NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|571510633|ref|XP_006571779|]
View 

segmentation protein cap'n'collar isoform X2 [Apis mellifera]

Protein Classification

cap'n'collar family bZIP transcription factor( domain architecture ID 10200241)

cap'n'collar (CNC) family basic leucine zipper (bZIP) transcription factor binds to the promoter regions of genes to control their expression; similar to Drosophila melanogaster cap-n-collar that functions during development and/or contribute in maintaining homeostasis during stress responses

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
bZIP_CNC cd14698
Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding ...
724-791 7.91e-33

Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding and dimerization domain; CNC proteins form a subfamily of Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. This subfamily includes Drosophila Cnc and four vertebrate counterparts, NFE2 (nuclear factor, erythroid-derived 2), NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). It also includes BACH1 and BACH2, which contain an additional BTB domain (Broad complex###Tramtrack###Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain). CNC proteins function during development and/or contribute in maintaining homeostasis during stress responses. In flies, Cnc functions both in development and in stress responses. In vertebrates, several CNC proteins encoded by distinct genes show varying functions and expression patterns. NFE2 is required for the proper development of platelets while the three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


:

Pssm-ID: 269846 [Multi-domain]  Cd Length: 68  Bit Score: 120.82  E-value: 7.91e-33
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 571510633 724 QLSLIRDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQRVKDKFSQLY 791
Cdd:cd14698    1 QLQLIRDIRRRGKNKVAAQNCRKRKLDQISTLEDEVDELKEEKEKLLKERDELEAETREMKDKYSQLY 68
 
Name Accession Description Interval E-value
bZIP_CNC cd14698
Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding ...
724-791 7.91e-33

Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding and dimerization domain; CNC proteins form a subfamily of Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. This subfamily includes Drosophila Cnc and four vertebrate counterparts, NFE2 (nuclear factor, erythroid-derived 2), NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). It also includes BACH1 and BACH2, which contain an additional BTB domain (Broad complex###Tramtrack###Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain). CNC proteins function during development and/or contribute in maintaining homeostasis during stress responses. In flies, Cnc functions both in development and in stress responses. In vertebrates, several CNC proteins encoded by distinct genes show varying functions and expression patterns. NFE2 is required for the proper development of platelets while the three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269846 [Multi-domain]  Cd Length: 68  Bit Score: 120.82  E-value: 7.91e-33
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 571510633 724 QLSLIRDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQRVKDKFSQLY 791
Cdd:cd14698    1 QLQLIRDIRRRGKNKVAAQNCRKRKLDQISTLEDEVDELKEEKEKLLKERDELEAETREMKDKYSQLY 68
bZIP_Maf pfam03131
bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region ...
698-791 1.87e-24

bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region leucine zipper (bZIP) domain, which mediates their dimerization and DNA binding property. Thus, this family is probably related to pfam00170. This family also includes the DNA_binding domain of Skn-1, this domain lacks the leucine zipper found in other bZip domains, and binds DNA is a monomer.


Pssm-ID: 427158 [Multi-domain]  Cd Length: 92  Bit Score: 98.19  E-value: 1.87e-24
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 571510633  698 IPVNDIINLPMDEFNERLskYDLSEAQLSLIRDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFML 777
Cdd:pfam03131   1 LSDEELLSMSVREFNRFL--RGLTEEEVIRLKQRRRRLKNRGYAQSCRKRRLQQKESLEKERSELREQLERLVQELSRLR 78
                          90
                  ....*....|....
gi 571510633  778 IERQRVKDKFSQLY 791
Cdd:pfam03131  79 QELDALKRRNEQLQ 92
BRLZ smart00338
basic region leucin zipper;
728-789 2.14e-11

basic region leucin zipper;


Pssm-ID: 197664 [Multi-domain]  Cd Length: 65  Bit Score: 59.89  E-value: 2.14e-11
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 571510633   728 IRDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQRVKDKFSQ 789
Cdd:smart00338   4 EKRRRRRERNREAARRSRERKKAEIEELERKVEQLEAENERLKKEIERLRRELEKLKSELEE 65
 
Name Accession Description Interval E-value
bZIP_CNC cd14698
Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding ...
724-791 7.91e-33

Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding and dimerization domain; CNC proteins form a subfamily of Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. This subfamily includes Drosophila Cnc and four vertebrate counterparts, NFE2 (nuclear factor, erythroid-derived 2), NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). It also includes BACH1 and BACH2, which contain an additional BTB domain (Broad complex###Tramtrack###Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain). CNC proteins function during development and/or contribute in maintaining homeostasis during stress responses. In flies, Cnc functions both in development and in stress responses. In vertebrates, several CNC proteins encoded by distinct genes show varying functions and expression patterns. NFE2 is required for the proper development of platelets while the three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269846 [Multi-domain]  Cd Length: 68  Bit Score: 120.82  E-value: 7.91e-33
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 571510633 724 QLSLIRDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQRVKDKFSQLY 791
Cdd:cd14698    1 QLQLIRDIRRRGKNKVAAQNCRKRKLDQISTLEDEVDELKEEKEKLLKERDELEAETREMKDKYSQLY 68
bZIP_NFE2-like cd14720
Basic leucine zipper (bZIP) domain of Nuclear Factor, Erythroid-derived 2 (NFE2) and similar ...
724-791 2.04e-27

Basic leucine zipper (bZIP) domain of Nuclear Factor, Erythroid-derived 2 (NFE2) and similar proteins: a DNA-binding and dimerization domain; This subfamily is composed of NFE2 and NFE2-like proteins including NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). These are Cap'n'Collar (CNC) Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. NFE2 functions in development; it is required for the proper development of platelets. The three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. As the master regulator of the antioxidant defense pathway, it plays roles in the biology of inflammation, obesity, and cancer. Nrf1 is an essential protein that binds to the antioxidant response element (ARE) and is also involved in regulating oxidative stress. In addition, it also regulates genes involved in cell and tissue differentiation, inflammation, and hepatocyte homeostasis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269868 [Multi-domain]  Cd Length: 68  Bit Score: 105.46  E-value: 2.04e-27
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 571510633 724 QLSLIRDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQRVKDKFSQLY 791
Cdd:cd14720    1 QLALIRDIRRRGKNKVAAQNCRKRKLDNIVGLEDEVEQLQRQREKLLREKAENAKSLREMKQKLNDLY 68
bZIP_Maf pfam03131
bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region ...
698-791 1.87e-24

bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region leucine zipper (bZIP) domain, which mediates their dimerization and DNA binding property. Thus, this family is probably related to pfam00170. This family also includes the DNA_binding domain of Skn-1, this domain lacks the leucine zipper found in other bZip domains, and binds DNA is a monomer.


Pssm-ID: 427158 [Multi-domain]  Cd Length: 92  Bit Score: 98.19  E-value: 1.87e-24
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 571510633  698 IPVNDIINLPMDEFNERLskYDLSEAQLSLIRDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFML 777
Cdd:pfam03131   1 LSDEELLSMSVREFNRFL--RGLTEEEVIRLKQRRRRLKNRGYAQSCRKRRLQQKESLEKERSELREQLERLVQELSRLR 78
                          90
                  ....*....|....
gi 571510633  778 IERQRVKDKFSQLY 791
Cdd:pfam03131  79 QELDALKRRNEQLQ 92
bZIP_BACH cd14719
Basic leucine zipper (bZIP) domain of BTB and CNC homolog (BACH) proteins: a DNA-binding and ...
721-791 1.34e-17

Basic leucine zipper (bZIP) domain of BTB and CNC homolog (BACH) proteins: a DNA-binding and dimerization domain; BACH proteins are Cap'n'Collar (CNC) Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. In addition, they contain a BTB domain (Broad complex-Tramtrack-Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain) that is absent in other CNC proteins. Veterbrates contain two members, BACH1 and BACH2. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. It has also been implicated as the master regulator of breast cancer bone metastasis. The BACH1 bZIP transcription factor should not be confused with the protein originally named as BRCA1-Associated C-terminal Helicase1 (BACH1), which has been renamed BRIP1 (BRCA1 Interacting Protein C-terminal Helicase1) and also called FANCJ. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. It plays an important role in class switching and somatic hypermutation of immunoglobulin genes. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269867 [Multi-domain]  Cd Length: 71  Bit Score: 77.92  E-value: 1.34e-17
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 571510633 721 SEAQLSLIRDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQRVKDKFSQLY 791
Cdd:cd14719    1 TPEQLEFIHDVRRRSKNRIAAQRCRKRKLDCIQNLECEIKKLVCEKEKLLGERNQLKASMGELRENFSCLC 71
BRLZ smart00338
basic region leucin zipper;
728-789 2.14e-11

basic region leucin zipper;


Pssm-ID: 197664 [Multi-domain]  Cd Length: 65  Bit Score: 59.89  E-value: 2.14e-11
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 571510633   728 IRDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQRVKDKFSQ 789
Cdd:smart00338   4 EKRRRRRERNREAARRSRERKKAEIEELERKVEQLEAENERLKKEIERLRRELEKLKSELEE 65
bZIP_Fos_like cd14699
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a ...
729-782 8.35e-09

Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a DNA-binding and dimerization domain; This subfamily is composed of Fos proteins (c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2), Activating Transcription Factor-3 (ATF-3), and similar proteins. Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of bZIP dimers of the Jun and Fos families, and to a lesser extent, ATF and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. ATF3 is induced by various stress signals such as cytokines, genotoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269847 [Multi-domain]  Cd Length: 59  Bit Score: 52.26  E-value: 8.35e-09
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 571510633 729 RDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQR 782
Cdd:cd14699    1 RRRKRRERNKVAAAKCRQRRRELMEELQAEVEQLEDENEKLQSEIANLRSEKEQ 54
bZIP_XBP1 cd14691
Basic leucine zipper (bZIP) domain of X-box binding protein 1 (XBP1) and similar proteins: a ...
729-772 9.87e-09

Basic leucine zipper (bZIP) domain of X-box binding protein 1 (XBP1) and similar proteins: a DNA-binding and dimerization domain; XBP1, a member of the Basic leucine zipper (bZIP) family, is the key transcription factor that orchestrates the unfolded protein response (UPR). It is the most conserved component of the UPR and is critical for cell fate determination in response to ER stress. The inositol-requiring enzyme 1 (IRE1)-XBP1 pathway is one of the three major sensors at the ER membrane that initiates the UPR upon activation. IRE1, a type I transmembrane protein kinase and endoribonuclease, oligomerizes upon ER stress leading to its increased activity. It splices the XBP1 mRNA, producing a variant that translocates to the nucleus and activates its target genes, which are involved in protein folding, degradation, and trafficking. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269839 [Multi-domain]  Cd Length: 58  Bit Score: 52.21  E-value: 9.87e-09
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....
gi 571510633 729 RDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVRE 772
Cdd:cd14691    3 KDLRRKLKNRVAAQTARDRKKARMDELEERVRELEEENQKLRAE 46
bZIP cd14686
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ...
731-781 2.24e-08

Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269834 [Multi-domain]  Cd Length: 52  Bit Score: 51.01  E-value: 2.24e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 571510633 731 IRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQ 781
Cdd:cd14686    2 ERRRERNREAARRSRERKKERIEELEEEVEELEEENEELKAELEELRAEVE 52
bZIP_Jun cd14696
Basic leucine zipper (bZIP) domain of Jun proteins and similar proteins: a DNA-binding and ...
732-774 6.59e-08

Basic leucine zipper (bZIP) domain of Jun proteins and similar proteins: a DNA-binding and dimerization domain; Jun is a member of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are three Jun proteins: c-Jun, JunB, and JunD. c-Jun is the most potent transcriptional activator of the AP-1 proteins. Both c-Jun and JunB are essential during development; deletion of either results in embryonic lethality in mice. c-Jun is essential in hepatogenesis and liver erythropoiesis, while JunB is required in vasculogenesis and angiogenesis in extraembryonic tissues. While JunD is dispensable in embryonic development, it is involved in transcription regulation of target genes that help cells to cope with environmental signals. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269844 [Multi-domain]  Cd Length: 61  Bit Score: 49.89  E-value: 6.59e-08
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|...
gi 571510633 732 RRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVRERE 774
Cdd:cd14696    4 RKRARNRIAASKCRKRKLERIARLEDKVKELKNQNSELTSTAS 46
bZIP_Fos cd14721
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization ...
732-787 3.39e-06

Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization domain; Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are four Fos proteins: c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2. In addition, FosB also exists as smaller splice variants FosB2 and deltaFosB2. They all contain an N-terminal region and a bZIP domain. c-Fos and FosB also contain a C-terminal transactivation domain which is absent in Fra-1/2 and the smaller FosB variants. Fos proteins can only heterodimerize with Jun and other AP-1 proteins, but cannot homodimerize. Fos:Jun heterodimers are more stable and can bind DNA with more affinity that Jun:Jun homodimers. Fos proteins can enhance the trans-activating and transforming properties of Jun proteins. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269869 [Multi-domain]  Cd Length: 62  Bit Score: 45.04  E-value: 3.39e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 571510633 732 RRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLvrEREFMLIERQRVKDKF 787
Cdd:cd14721    4 VRRERNKLAAAKCRQRRVDLTNTLQAETEQLEDEKSSL--QNEIANLQKQKEQLEF 57
bZIP_CREB1 cd14690
Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 1 (CREB1) ...
729-772 1.06e-04

Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 1 (CREB1) and similar proteins: a DNA-binding and dimerization domain; CREB1 is a Basic leucine zipper (bZIP) transcription factor that plays a role in propagating signals initiated by receptor activation through the induction of cAMP-responsive genes. Because it responds to many signal transduction pathways, CREB1 is implicated to function in many processes including learning, memory, circadian rhythm, immune response, and reproduction, among others. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269838 [Multi-domain]  Cd Length: 55  Bit Score: 40.69  E-value: 1.06e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....
gi 571510633 729 RDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVRE 772
Cdd:cd14690    1 KRQLRLEKNREAARECRRKKKEYVKCLENRVAVLENENKELREE 44
bZIP_AUREO-like cd14809
Basic leucine zipper (bZIP) domain of blue light (BL) receptor aureochrome (AUREO) and similar ...
732-776 1.83e-04

Basic leucine zipper (bZIP) domain of blue light (BL) receptor aureochrome (AUREO) and similar bZIP domains; AUREO is a BL-activated transcription factor specific to phototrophic stramenopiles. It has a bZIP and a BL-sensing light-oxygen voltage (LOV) domain. It has been shown to mediate BL-induced branching and regulate the development of the sex organ in Vaucheria frigida. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. This subgroup also includes the Epstein-Barr virus (EBV) immediate-early transcription factor ZEBRA (BZLF1, Zta, Z, EB1). ZEBRA exhibits a variant of the bZIP fold, it has a unique dimer interface and a substantial hydrophobic pocket; it has a C-terminal moiety which stabilizes the coiled coil involved in dimer formation. ZEBRA functions to trigger the switch of EBV's biphasic infection cycle from latent to lytic infection. It activates the promoters of EBV lytic genes by binding ZEBRA response elements (ZREs) and inducing a cascade of expression of over 50 viral genes. It also down regulates latency-associated promoters, is an essential replication factor, induces host cell cycle arrest, and alters cellular immune responses and transcription factor activity.


Pssm-ID: 269871 [Multi-domain]  Cd Length: 52  Bit Score: 39.92  E-value: 1.83e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*
gi 571510633 732 RRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFM 776
Cdd:cd14809    3 RRRERNREHARKTRLRKKAYLESLKEQVAALQAENQRLRQQIRQA 47
bZIP_2 pfam07716
Basic region leucine zipper;
732-777 1.86e-04

Basic region leucine zipper;


Pssm-ID: 462244 [Multi-domain]  Cd Length: 51  Bit Score: 39.89  E-value: 1.86e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*.
gi 571510633  732 RRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLvREREFML 777
Cdd:pfam07716   4 DRRRKNNEAAKRSREKKKQKEEELEERVKELERENAQL-RQKVEQL 48
bZIP_1 pfam00170
bZIP transcription factor; The Pfam entry includes the basic region and the leucine zipper ...
729-790 2.46e-04

bZIP transcription factor; The Pfam entry includes the basic region and the leucine zipper region.


Pssm-ID: 395118 [Multi-domain]  Cd Length: 60  Bit Score: 39.67  E-value: 2.46e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 571510633  729 RDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEmrdrkmrLVREREFMLIERQRVKDKFSQL 790
Cdd:pfam00170   1 KREKRKQSNREAARRSRQRKQAYIEELERRVKA-------LEGENKTLRSELEELKKEVEKL 55
bZIP_Maf cd14697
Basic leucine zipper (bZIP) domain of musculoaponeurotic fibrosarcoma (Maf) proteins: a ...
732-791 2.74e-04

Basic leucine zipper (bZIP) domain of musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain; Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The large Mafs (c-Maf, MafA, MafB, NRL) contain an N-terminal transactivation domain, a linker region of varying size, an anxillary DNA-binding domain, and a C-terminal bZIP domain. They function as critical regulators of terminal differentiation in the blood and in many tissues such as bone, brain, kidney, pancreas, and retina. The small Mafs (MafF, MafK, MafG) do not contain a transactivation domain. They form dimers with cap'n'collar (CNC) proteins that harbor transactivation domains, and they act either as activators or repressors depending on their dimerization partner. They play roles in stress response and detoxification pathways. They have been implicated in various diseases such as diabetes, neurological diseases, thrombocytopenia and cancer. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269845 [Multi-domain]  Cd Length: 70  Bit Score: 40.06  E-value: 2.74e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 571510633 732 RRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQRVKDKFSQLY 791
Cdd:cd14697   11 RRTLKNRGYAQSCRAKRVQQKEQLENEKAELRSQIEELKEENSELQQELDYYKQKFEALA 70
bZIP_HY5-like cd14704
Basic leucine zipper (bZIP) domain of Plant Elongated/Long Hypocotyl5 (HY5)-like transcription ...
732-776 3.24e-04

Basic leucine zipper (bZIP) domain of Plant Elongated/Long Hypocotyl5 (HY5)-like transcription factors and similar proteins: a DNA-binding and dimerization domain; This subfamily is predominantly composed of plant Basic leucine zipper (bZIP) transcription factors with similarity to Solanum lycopersicum and Arabidopsis thaliana HY5. Also included are the Dictyostelium discoideum bZIP transcription factors E and F. HY5 plays an important role in seedling development and is a positive regulator of photomorphogenesis. Plants with decreased levels of HY5 show defects in light responses including inhibited photomorphogenesis, loss of alkaloid organization, and reduced carotenoid accumulation. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269852 [Multi-domain]  Cd Length: 52  Bit Score: 39.09  E-value: 3.24e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*
gi 571510633 732 RRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFM 776
Cdd:cd14704    3 RRLLRNRESAQLSRQRKKEYLSELEAKCRELEAENAELEARVELL 47
bZIP_ATF3 cd14722
Basic leucine zipper (bZIP) domain of Activating Transcription Factor-3 (ATF-3) and similar ...
729-785 4.08e-04

Basic leucine zipper (bZIP) domain of Activating Transcription Factor-3 (ATF-3) and similar proteins: a DNA-binding and dimerization domain; ATF-3 is a Basic leucine zipper (bZIP) transcription factor that is induced by various stress signals such as cytokines, genetoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. Mice deficient with ATF3 display increased susceptibility to endotoxic shock induced death. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269870  Cd Length: 62  Bit Score: 39.37  E-value: 4.08e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 571510633 729 RDIRRRGKNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQRVKD 785
Cdd:cd14722    1 RRRRRRERNKVAAAKCRNKKKERTDCLQKESEKLETQNAELKRQIEELKNEKQHLID 57
bZIP_Maf_small cd14717
Basic leucine zipper (bZIP) domain of small musculoaponeurotic fibrosarcoma (Maf) proteins: a ...
732-790 4.48e-03

Basic leucine zipper (bZIP) domain of small musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain; Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The small Mafs (MafF, MafK, and MafG) do not contain a transactivation domain but do harbor the anxillary DNA-binding domain and a C-terminal bZIP domain. They form dimers with cap'n'collar (CNC) proteins that harbor transactivation domains, and they act either as activators or repressors depending on their dimerization partner. CNC transcription factors include NFE2 (nuclear factor, erythroid-derived 2) and similar proteins NFE2L1 (NFE2-like 1), NFE2L2, and NFE2L3, as well as BACH1 and BACH2. Small Mafs play roles in stress response and detoxification pathways. They also regulate the expression of betaA-globin and other genes activated during erythropoiesis. They have been implicated in various diseases such as diabetes, neurological diseases, thrombocytopenia and cancer. Triple deletion of the three small Mafs is embryonically lethal. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269865 [Multi-domain]  Cd Length: 70  Bit Score: 36.57  E-value: 4.48e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 571510633 732 RRRG-KNKVAAQNCRKRKLDQIISLADEVKEMRDRKMRLVREREFMLIERQRVKDKFSQL 790
Cdd:cd14717   10 RRRTlKNRGYAASCRIKRVTQKEELEKQKAELQQEVEKLARENASMRLELDALRSKYEAL 69
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH