NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|767929330|ref|XP_011511846|]
View 

actin filament-associated protein 1 isoform X1 [Homo sapiens]

Protein Classification

AFAP1 family PH domain-containing protein( domain architecture ID 10193118)

AFAP1 family Pleckstrin homology (PH) domain-containing protein similar to mammalian actin filament-associated protein 1 (AFAP1) that can cross-link actin filaments into both network and bundle structures

CATH:  2.30.29.30
Gene Ontology:  GO:0005515
PubMed:  15493994|22728242
SCOP:  3000134

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH1_AFAP cd13306
Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are ...
143-249 1.29e-64

Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. The amino terminal PH1 domain of AFAP1 has been known to function in intra-molecular regulation of AFAP1. In addition, the PH1 domain is a binding partner for PKCa and phospholipids. This cd is the first PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270116  Cd Length: 107  Bit Score: 210.80  E-value: 1.29e-64
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 143 SEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQ 222
Cdd:cd13306    1 SEEASMELVKDARICAFLLRKKRFGQWAKQLCVIKDNRLLCYKSSKDQQPQLELPLLGCSVIYVPKDGRRKKHELKFTPP 80
                         90       100
                 ....*....|....*....|....*..
gi 767929330 223 GTDPLVLAVQSKEQAEQWLKVIKEAYS 249
Cdd:cd13306   81 GAEALVLAVQSKEQAEQWLKVIREVSS 107
PH2_AFAP cd13307
Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 2; There are ...
347-447 1.75e-56

Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 2; There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. This cd is the second PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270117  Cd Length: 101  Bit Score: 188.36  E-value: 1.75e-56
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 347 DVPTCGYLNVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSKHPLTFRLLRNGQEVAVLEASSS 426
Cdd:cd13307    1 GVPTCGYLNVLVNQQWRSRWCCVKDGQLHFYQDRNKTKSPQQSLPLHGCEVVPGPDPKHPYSFRILRNGEEVAALEASSS 80
                         90       100
                 ....*....|....*....|.
gi 767929330 427 EDMGRWIGILLAETGSSTDPE 447
Cdd:cd13307   81 EDMGRWLGVLLAETGSATDPE 101
PRK02224 super family cl32023
DNA double-strand break repair Rad50 ATPase;
645-730 1.54e-03

DNA double-strand break repair Rad50 ATPase;


The actual alignment was detected with superfamily member PRK02224:

Pssm-ID: 179385 [Multi-domain]  Cd Length: 880  Bit Score: 42.33  E-value: 1.54e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 645 EADAKRLQTKEEELLKRKEALRNRLAQLRKERKDLRAAIEVN-----AGRKP---QAILEEKLKQLEEECRQK----EAE 712
Cdd:PRK02224 404 PVDLGNAEDFLEELREERDELREREAELEATLRTARERVEEAealleAGKCPecgQPVEGSPHVETIEEDRERveelEAE 483
                         90
                 ....*....|....*...
gi 767929330 713 RVSLELELTEVKESLKKA 730
Cdd:PRK02224 484 LEDLEEEVEEVEERLERA 501
 
Name Accession Description Interval E-value
PH1_AFAP cd13306
Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are ...
143-249 1.29e-64

Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. The amino terminal PH1 domain of AFAP1 has been known to function in intra-molecular regulation of AFAP1. In addition, the PH1 domain is a binding partner for PKCa and phospholipids. This cd is the first PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270116  Cd Length: 107  Bit Score: 210.80  E-value: 1.29e-64
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 143 SEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQ 222
Cdd:cd13306    1 SEEASMELVKDARICAFLLRKKRFGQWAKQLCVIKDNRLLCYKSSKDQQPQLELPLLGCSVIYVPKDGRRKKHELKFTPP 80
                         90       100
                 ....*....|....*....|....*..
gi 767929330 223 GTDPLVLAVQSKEQAEQWLKVIKEAYS 249
Cdd:cd13306   81 GAEALVLAVQSKEQAEQWLKVIREVSS 107
PH2_AFAP cd13307
Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 2; There are ...
347-447 1.75e-56

Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 2; There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. This cd is the second PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270117  Cd Length: 101  Bit Score: 188.36  E-value: 1.75e-56
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 347 DVPTCGYLNVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSKHPLTFRLLRNGQEVAVLEASSS 426
Cdd:cd13307    1 GVPTCGYLNVLVNQQWRSRWCCVKDGQLHFYQDRNKTKSPQQSLPLHGCEVVPGPDPKHPYSFRILRNGEEVAALEASSS 80
                         90       100
                 ....*....|....*....|.
gi 767929330 427 EDMGRWIGILLAETGSSTDPE 447
Cdd:cd13307   81 EDMGRWLGVLLAETGSATDPE 101
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
351-436 6.96e-13

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 65.26  E-value: 6.96e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330   351 CGYLNVLS---NSRWRERWCRVKDNKLIFHKDRTDLK--THIVSIPLRGCEVIPGLDS---KHPLTFRLLRNGQEVAVLE 422
Cdd:smart00233   4 EGWLYKKSgggKKSWKKRYFVLFNSTLLYYKSKKDKKsyKPKGSIDLSGCTVREAPDPdssKKPHCFEIKTSDRKTLLLQ 83
                           90
                   ....*....|....
gi 767929330   423 ASSSEDMGRWIGIL 436
Cdd:smart00233  84 AESEEEREKWVEAL 97
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
159-247 1.31e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 64.49  E-value: 1.31e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330   159 FLLRKK--RFGQWTKLLCVIKDTKLLCYKSSKDQQ---PQMELPLQGCNITYIPK-DSKKKKHELKITQQGTDPLVLAVQ 232
Cdd:smart00233   6 WLYKKSggGKKSWKKRYFVLFNSTLLYYKSKKDKKsykPKGSIDLSGCTVREAPDpDSSKKPHCFEIKTSDRKTLLLQAE 85
                           90
                   ....*....|....*
gi 767929330   233 SKEQAEQWLKVIKEA 247
Cdd:smart00233  86 SEEEREKWVEALRKA 100
PH pfam00169
PH domain; PH stands for pleckstrin homology.
155-247 1.36e-10

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 59.11  E-value: 1.36e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330  155 KICAFLLRKK--RFGQWTKLLCVIKDTKLLCYKSS---KDQQPQMELPLQGCNITYIPK-DSKKKKHELKI---TQQGTD 225
Cdd:pfam00169   2 VKEGWLLKKGggKKKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVEVVAsDSPKRKFCFELrtgERTGKR 81
                          90       100
                  ....*....|....*....|..
gi 767929330  226 PLVLAVQSKEQAEQWLKVIKEA 247
Cdd:pfam00169  82 TYLLQAESEEERKDWIKAIQSA 103
PH pfam00169
PH domain; PH stands for pleckstrin homology.
351-433 7.46e-10

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 56.80  E-value: 7.46e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330  351 CGYLNVLSN---SRWRERWCRVKDNKLIFHKDRTDLKTHI--VSIPLRGCEVIPGLDS---KHPLTFRLL---RNGQEVA 419
Cdd:pfam00169   4 EGWLLKKGGgkkKSWKKRYFVLFDGSLLYYKDDKSGKSKEpkGSISLSGCEVVEVVASdspKRKFCFELRtgeRTGKRTY 83
                          90
                  ....*....|....
gi 767929330  420 VLEASSSEDMGRWI 433
Cdd:pfam00169  84 LLQAESEEERKDWI 97
PRK02224 PRK02224
DNA double-strand break repair Rad50 ATPase;
645-730 1.54e-03

DNA double-strand break repair Rad50 ATPase;


Pssm-ID: 179385 [Multi-domain]  Cd Length: 880  Bit Score: 42.33  E-value: 1.54e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 645 EADAKRLQTKEEELLKRKEALRNRLAQLRKERKDLRAAIEVN-----AGRKP---QAILEEKLKQLEEECRQK----EAE 712
Cdd:PRK02224 404 PVDLGNAEDFLEELREERDELREREAELEATLRTARERVEEAealleAGKCPecgQPVEGSPHVETIEEDRERveelEAE 483
                         90
                 ....*....|....*...
gi 767929330 713 RVSLELELTEVKESLKKA 730
Cdd:PRK02224 484 LEDLEEEVEEVEERLERA 501
 
Name Accession Description Interval E-value
PH1_AFAP cd13306
Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are ...
143-249 1.29e-64

Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. The amino terminal PH1 domain of AFAP1 has been known to function in intra-molecular regulation of AFAP1. In addition, the PH1 domain is a binding partner for PKCa and phospholipids. This cd is the first PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270116  Cd Length: 107  Bit Score: 210.80  E-value: 1.29e-64
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 143 SEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQ 222
Cdd:cd13306    1 SEEASMELVKDARICAFLLRKKRFGQWAKQLCVIKDNRLLCYKSSKDQQPQLELPLLGCSVIYVPKDGRRKKHELKFTPP 80
                         90       100
                 ....*....|....*....|....*..
gi 767929330 223 GTDPLVLAVQSKEQAEQWLKVIKEAYS 249
Cdd:cd13306   81 GAEALVLAVQSKEQAEQWLKVIREVSS 107
PH2_AFAP cd13307
Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 2; There are ...
347-447 1.75e-56

Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 2; There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. This cd is the second PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270117  Cd Length: 101  Bit Score: 188.36  E-value: 1.75e-56
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 347 DVPTCGYLNVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSKHPLTFRLLRNGQEVAVLEASSS 426
Cdd:cd13307    1 GVPTCGYLNVLVNQQWRSRWCCVKDGQLHFYQDRNKTKSPQQSLPLHGCEVVPGPDPKHPYSFRILRNGEEVAALEASSS 80
                         90       100
                 ....*....|....*....|.
gi 767929330 427 EDMGRWIGILLAETGSSTDPE 447
Cdd:cd13307   81 EDMGRWLGVLLAETGSATDPE 101
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
351-436 6.96e-13

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 65.26  E-value: 6.96e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330   351 CGYLNVLS---NSRWRERWCRVKDNKLIFHKDRTDLK--THIVSIPLRGCEVIPGLDS---KHPLTFRLLRNGQEVAVLE 422
Cdd:smart00233   4 EGWLYKKSgggKKSWKKRYFVLFNSTLLYYKSKKDKKsyKPKGSIDLSGCTVREAPDPdssKKPHCFEIKTSDRKTLLLQ 83
                           90
                   ....*....|....
gi 767929330   423 ASSSEDMGRWIGIL 436
Cdd:smart00233  84 AESEEEREKWVEAL 97
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
159-247 1.31e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 64.49  E-value: 1.31e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330   159 FLLRKK--RFGQWTKLLCVIKDTKLLCYKSSKDQQ---PQMELPLQGCNITYIPK-DSKKKKHELKITQQGTDPLVLAVQ 232
Cdd:smart00233   6 WLYKKSggGKKSWKKRYFVLFNSTLLYYKSKKDKKsykPKGSIDLSGCTVREAPDpDSSKKPHCFEIKTSDRKTLLLQAE 85
                           90
                   ....*....|....*
gi 767929330   233 SKEQAEQWLKVIKEA 247
Cdd:smart00233  86 SEEEREKWVEALRKA 100
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
351-436 3.23e-12

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 62.95  E-value: 3.23e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 351 CGYLNVLSN---SRWRERWCRVKDNKLIFHKDRTD-LKTHIVSIPLRG-CEVIPGLDSKHPLTFRLLRNGQEVAVLEASS 425
Cdd:cd00821    2 EGYLLKRGGgglKSWKKRWFVLFEGVLLYYKSKKDsSYKPKGSIPLSGiLEVEEVSPKERPHCFELVTPDGRTYYLQADS 81
                         90
                 ....*....|.
gi 767929330 426 SEDMGRWIGIL 436
Cdd:cd00821   82 EEERQEWLKAL 92
PH pfam00169
PH domain; PH stands for pleckstrin homology.
155-247 1.36e-10

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 59.11  E-value: 1.36e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330  155 KICAFLLRKK--RFGQWTKLLCVIKDTKLLCYKSS---KDQQPQMELPLQGCNITYIPK-DSKKKKHELKI---TQQGTD 225
Cdd:pfam00169   2 VKEGWLLKKGggKKKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVEVVAsDSPKRKFCFELrtgERTGKR 81
                          90       100
                  ....*....|....*....|..
gi 767929330  226 PLVLAVQSKEQAEQWLKVIKEA 247
Cdd:pfam00169  82 TYLLQAESEEERKDWIKAIQSA 103
PH pfam00169
PH domain; PH stands for pleckstrin homology.
351-433 7.46e-10

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 56.80  E-value: 7.46e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330  351 CGYLNVLSN---SRWRERWCRVKDNKLIFHKDRTDLKTHI--VSIPLRGCEVIPGLDS---KHPLTFRLL---RNGQEVA 419
Cdd:pfam00169   4 EGWLLKKGGgkkKSWKKRYFVLFDGSLLYYKDDKSGKSKEpkGSISLSGCEVVEVVASdspKRKFCFELRtgeRTGKRTY 83
                          90
                  ....*....|....
gi 767929330  420 VLEASSSEDMGRWI 433
Cdd:pfam00169  84 LLQAESEEERKDWI 97
PH2_AFAP cd13307
Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 2; There are ...
167-252 1.40e-09

Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 2; There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. This cd is the second PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270117  Cd Length: 101  Bit Score: 55.85  E-value: 1.40e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 167 GQWTKLLCVIKDTKLLCYKS-SKDQQPQMELPLQGCNItyIPKDSKKKKHELKITQQGTDPLVLAVQSKEQAEQWLKV-I 244
Cdd:cd13307   14 QQWRSRWCCVKDGQLHFYQDrNKTKSPQQSLPLHGCEV--VPGPDPKHPYSFRILRNGEEVAALEASSSEDMGRWLGVlL 91

                 ....*...
gi 767929330 245 KEAYSGCS 252
Cdd:cd13307   92 AETGSATD 99
PH2_FGD1-4 cd13236
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) ...
156-247 6.29e-09

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) domain, C-terminus; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270056  Cd Length: 105  Bit Score: 54.28  E-value: 6.29e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 156 ICAFLLRKKRFGQWTKLLCVIKDTKLLC---YKSSKDQQPQMELPLQGCNITYIPKDSK-KKKHELKITQQGTdPLVLAV 231
Cdd:cd13236   10 LCGFLQYSEKGKTWQKVWCVIPRTEPLVlylYGAPQDVRAQRTIPLPGCEVTVPPPEERlDGRHVFKLSQSKQ-SHYFSA 88
                         90
                 ....*....|....*.
gi 767929330 232 QSKEQAEQWLKVIKEA 247
Cdd:cd13236   89 ESEELQQRWLEALSRA 104
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
159-244 3.06e-08

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 51.77  E-value: 3.06e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 159 FLLRKKRFG--QWTKLLCVIKDTKLLCYKSSKD--QQPQMELPLQG-CNITYIPKDSKKKKHELKITQQGTdpLVLAVQS 233
Cdd:cd00821    4 YLLKRGGGGlkSWKKRWFVLFEGVLLYYKSKKDssYKPKGSIPLSGiLEVEEVSPKERPHCFELVTPDGRT--YYLQADS 81
                         90
                 ....*....|.
gi 767929330 234 KEQAEQWLKVI 244
Cdd:cd00821   82 EEERQEWLKAL 92
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
168-247 3.32e-08

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 51.89  E-value: 3.32e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 168 QWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNIT-YIPKDSKKKKHELKITQQGTDPLVLAVQSKEQAEQWLKVIKE 246
Cdd:cd13248   23 NWRKRWFVLKDNCLYYYKDPEEEKALGSILLPSYTISpAPPSDEISRKFAFKAEHANMRTYYFAADTAEEMEQWMNAMSL 102

                 .
gi 767929330 247 A 247
Cdd:cd13248  103 A 103
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
352-432 1.84e-07

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 50.06  E-value: 1.84e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 352 GYL----NVLSNsrWRERWCRVKDNKLIFHKDRTDlKTHIVSIPLRGCEVI-PGLD-SKHPLTFRLLRNGQEVAVLEASS 425
Cdd:cd13301    7 GYLvkkgHVVNN--WKARWFVLKEDGLEYYKKKTD-SSPKGMIPLKGCTITsPCLEyGKRPLVFKLTTAKGQEHFFQACS 83

                 ....*..
gi 767929330 426 SEDMGRW 432
Cdd:cd13301   84 REERDAW 90
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
346-433 2.09e-07

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 50.07  E-value: 2.09e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 346 EDVPTCGYLNVLSN--SRWRERWCRVKDNKLIFHKDRTDLKtHIVSIPLRGC-----------------EVIPGLDSKHP 406
Cdd:cd13263    1 ERPIKSGWLKKQGSivKNWQQRWFVLRGDQLYYYKDEDDTK-PQGTIPLPGNkvkevpfnpeepgkflfEIIPGGGGDRM 79
                         90       100
                 ....*....|....*....|....*..
gi 767929330 407 ltfrllRNGQEVAVLEASSSEDMGRWI 433
Cdd:cd13263   80 ------TSNHDSYLLMANSQAEMEEWV 100
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
347-433 6.16e-07

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 48.42  E-value: 6.16e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 347 DVPTCGYLNVLSNSR---WRERWCRVKDNKLIFHKDRTDLKThIVSIPLRG---CEVIPGLDSKHPLTFRLLRNGQEVAV 420
Cdd:cd13248    6 PVVMSGWLHKQGGSGlknWRKRWFVLKDNCLYYYKDPEEEKA-LGSILLPSytiSPAPPSDEISRKFAFKAEHANMRTYY 84
                         90
                 ....*....|...
gi 767929330 421 LEASSSEDMGRWI 433
Cdd:cd13248   85 FAADTAEEMEQWM 97
PH2_FGD5_FGD6 cd13237
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin ...
161-240 1.18e-06

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270057  Cd Length: 91  Bit Score: 47.41  E-value: 1.18e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 161 LRKKRFGQWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKK-KKHELKITQQGTDPLVLAVQSKEQAEQ 239
Cdd:cd13237    7 RRKKSKKSWKRLWFVLKDKVLYTYKASEDVVALESVPLLGFTVVTIDESFEEdESLVFQLLHKGQLPIIFRADDAETAQR 86

                 .
gi 767929330 240 W 240
Cdd:cd13237   87 W 87
PH_rhotekin2 cd13249
Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin ...
169-241 3.22e-06

Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin homology domain-containing family K) is an actin binding protein involved in cytokinesis. It interacts with GTP-bound Rho proteins and results in the inhibition of their GTPase activity. Dysregulation of the Rho signal transduction pathway has been implicated in many forms of cancer. Anillin proteins have a N-terminal HRI domain/ACC (anti-parallel coiled-coil) finger domain or Rho-binding domain binds small GTPases from the Rho family. The C-terminal PH domain helps target anillin to ectopic septin containing foci. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270069  Cd Length: 111  Bit Score: 46.61  E-value: 3.22e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 169 WTKLLCVIKDTKLLCYKSSKDQQPQMElPL------QGCNITYIPKDSKKKKHELKITQQGTDP---LVLAVQSKEQAEQ 239
Cdd:cd13249   20 WTRLYCVLKGGNLLCYYSPEEIEAKVE-PLltipinKETRIRAVEKDSKGRASSLSIINPYSGEevtHVLSADSREELQK 98

                 ..
gi 767929330 240 WL 241
Cdd:cd13249   99 WM 100
PH_PLEKHD1 cd13281
Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH ...
147-247 3.84e-06

Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH domain; Human PLEKHD1 (also called UPF0639, pleckstrin homology domain containing, family D (with M protein repeats) member 1) is a single transcript and contains a single PH domain. PLEKHD1 is conserved in human, chimpanzee, , dog, cow, mouse, chicken, zebrafish, and Caenorhabditis elegans. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270099  Cd Length: 139  Bit Score: 47.32  E-value: 3.84e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 147 SMDLVKDAKiCAFLLRKKRFGQ----WTKLLCVIKDTKLLCYKSSK----------DQQPQMELPLQGCNITyiPKDSKK 212
Cdd:cd13281    5 DLDITTKVQ-LHGILWKKPFGHqsakWSKRFFIIKEGFLLYYSESEkkdfektrhfNIHPKGVIPLGGCSIE--AVEDPG 81
                         90       100       110
                 ....*....|....*....|....*....|....*.
gi 767929330 213 KKHELKIT-QQGTDPLVLAVQSKEQAEQWLKVIKEA 247
Cdd:cd13281   82 KPYAISIShSDFKGNIILAADSEFEQEKWLDMLRES 117
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
157-245 6.55e-06

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 45.59  E-value: 6.55e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 157 CAFLLRKKRFGQ-----WTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHEL--KITQQGTDPLVL 229
Cdd:cd13266    4 AGYLEKRRKDHSffgseWQKRWCAISKNVFYYYGSDKDKQQKGEFAINGYDVRMNPTLRKDGKKDCcfELVCPDKRTYQF 83
                         90
                 ....*....|....*.
gi 767929330 230 AVQSKEQAEQWLKVIK 245
Cdd:cd13266   84 TAASPEDAEDWVDQIS 99
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
161-253 2.51e-05

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 44.30  E-value: 2.51e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 161 LRKKR--FGQWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNI---TYIPKDSKKKKHELKITQQGT------DPLVL 229
Cdd:cd13263    9 LKKQGsiVKNWQQRWFVLRGDQLYYYKDEDDTKPQGTIPLPGNKVkevPFNPEEPGKFLFEIIPGGGGDrmtsnhDSYLL 88
                         90       100
                 ....*....|....*....|....
gi 767929330 230 AVQSKEQAEQWLKVIKEAYSGCSG 253
Cdd:cd13263   89 MANSQAEMEEWVKVIRRVIGSPFG 112
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
159-253 8.47e-05

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 42.36  E-value: 8.47e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 159 FLLRKKRFGQ-WTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPLVLAVQSKEQA 237
Cdd:cd13301    8 YLVKKGHVVNnWKARWFVLKEDGLEYYKKKTDSSPKGMIPLKGCTITSPCLEYGKRPLVFKLTTAKGQEHFFQACSREER 87
                         90
                 ....*....|....*.
gi 767929330 238 EQWLKVIKEAYSGCSG 253
Cdd:cd13301   88 DAWAKDITKAITCLEG 103
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
352-433 2.59e-04

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 40.67  E-value: 2.59e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 352 GYLNVLSNSR---WRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSKHPLTFRLLRNGQEVaVLEASSSED 428
Cdd:cd13250    3 GYLFKRSSNAfktWKRRWFSLQNGQLYYQKRDKKDEPTVMVEDLRLCTVKPTEDSDRRFCFEVISPTKSY-MLQAESEED 81

                 ....*
gi 767929330 429 MGRWI 433
Cdd:cd13250   82 RQAWI 86
PH2_FGD1-4 cd13236
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) ...
351-436 5.79e-04

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) domain, C-terminus; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270056  Cd Length: 105  Bit Score: 40.03  E-value: 5.79e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 351 CGYLNVLSNSR-WRERWCRVKDNK---LIFHKDRTDLKTHiVSIPLRGCEVIP-----GLDSKHplTFRlLRNGQEVAVL 421
Cdd:cd13236   11 CGFLQYSEKGKtWQKVWCVIPRTEplvLYLYGAPQDVRAQ-RTIPLPGCEVTVpppeeRLDGRH--VFK-LSQSKQSHYF 86
                         90
                 ....*....|....*
gi 767929330 422 EASSSEDMGRWIGIL 436
Cdd:cd13236   87 SAESEELQQRWLEAL 101
PH_beta_spectrin cd10571
Beta-spectrin pleckstrin homology (PH) domain; Beta spectrin binds actin and functions as a ...
159-247 1.10e-03

Beta-spectrin pleckstrin homology (PH) domain; Beta spectrin binds actin and functions as a major component of the cytoskeleton underlying cellular membranes. Beta spectrin consists of multiple spectrin repeats followed by a PH domain, which binds to inositol-1,4,5-trisphosphate. The PH domain of beta-spectrin is thought to play a role in the association of spectrin with the plasma membrane of cells. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269975  Cd Length: 106  Bit Score: 39.13  E-value: 1.10e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 159 FLLRK-----------KRfgQWTKLLCVIKDTKLLCYKSSKDQQPQM----ELP--LQGCNITyIPKDSKKKKHELKI-T 220
Cdd:cd10571    4 FLERKhewesggkkasNR--SWKNVYTVLRGQELSFYKDQKAAKSGItyaaEPPlnLYNAVCE-VASDYTKKKHVFRLkL 80
                         90       100
                 ....*....|....*....|....*..
gi 767929330 221 QQGTDPLVLAvQSKEQAEQWLKVIKEA 247
Cdd:cd10571   81 SDGAEFLFQA-KDEEEMNQWVKKISFA 106
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
351-433 1.27e-03

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 39.04  E-value: 1.27e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 351 CGYL------NVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVsIPLRGCEVIPG----LDSKHPLTFRLLRNGQEVAV 420
Cdd:cd13266    4 AGYLekrrkdHSFFGSEWQKRWCAISKNVFYYYGSDKDKQQKGE-FAINGYDVRMNptlrKDGKKDCCFELVCPDKRTYQ 82
                         90
                 ....*....|...
gi 767929330 421 LEASSSEDMGRWI 433
Cdd:cd13266   83 FTAASPEDAEDWV 95
PRK02224 PRK02224
DNA double-strand break repair Rad50 ATPase;
645-730 1.54e-03

DNA double-strand break repair Rad50 ATPase;


Pssm-ID: 179385 [Multi-domain]  Cd Length: 880  Bit Score: 42.33  E-value: 1.54e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 645 EADAKRLQTKEEELLKRKEALRNRLAQLRKERKDLRAAIEVN-----AGRKP---QAILEEKLKQLEEECRQK----EAE 712
Cdd:PRK02224 404 PVDLGNAEDFLEELREERDELREREAELEATLRTARERVEEAealleAGKCPecgQPVEGSPHVETIEEDRERveelEAE 483
                         90
                 ....*....|....*...
gi 767929330 713 RVSLELELTEVKESLKKA 730
Cdd:PRK02224 484 LEDLEEEVEEVEERLERA 501
PH2_MyoX cd13296
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ...
352-436 1.83e-03

Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270108  Cd Length: 103  Bit Score: 38.60  E-value: 1.83e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 352 GYLNVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIpgLDsKHPLTFRL-LRNGQEVAVLEASSSEDMG 430
Cdd:cd13296   10 GGSSTLSRRNWKSRWFVLRDTVLKYYENDQEGEKLLGTIDIRSAKEI--VD-NDPKENRLsITTEERTYHLVAESPEDAS 86

                 ....*.
gi 767929330 431 RWIGIL 436
Cdd:cd13296   87 QWVNVL 92
PH_CNK_insect-like cd13326
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
350-436 2.17e-03

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from insects, spiders, mollusks, and nematodes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270135  Cd Length: 91  Bit Score: 38.09  E-value: 2.17e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 350 TCGYL-----NVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVsIPLRGCEVIPGLD---SKHPltFRLLRNGQeVAVL 421
Cdd:cd13326    1 YQGWLyqrrrKGKGGGKWAKRWFVLKGSNLYGFRSQESTKADCV-IFLPGFTVSPAPEvksRKYA--FKVYHTGT-VFYF 76
                         90
                 ....*....|....*
gi 767929330 422 EASSSEDMGRWIGIL 436
Cdd:cd13326   77 AAESQEDMKKWLDLL 91
PH_Skap1 cd13380
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ...
159-244 2.28e-03

Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270180  Cd Length: 106  Bit Score: 38.30  E-value: 2.28e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 159 FLLRKKR----FG-QWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIP---KDSKKKKHeLKITQQGTDPLVLA 230
Cdd:cd13380    6 YLEKRSKdhsfFGsEWQKRWCVLTNRAFYYYASEKSKQPKGGFLIKGYSAQMAPhlrKDSRRDSC-FELTTPGRRTYQFT 84
                         90
                 ....*....|....
gi 767929330 231 VQSKEQAEQWLKVI 244
Cdd:cd13380   85 AASPSEARDWVDQI 98
PH2_PH_fungal cd13299
Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal ...
161-245 2.61e-03

Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270111  Cd Length: 102  Bit Score: 37.99  E-value: 2.61e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 161 LRKKRFGQWTKLLCVIKDTKLLCYKSSKDQQPQMELPL-QGCNITYIPKDSKKKKHELK-ITQqgTDPLVLAVQSKEQAE 238
Cdd:cd13299   15 LKKKGVNQWKKYWLVLRNRSLSFYKDQSEYSPVKIIPIdDIIDVVELDPLSKSKKWCLQiITP--EKRIRFCADDEESLI 92

                 ....*..
gi 767929330 239 QWLKVIK 245
Cdd:cd13299   93 KWLGALK 99
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
352-433 2.77e-03

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 38.37  E-value: 2.77e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 352 GYLN--VLSNSRWRERWCRVKDNkLIFHKDRTDLKTHIVSIPLRGCEVIPgLDSKHPLTFRLLRNGQE--VAVLEASSSE 427
Cdd:cd13288   12 GYLWkkGERNTSYQKRWFVLKGN-LLFYFEKKGDREPLGVIVLEGCTVEL-AEDAEPYAFAIRFDGPGarSYVLAAENQE 89

                 ....*.
gi 767929330 428 DMGRWI 433
Cdd:cd13288   90 DMESWM 95
PH_beta_spectrin cd10571
Beta-spectrin pleckstrin homology (PH) domain; Beta spectrin binds actin and functions as a ...
358-433 3.42e-03

Beta-spectrin pleckstrin homology (PH) domain; Beta spectrin binds actin and functions as a major component of the cytoskeleton underlying cellular membranes. Beta spectrin consists of multiple spectrin repeats followed by a PH domain, which binds to inositol-1,4,5-trisphosphate. The PH domain of beta-spectrin is thought to play a role in the association of spectrin with the plasma membrane of cells. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269975  Cd Length: 106  Bit Score: 37.98  E-value: 3.42e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 358 SNSRWRERWCRVKDNKLIFHKDRTDLKTHI-----VSIPLRGCEVIPGLD---SKHplTFRL-LRNGQEvAVLEASSSED 428
Cdd:cd10571   19 SNRSWKNVYTVLRGQELSFYKDQKAAKSGItyaaePPLNLYNAVCEVASDytkKKH--VFRLkLSDGAE-FLFQAKDEEE 95

                 ....*
gi 767929330 429 MGRWI 433
Cdd:cd10571   96 MNQWV 100
PH2_FARP1-like cd13235
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
156-247 3.92e-03

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 2; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270055  Cd Length: 98  Bit Score: 37.30  E-value: 3.92e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 156 ICAFLLRK-KRFGQWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYI-PKDSKKKKHELKItQQGTDPLVLAVQS 233
Cdd:cd13235    5 MSGYLLRKfKNSNGWQKLWVVFTNFCLFFYKSHQDEFPLASLPLLGYSVGLPsEADNIDKDYVFKL-QFKSHVYFFRAES 83
                         90
                 ....*....|....
gi 767929330 234 KEQAEQWLKVIKEA 247
Cdd:cd13235   84 EYTFERWMEVIRSA 97
PH1_AFAP cd13306
Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are ...
347-436 5.34e-03

Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. The amino terminal PH1 domain of AFAP1 has been known to function in intra-molecular regulation of AFAP1. In addition, the PH1 domain is a binding partner for PKCa and phospholipids. This cd is the first PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270116  Cd Length: 107  Bit Score: 37.46  E-value: 5.34e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 347 DVPTCGYL-NVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIvSIPLRGCEVI----PGLDSKHPLTFRLLrnGQEVAVL 421
Cdd:cd13306   11 DARICAFLlRKKRFGQWAKQLCVIKDNRLLCYKSSKDQQPQL-ELPLLGCSVIyvpkDGRRKKHELKFTPP--GAEALVL 87
                         90
                 ....*....|....*
gi 767929330 422 EASSSEDMGRWIGIL 436
Cdd:cd13306   88 AVQSKEQAEQWLKVI 102
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
352-436 7.69e-03

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 36.53  E-value: 7.69e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767929330 352 GYLNVLSNSR--WRERWCRVKDNKLIFHKDRTDLKThIVSIPLRGC-EVIPGLDSKHPLTFRLLRNGQEVaVLEASSSED 428
Cdd:cd10573    7 GYLTKLGGIVknWKTRWFVLRRNELKYFKTRGDTKP-IRVLDLRECsSVQRDYSQGKVNCFCLVFPERTF-YMYANTEEE 84

                 ....*...
gi 767929330 429 MGRWIGIL 436
Cdd:cd10573   85 ADEWVKLL 92
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
345-416 8.41e-03

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 36.83  E-value: 8.41e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 767929330 345 EEDVPTCGYLNVLSNSRWRER--WCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSK--HPLTFRLLRNGQ 416
Cdd:cd13215   18 SGAVIKSGYLSKRSKRTLRYTryWFVLKGDTLSWYNSSTDLYFPAGTIDLRYATSIELSKSNgeATTSFKIVTNSR 93
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH