transduction mechanisms]; Predicted protein kinase regulating ubiquinone biosynthesis, AarF/ABC1/UbiB family is part of the Pathway/BioSystem: Ubiquinone biosynthesis Pssm-ID: 440425 [Multi-domain] Cd Length: 487 Bit Score: 107.21 E-value: 3.49e-26
|
|||||||
UbiB | TIGR01982 | 2-polyprenylphenol 6-hydroxylase; This model represents the enzyme (UbiB) which catalyzes the ... |
17-143 | 2.45e-17 | |||
2-polyprenylphenol 6-hydroxylase; This model represents the enzyme (UbiB) which catalyzes the first hydroxylation step in the ubiquinone biosynthetic pathway in bacteria. It is believed that the reaction is 2-polyprenylphenol -> 6-hydroxy-2-polyprenylphenol. This model finds hits primarily in the proteobacteria. The gene is also known as AarF in certain species. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] Pssm-ID: 273909 Cd Length: 437 Bit Score: 81.57 E-value: 2.45e-17
|
|||||||
ubiB | PRK04750 | putative ubiquinone biosynthesis protein UbiB; Reviewed |
17-114 | 1.35e-10 | |||
putative ubiquinone biosynthesis protein UbiB; Reviewed Pssm-ID: 235310 [Multi-domain] Cd Length: 537 Bit Score: 61.46 E-value: 1.35e-10
|
|||||||
Name | Accession | Description | Interval | E-value | |||
ADCK1-like | cd13969 | aarF domain containing kinase 1 and similar proteins; This subfamily is composed of ... |
16-142 | 4.47e-76 | |||
aarF domain containing kinase 1 and similar proteins; This subfamily is composed of uncharacterized ABC1 kinase-like proteins including the human protein called aarF domain containing kinase 1 (ADCK1). Eukaryotes contain at least three ABC1-like proteins: in humans, these are ADCK3 and the putative protein kinases named ADCK1 and ADCK2. Yeast Abc1p and its human homolog ADCK3 are atypical protein kinases required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. In algae and higher plants, ABC1 kinases have proliferated to more than 15 subfamilies, most of which are located in plastids or mitochondria. Plant subfamilies 14 and 15 (ABC1K14-15) belong to the same group of ABC1 kinases as human ADCK1. ABC1 kinases are not related to the ATP-binding cassette (ABC) membrane transporter family. Pssm-ID: 270871 [Multi-domain] Cd Length: 253 Bit Score: 232.76 E-value: 4.47e-76
|
|||||||
ABC1 | pfam03109 | ABC1 atypical kinase-like domain; This family includes ABC1 from yeast and AarF from E. coli. ... |
17-138 | 1.86e-54 | |||
ABC1 atypical kinase-like domain; This family includes ABC1 from yeast and AarF from E. coli. These proteins have a nuclear or mitochondrial subcellular location in eukaryotes. The exact molecular functions of these proteins is not clear, however yeast ABC1 suppresses a cytochrome b mRNA translation defect and is essential for the electron transfer in the bc 1 complex and E. coli AarF is required for ubiquinone production. It has been suggested that members of the ABC1 family are novel chaperonins. These proteins are unrelated to the ABC transporter proteins. Pssm-ID: 427143 [Multi-domain] Cd Length: 245 Bit Score: 177.04 E-value: 1.86e-54
|
|||||||
ABC1_ADCK3-like | cd05121 | Activator of bc1 complex (ABC1) kinases (also called aarF domain containing kinase 3) and ... |
17-127 | 3.26e-31 | |||
Activator of bc1 complex (ABC1) kinases (also called aarF domain containing kinase 3) and similar proteins; This family is composed of the atypical yeast protein kinase Abc1p, its human homolog ADCK3 (also called CABC1), and similar proteins. Abc1p (also called Coq8p) is required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. It is necessary for the formation of a multi-subunit Q-biosynthetic complex and may also function in the regulation of Q synthesis. Human ADCK3 is able to rescue defects in Q synthesis and the phosphorylation state of Coq proteins in yeast Abc1 (or Coq8) mutants. Mutations in ADCK3 cause progressive cerebellar ataxia and atrophy due to Q10 deficiency. Eukaryotes contain at least two more ABC1/ADCK3-like proteins: in humans, these are the putative atypical protein kinases named ADCK1 and ADCK2. In algae and higher plants, ABC1 kinases have proliferated to more than 15 subfamilies, most of which are located in plastids or mitochondria. Eight of these plant ABC1 kinase subfamilies (ABC1K1-8) are specific for photosynthetic organisms. ABC1 kinases are not related to the ATP-binding cassette (ABC) membrane transporter family. Pssm-ID: 270691 [Multi-domain] Cd Length: 247 Bit Score: 116.83 E-value: 3.26e-31
|
|||||||
AarF | COG0661 | Predicted protein kinase regulating ubiquinone biosynthesis, AarF/ABC1/UbiB family [Coenzyme ... |
18-142 | 3.49e-26 | |||
Predicted protein kinase regulating ubiquinone biosynthesis, AarF/ABC1/UbiB family [Coenzyme transport and metabolism, Signal transduction mechanisms]; Predicted protein kinase regulating ubiquinone biosynthesis, AarF/ABC1/UbiB family is part of the Pathway/BioSystem: Ubiquinone biosynthesis Pssm-ID: 440425 [Multi-domain] Cd Length: 487 Bit Score: 107.21 E-value: 3.49e-26
|
|||||||
ABC1_ADCK3 | cd13970 | Activator of bc1 complex (ABC1) kinases, also called aarF domain containing kinase 3; This ... |
18-142 | 2.33e-23 | |||
Activator of bc1 complex (ABC1) kinases, also called aarF domain containing kinase 3; This subfamily is composed of the atypical yeast protein kinase Abc1p, its human homolog ADCK3 (also called CABC1), and similar proteins. Abc1p (also called Coq8p) is required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. It is necessary for the formation of a multi-subunit Q-biosynthetic complex and may also function in the regulation of Q synthesis. Human ADCK3 is able to rescue defects in Q synthesis and the phosphorylation state of Coq proteins in yeast Abc1 (or Coq8) mutants. Mutations in ADCK3 cause progressive cerebellar ataxia and atrophy due to Q10 deficiency. In algae and higher plants, ABC1 kinases have proliferated to more than 15 subfamilies, most of which are located in plastids or mitochondria. Subfamily 13 (ABC1K13) of plant ABC1 kinases belongs in this subfamily with yeast Abc1p and human ADCK3. ABC1 kinases are not related to the ATP-binding cassette (ABC) membrane transporter family. Pssm-ID: 270872 [Multi-domain] Cd Length: 251 Bit Score: 96.04 E-value: 2.33e-23
|
|||||||
UbiB | TIGR01982 | 2-polyprenylphenol 6-hydroxylase; This model represents the enzyme (UbiB) which catalyzes the ... |
17-143 | 2.45e-17 | |||
2-polyprenylphenol 6-hydroxylase; This model represents the enzyme (UbiB) which catalyzes the first hydroxylation step in the ubiquinone biosynthetic pathway in bacteria. It is believed that the reaction is 2-polyprenylphenol -> 6-hydroxy-2-polyprenylphenol. This model finds hits primarily in the proteobacteria. The gene is also known as AarF in certain species. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] Pssm-ID: 273909 Cd Length: 437 Bit Score: 81.57 E-value: 2.45e-17
|
|||||||
UbiB | cd13972 | Ubiquinone biosynthetic protein UbiB; UbiB is the prokaryotic homolog of yeast Abc1p and human ... |
21-136 | 3.34e-16 | |||
Ubiquinone biosynthetic protein UbiB; UbiB is the prokaryotic homolog of yeast Abc1p and human ADCK3 (aarF domain containing kinase 3). It is required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. It is required in the first monooxygenase step in Q biosynthesis. Mutant strains with disrupted ubiB genes lack Q and accumulate octaprenylphenol, a Q biosynthetic intermediate. Pssm-ID: 270874 [Multi-domain] Cd Length: 247 Bit Score: 76.09 E-value: 3.34e-16
|
|||||||
ADCK2-like | cd13971 | aarF domain containing kinase 2 and similar proteins; This subfamily is composed of ... |
16-127 | 2.61e-12 | |||
aarF domain containing kinase 2 and similar proteins; This subfamily is composed of uncharacterized ABC1 kinase-like proteins including the human protein called aarF domain containing kinase 2 (ADCK2). Eukaryotes contain at least three ABC1-like proteins; in humans, these are ADCK3 and the putative protein kinases named ADCK1 and ADCK2. Yeast Abc1p and its human homolog ADCK3 are atypical protein kinases required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. In algae and higher plants, ABC1 kinases have proliferated to more than 15 subfamilies, most of which are located in plastids or mitochondria. Plant subfamily 10 (ABC1K10) belong to the same group of ABC1 kinases as human ADCK2. ABC1 kinases are not related to the ATP-binding cassette (ABC) membrane transporter family. Pssm-ID: 270873 [Multi-domain] Cd Length: 298 Bit Score: 65.71 E-value: 2.61e-12
|
|||||||
ubiB | PRK04750 | putative ubiquinone biosynthesis protein UbiB; Reviewed |
17-114 | 1.35e-10 | |||
putative ubiquinone biosynthesis protein UbiB; Reviewed Pssm-ID: 235310 [Multi-domain] Cd Length: 537 Bit Score: 61.46 E-value: 1.35e-10
|
|||||||
PRK09605 | PRK09605 | bifunctional N(6)-L-threonylcarbamoyladenine synthase/serine/threonine protein kinase; |
31-107 | 1.59e-06 | |||
bifunctional N(6)-L-threonylcarbamoyladenine synthase/serine/threonine protein kinase; Pssm-ID: 236586 [Multi-domain] Cd Length: 535 Bit Score: 49.12 E-value: 1.59e-06
|
|||||||
Bud32 | COG3642 | tRNA A-37 threonylcarbamoyl transferase component Bud32 [Translation, ribosomal structure and ... |
16-109 | 2.17e-06 | |||
tRNA A-37 threonylcarbamoyl transferase component Bud32 [Translation, ribosomal structure and biogenesis]; tRNA A-37 threonylcarbamoyl transferase component Bud32 is part of the Pathway/BioSystem: tRNA modification Pssm-ID: 442859 [Multi-domain] Cd Length: 159 Bit Score: 46.88 E-value: 2.17e-06
|
|||||||
APH_ChoK_like | cd05120 | Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ... |
16-92 | 3.49e-04 | |||
Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ChoK, ethanolamine kinase (ETNK), macrolide 2'-phosphotransferase (MPH2'), an unusual homoserine kinase, and uncharacterized proteins with similarity to the N-terminal domain of acyl-CoA dehydrogenase 10 (ACAD10). The members of this family catalyze the transfer of the gamma-phosphoryl group from ATP (or CTP) to small molecule substrates such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Phosphorylation of the antibiotics, aminoglycosides and macrolides, leads to their inactivation and to bacterial antibiotic resistance. Phosphorylation of choline, ethanolamine, and homoserine serves as precursors to the synthesis of important biological compounds, such as the major phospholipids, phosphatidylcholine and phosphatidylethanolamine and the amino acids, threonine, methionine, and isoleucine. The APH/ChoK family is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270690 [Multi-domain] Cd Length: 158 Bit Score: 40.36 E-value: 3.49e-04
|
|||||||
PRK14879 | PRK14879 | Kae1-associated kinase Bud32; |
16-107 | 4.49e-04 | |||
Kae1-associated kinase Bud32; Pssm-ID: 237847 [Multi-domain] Cd Length: 211 Bit Score: 40.66 E-value: 4.49e-04
|
|||||||
STKc_DCKL | cd14095 | Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase (also called ... |
18-113 | 5.50e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase (also called Doublecortin-like and CAM kinase-like); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL (or DCAMKL) proteins belong to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. In addition, DCKL proteins contain a C-terminal kinase domain with similarity to CAMKs. They are involved in the regulation of cAMP signaling. Vertebrates contain three DCKL proteins (DCKL1-3); DCKL1 and 2 also contain a serine, threonine, and proline rich domain (SP), while DCKL3 contains only a single DCX domain instead of tandem domains. The DCKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270997 [Multi-domain] Cd Length: 258 Bit Score: 40.77 E-value: 5.50e-04
|
|||||||
PK_eIF2AK_GCN2_rpt1 | cd14012 | Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or ... |
34-107 | 1.99e-03 | |||
Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or General Control Non-derepressible-2; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the overall downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: GCN2, protein kinase regulated by RNA (PKR), heme-regulated inhibitor kinase (HRI), and PKR-like endoplasmic reticulum kinase (PERK). GCN2 is activated by amino acid or serum starvation and UV irradiation. It induces GCN4, a transcriptional activator of amino acid biosynthetic genes, leading to increased production of amino acids under amino acid-deficient conditions. In serum-starved cells, GCN2 activation induces translation of the stress-responsive transcription factor ATF4, while under UV stress, GCN2 triggers transcriptional rescue via NF-kappaB signaling. GCN2 contains an N-terminal RWD, a degenerate kinase-like (repeat 1), the catalytic kinase (repeat 2), a histidyl-tRNA synthetase (HisRS)-like, and a C-terminal ribosome-binding and dimerization (RB/DD) domains. The degenerate pseudokinase domain of GCN2 may function as a regulatory domain. The GCN2 subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270914 [Multi-domain] Cd Length: 254 Bit Score: 38.88 E-value: 1.99e-03
|
|||||||
STKc_DRAK1 | cd14197 | Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related ... |
26-116 | 2.73e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 (also called STK17A) and DRAK2. Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. Rabbit DRAK1 has been shown to induce apoptosis in osteoclasts and overexpressio of human DRAK1 induces apoptosis in cultured fibroblast cells. DRAK1 may be involved in apoptotic signaling. The DRAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271099 [Multi-domain] Cd Length: 271 Bit Score: 38.76 E-value: 2.73e-03
|
|||||||
Blast search parameters | ||||
|