E3 ubiquitin-protein ligase RNF14 isoform X1 [Cricetulus griseus]
E3 ubiquitin-protein ligase RNF14( domain architecture ID 19232670)
E3 ubiquitin-protein ligase RNF14 (or RING finger protein 14) is an RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3)
List of domain hits
Name | Accession | Description | Interval | E-value | |||
Rcat_RBR_RNF14 | cd20354 | Rcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR) ... |
390-457 | 1.22e-37 | |||
Rcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR)-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscles. It is a ligand-dependent AR co-activator that enhances AR-dependent transcriptional activation. It also may participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of the Wnt-dependent transcriptional outputs that acts at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. RNF14 contains an N-terminal RWD domain, and a C-terminal RBR domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of RNF14 that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. : Pssm-ID: 439015 Cd Length: 68 Bit Score: 132.09 E-value: 1.22e-37
|
|||||||
RWD_RNF14 | cd23820 | RWD domain of RING finger protein 14 (RNF14) and related proteins; RNF14, also called androgen ... |
9-135 | 2.82e-32 | |||
RWD domain of RING finger protein 14 (RNF14) and related proteins; RNF14, also called androgen receptor (AR)-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase (EC 2.3.2.31) that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscles. It is a ligand-dependent AR co-activator that enhances AR-dependent transcriptional activation. It also may participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of Wnt-dependent transcriptional outputs that act at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. : Pssm-ID: 467656 [Multi-domain] Cd Length: 125 Bit Score: 119.39 E-value: 2.82e-32
|
|||||||
RING-HC_RBR_RNF14 | cd16628 | RING finger, HC subclass, found in RING finger protein 14 (RNF14) and similar proteins; RNF14, ... |
214-272 | 1.76e-28 | |||
RING finger, HC subclass, found in RING finger protein 14 (RNF14) and similar proteins; RNF14, also known as androgen receptor-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscle. It is a ligand-dependent androgen receptor (AR) co-activator and may also may participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of the Wnt-dependent transcriptional outputs that acts at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. RNF14 contains an N-terminal RWD domain and a C-terminal RBR domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. : Pssm-ID: 438290 Cd Length: 59 Bit Score: 107.01 E-value: 1.76e-28
|
|||||||
BRcat_RBR_RNF14 | cd20341 | BRcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR) ... |
301-357 | 1.21e-26 | |||
BRcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR)-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscles. It is a ligand-dependent AR co-activator that enhances AR-dependent transcriptional activation. It may also participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of the Wnt-dependent transcriptional outputs that acts at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. RNF14 contains an N-terminal RWD domain, and a C-terminal RBR domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the BRcat domain of RNF14 that adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. : Pssm-ID: 439002 Cd Length: 57 Bit Score: 101.61 E-value: 1.21e-26
|
|||||||
Name | Accession | Description | Interval | E-value | |||
Rcat_RBR_RNF14 | cd20354 | Rcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR) ... |
390-457 | 1.22e-37 | |||
Rcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR)-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscles. It is a ligand-dependent AR co-activator that enhances AR-dependent transcriptional activation. It also may participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of the Wnt-dependent transcriptional outputs that acts at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. RNF14 contains an N-terminal RWD domain, and a C-terminal RBR domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of RNF14 that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439015 Cd Length: 68 Bit Score: 132.09 E-value: 1.22e-37
|
|||||||
RWD_RNF14 | cd23820 | RWD domain of RING finger protein 14 (RNF14) and related proteins; RNF14, also called androgen ... |
9-135 | 2.82e-32 | |||
RWD domain of RING finger protein 14 (RNF14) and related proteins; RNF14, also called androgen receptor (AR)-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase (EC 2.3.2.31) that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscles. It is a ligand-dependent AR co-activator that enhances AR-dependent transcriptional activation. It also may participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of Wnt-dependent transcriptional outputs that act at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. Pssm-ID: 467656 [Multi-domain] Cd Length: 125 Bit Score: 119.39 E-value: 2.82e-32
|
|||||||
RING-HC_RBR_RNF14 | cd16628 | RING finger, HC subclass, found in RING finger protein 14 (RNF14) and similar proteins; RNF14, ... |
214-272 | 1.76e-28 | |||
RING finger, HC subclass, found in RING finger protein 14 (RNF14) and similar proteins; RNF14, also known as androgen receptor-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscle. It is a ligand-dependent androgen receptor (AR) co-activator and may also may participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of the Wnt-dependent transcriptional outputs that acts at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. RNF14 contains an N-terminal RWD domain and a C-terminal RBR domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. Pssm-ID: 438290 Cd Length: 59 Bit Score: 107.01 E-value: 1.76e-28
|
|||||||
BRcat_RBR_RNF14 | cd20341 | BRcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR) ... |
301-357 | 1.21e-26 | |||
BRcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR)-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscles. It is a ligand-dependent AR co-activator that enhances AR-dependent transcriptional activation. It may also participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of the Wnt-dependent transcriptional outputs that acts at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. RNF14 contains an N-terminal RWD domain, and a C-terminal RBR domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the BRcat domain of RNF14 that adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. Pssm-ID: 439002 Cd Length: 57 Bit Score: 101.61 E-value: 1.21e-26
|
|||||||
RWD | pfam05773 | RWD domain; This domain was identified in WD40 repeat proteins and Ring finger domain proteins. ... |
7-133 | 1.69e-13 | |||
RWD domain; This domain was identified in WD40 repeat proteins and Ring finger domain proteins. The function of this domain is unknown. GCN2 is the alpha-subunit of the only translation initiation factor (eIF2 alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices. Pssm-ID: 399058 Cd Length: 111 Bit Score: 66.58 E-value: 1.69e-13
|
|||||||
IBR | smart00647 | In Between Ring fingers; the domains occurs between pairs og RING fingers |
290-351 | 8.45e-13 | |||
In Between Ring fingers; the domains occurs between pairs og RING fingers Pssm-ID: 214763 [Multi-domain] Cd Length: 64 Bit Score: 63.20 E-value: 8.45e-13
|
|||||||
RWD | smart00591 | domain in RING finger and WD repeat containing proteins and DEXDc-like helicases subfamily ... |
12-137 | 1.00e-12 | |||
domain in RING finger and WD repeat containing proteins and DEXDc-like helicases subfamily related to the UBCc domain; Pssm-ID: 214735 Cd Length: 107 Bit Score: 64.30 E-value: 1.00e-12
|
|||||||
IBR | pfam01485 | IBR domain, a half RING-finger domain; The IBR (In Between Ring fingers) domain is often found ... |
291-351 | 8.92e-10 | |||
IBR domain, a half RING-finger domain; The IBR (In Between Ring fingers) domain is often found to occur between pairs of ring fingers (pfam00097). This domain has also been called the C6HC domain and DRIL (for double RING finger linked) domain. Proteins that contain two Ring fingers and an IBR domain (these proteins are also termed RBR family proteins) are thought to exist in all eukaryotic organizms. RBR family members play roles in protein quality control and can indirectly regulate transcription. Evidence suggests that RBR proteins are often parts of cullin-containing ubiquitin ligase complexes. The ubiquitin ligase Parkin is an RBR family protein whose mutations are involved in forms of familial Parkinson's disease. Pssm-ID: 460227 Cd Length: 65 Bit Score: 54.48 E-value: 8.92e-10
|
|||||||
zf-RING_5 | pfam14634 | zinc-RING finger domain; |
221-256 | 2.04e-04 | |||
zinc-RING finger domain; Pssm-ID: 434085 [Multi-domain] Cd Length: 43 Bit Score: 38.95 E-value: 2.04e-04
|
|||||||
Name | Accession | Description | Interval | E-value | |||
Rcat_RBR_RNF14 | cd20354 | Rcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR) ... |
390-457 | 1.22e-37 | |||
Rcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR)-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscles. It is a ligand-dependent AR co-activator that enhances AR-dependent transcriptional activation. It also may participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of the Wnt-dependent transcriptional outputs that acts at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. RNF14 contains an N-terminal RWD domain, and a C-terminal RBR domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of RNF14 that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439015 Cd Length: 68 Bit Score: 132.09 E-value: 1.22e-37
|
|||||||
RWD_RNF14 | cd23820 | RWD domain of RING finger protein 14 (RNF14) and related proteins; RNF14, also called androgen ... |
9-135 | 2.82e-32 | |||
RWD domain of RING finger protein 14 (RNF14) and related proteins; RNF14, also called androgen receptor (AR)-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase (EC 2.3.2.31) that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscles. It is a ligand-dependent AR co-activator that enhances AR-dependent transcriptional activation. It also may participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of Wnt-dependent transcriptional outputs that act at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. Pssm-ID: 467656 [Multi-domain] Cd Length: 125 Bit Score: 119.39 E-value: 2.82e-32
|
|||||||
RING-HC_RBR_RNF14 | cd16628 | RING finger, HC subclass, found in RING finger protein 14 (RNF14) and similar proteins; RNF14, ... |
214-272 | 1.76e-28 | |||
RING finger, HC subclass, found in RING finger protein 14 (RNF14) and similar proteins; RNF14, also known as androgen receptor-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscle. It is a ligand-dependent androgen receptor (AR) co-activator and may also may participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of the Wnt-dependent transcriptional outputs that acts at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. RNF14 contains an N-terminal RWD domain and a C-terminal RBR domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. Pssm-ID: 438290 Cd Length: 59 Bit Score: 107.01 E-value: 1.76e-28
|
|||||||
BRcat_RBR_RNF14 | cd20341 | BRcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR) ... |
301-357 | 1.21e-26 | |||
BRcat domain found in RING finger protein 14 (RNF14); RNF14, also called androgen receptor (AR)-associated protein 54 (ARA54), HFB30, or Triad2 protein, is an RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscles. It is a ligand-dependent AR co-activator that enhances AR-dependent transcriptional activation. It may also participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of the Wnt-dependent transcriptional outputs that acts at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. RNF14 contains an N-terminal RWD domain, and a C-terminal RBR domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the BRcat domain of RNF14 that adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. Pssm-ID: 439002 Cd Length: 57 Bit Score: 101.61 E-value: 1.21e-26
|
|||||||
RWD_IMPACT | cd23821 | RWD domain of protein IMPACT and related proteins; IMPACT, also imprinted and ancient gene ... |
10-135 | 7.81e-15 | |||
RWD domain of protein IMPACT and related proteins; IMPACT, also imprinted and ancient gene protein homolog, acts as a translational regulator that ensures constant high levels of translation upon a variety of stress conditions, such as amino acid starvation, UV-C irradiation, proteasome inhibitor treatment, and glucose deprivation. It plays a role as a negative regulator of EIF2AK4/GCN2 kinase activity. It impairs GCN1-mediated EIF2AK4/GCN2 activation, and hence EIF2AK4/GCN2-mediated eIF-2-alpha phosphorylation and subsequent down-regulation of protein synthesis. IMPACT may be required to regulate translation in specific neuronal cells under amino acid starvation conditions by preventing GCN2 activation and therefore ATF4 synthesis. Through its inhibitory action on EIF2AK4/GCN2, IMPACT plays a role in differentiation of neuronal cells by stimulating neurite outgrowth. Pssm-ID: 467657 Cd Length: 101 Bit Score: 69.96 E-value: 7.81e-15
|
|||||||
Rcat_RBR_ANKIB1 | cd20361 | Rcat domain found in ankyrin repeat and IBR domain-containing protein 1 (ANKIB1) and similar ... |
397-443 | 4.49e-14 | |||
Rcat domain found in ankyrin repeat and IBR domain-containing protein 1 (ANKIB1) and similar proteins; ANKIB1 is an RBR-type E3 ubiquitin-protein ligase that may function as part of an E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. It contains N-terminal ankyrin repeats, and an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of ANKIB1 that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439022 Cd Length: 62 Bit Score: 66.71 E-value: 4.49e-14
|
|||||||
Rcat_RBR | cd20336 | Rcat (required-for-catalysis) domain, part of the RBR (RING1-BRcat-Rcat) domain; The RBR ... |
401-436 | 1.21e-13 | |||
Rcat (required-for-catalysis) domain, part of the RBR (RING1-BRcat-Rcat) domain; The RBR family of RING-type E3 ligases are characterized by containing an RBR domain, which was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. It is composed of an extended RING domain (RING1) followed by an in-between RING (IBR) domain and the catalytic domain, which is structurally an IBR domain but is commonly designated RING2. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently, where the IBR and RING2 domains have been renamed as BRcat and Rcat domains, respectively. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. The Rcat domain contains the catalytic cysteine residue and ubiquitination activity. RBR family members play roles in protein quality control and can indirectly regulate transcription. Evidence suggests that RBR proteins are often parts of cullin-containing ubiquitin ligase complexes. This model corresponds to the Rcat domain that adopts the same fold as the BRcat domain. Pssm-ID: 438997 Cd Length: 38 Bit Score: 64.93 E-value: 1.21e-13
|
|||||||
RWD | pfam05773 | RWD domain; This domain was identified in WD40 repeat proteins and Ring finger domain proteins. ... |
7-133 | 1.69e-13 | |||
RWD domain; This domain was identified in WD40 repeat proteins and Ring finger domain proteins. The function of this domain is unknown. GCN2 is the alpha-subunit of the only translation initiation factor (eIF2 alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices. Pssm-ID: 399058 Cd Length: 111 Bit Score: 66.58 E-value: 1.69e-13
|
|||||||
IBR | smart00647 | In Between Ring fingers; the domains occurs between pairs og RING fingers |
290-351 | 8.45e-13 | |||
In Between Ring fingers; the domains occurs between pairs og RING fingers Pssm-ID: 214763 [Multi-domain] Cd Length: 64 Bit Score: 63.20 E-value: 8.45e-13
|
|||||||
RWD | smart00591 | domain in RING finger and WD repeat containing proteins and DEXDc-like helicases subfamily ... |
12-137 | 1.00e-12 | |||
domain in RING finger and WD repeat containing proteins and DEXDc-like helicases subfamily related to the UBCc domain; Pssm-ID: 214735 Cd Length: 107 Bit Score: 64.30 E-value: 1.00e-12
|
|||||||
RING-HC_ITT1-like | cd23134 | RING finger, HC subclass, found in Saccharomyces cerevisiae translation termination inhibitor ... |
218-272 | 1.57e-12 | |||
RING finger, HC subclass, found in Saccharomyces cerevisiae translation termination inhibitor protein ITT1 and similar proteins; ITT1 is a protein that modulates the efficiency of translation termination, resulting in the readthrough of all three types of nonsense codons UAA, UAG and UGA. ITT1 contains a typical C3HC4-type RING-HC finger. Pssm-ID: 438496 Cd Length: 60 Bit Score: 62.34 E-value: 1.57e-12
|
|||||||
Rcat_RBR_DEAH12-like | cd22585 | Rcat domain of ATP-dependent RNA helicase DEAH12 and similar proteins; This group includes ... |
401-435 | 2.11e-11 | |||
Rcat domain of ATP-dependent RNA helicase DEAH12 and similar proteins; This group includes Arabidopsis thaliana ATP-dependent RNA helicases DEAH11 and DEAH12, which may be bifunctional proteins that function as DEAD-box RNA helicases (EC 3.6.4.13) and RBR-type E3 ubiquitin-protein ligases (EC 2.3.2.31). As RNA helicases, they may utilize the energy from ATP hydrolysis to unwind RNA (or DNA). DEAD-box RNA helicases participate in every aspect of RNA metabolism. As E3 ubiquitin-protein ligase, they may function as part of E3 complexes, which accept ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfer it to substrates. Other members of this group may not have an RNA helicase domain. All members contain an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439036 Cd Length: 52 Bit Score: 58.89 E-value: 2.11e-11
|
|||||||
Rcat_RBR_TRIAD1 | cd20360 | Rcat domain found in two RING fingers and DRIL [double RING finger linked] 1 (TRIAD1); TRIAD1, ... |
401-437 | 5.28e-11 | |||
Rcat domain found in two RING fingers and DRIL [double RING finger linked] 1 (TRIAD1); TRIAD1, also called ariadne-2 (ARI-2), protein ariadne-2 homolog, Ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2), or UbcM4-interacting protein 48, is an RBR-type E3 ubiquitin-protein ligase that catalyzes the formation of polyubiquitin chains linked via lysine-48 as well as lysine-63 residues. Its auto-ubiquitylation can be catalyzed by the E2 conjugating enzyme UBCH7. TRIAD1 has been implicated in hematopoiesis, specifically in myelopoiesis, as well as in embryogenesis. It functions as a regulator of endosomal transport, and is required for the proper function of multivesicular bodies. It also acts as a novel ubiquitination target for proteasome-dependent degradation by murine double minute 2 (MDM2). As a proapoptotic protein, TRIAD1 promotes p53 activation, and inhibits MDM2-mediated p53 ubiquitination and degradation. Furthermore, TRIAD1 can inhibit the ubiquitination and proteasomal degradation of growth factor independence 1 (Gfi1), a transcriptional repressor essential for the function and development of many different hematopoietic lineages. TRIAD1 contains an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of TRIAD1 that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439021 Cd Length: 56 Bit Score: 57.78 E-value: 5.28e-11
|
|||||||
RING-HC_RBR_TRIAD1 | cd16773 | RING finger, HC subclass, found in two RING fingers and DRIL [double RING finger linked] 1 ... |
219-273 | 6.21e-11 | |||
RING finger, HC subclass, found in two RING fingers and DRIL [double RING finger linked] 1 (TRIAD1); TRIAD1, also known as ariadne-2 (ARI-2), protein ariadne-2 homolog, Ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2), or UbcM4-interacting protein 48, is an RBR-type E3 ubiquitin-protein ligase that catalyzes the formation of polyubiquitin chains linked via lysine-48, as well as lysine-63 residues. Its auto-ubiquitylation can be catalyzed by the E2 conjugating enzyme UBCH7. TRIAD1 has been implicated in hematopoiesis, specifically in myelopoiesis, as well as in embryogenesis. It functions as a regulator of endosomal transport and is required for the proper function of multivesicular bodies. It also acts as a novel ubiquitination target for proteasome-dependent degradation by murine double minute 2 (MDM2). As a proapoptotic protein, TRIAD1 promotes p53 activation, and inhibits MDM2-mediated p53 ubiquitination and degradation. Furthermore, TRIAD1 can inhibit the ubiquitination and proteasomal degradation of growth factor independence 1 (Gfi1), a transcriptional repressor essential for the function and development of many different hematopoietic lineages. TRIAD1 contains an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. Pssm-ID: 438429 [Multi-domain] Cd Length: 54 Bit Score: 57.36 E-value: 6.21e-11
|
|||||||
IBR | pfam01485 | IBR domain, a half RING-finger domain; The IBR (In Between Ring fingers) domain is often found ... |
291-351 | 8.92e-10 | |||
IBR domain, a half RING-finger domain; The IBR (In Between Ring fingers) domain is often found to occur between pairs of ring fingers (pfam00097). This domain has also been called the C6HC domain and DRIL (for double RING finger linked) domain. Proteins that contain two Ring fingers and an IBR domain (these proteins are also termed RBR family proteins) are thought to exist in all eukaryotic organizms. RBR family members play roles in protein quality control and can indirectly regulate transcription. Evidence suggests that RBR proteins are often parts of cullin-containing ubiquitin ligase complexes. The ubiquitin ligase Parkin is an RBR family protein whose mutations are involved in forms of familial Parkinson's disease. Pssm-ID: 460227 Cd Length: 65 Bit Score: 54.48 E-value: 8.92e-10
|
|||||||
Rcat_RBR_RNF144 | cd20352 | Rcat domain found in the RNF144 protein subfamily; The RNF144 subfamily includes RNF144A and ... |
403-461 | 9.33e-10 | |||
Rcat domain found in the RNF144 protein subfamily; The RNF144 subfamily includes RNF144A and RNF144B, which are transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligases. RNF144A, also called UbcM4-interacting protein 4 (UIP4), or ubiquitin-conjugating enzyme 7-interacting protein 4, targets DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and thus promotes DNA damage-induced cell apoptosis. It is transcriptionally repressed by metastasis-associated protein 1 (MTA1) and inhibits MTA1-driven cancer cell migration and invasion. RNF144B, also called PIR2, IBR domain-containing protein 2 (IBRDC2), or p53-inducible RING finger protein (p53RFP), induces p53-dependent but caspase-independent apoptosis. It interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8, but not with UbcH5. It is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, suggesting a role in switching a cell from p53-mediated growth arrest to apoptosis. Moreover, RNF144B regulates the levels of Bax, a pro-apoptotic protein from the Bcl-2 family, and protects cells from unprompted Bax activation and cell death. It also regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63. Both RNF144A and RNF144B contain an RBR domain followed by a potential single-TM domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of the RNF144 protein subfamily that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439013 Cd Length: 70 Bit Score: 54.74 E-value: 9.33e-10
|
|||||||
Rcat_RBR_ARI1-like | cd22586 | Rcat domain found in E3 ubiquitin-protein ligase ARI1 and similar proteins; This subfamily ... |
401-446 | 1.02e-09 | |||
Rcat domain found in E3 ubiquitin-protein ligase ARI1 and similar proteins; This subfamily contains probable RBR-type E3 ubiquitin-protein ligases (EC 2.3.2.31) including Arabidopsis thaliana ARI1, ARI2, and ARI3. They may function as part of E3 complexes, which accept ubiquitin from E2 ubiquitin-conjugating enzymes and then transfer it to substrates. Members of this subfamily contain an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of ARI1-like proteins that are essential for RBR E3 ligase activity and adopt the same fold as the BRcat domain. Pssm-ID: 439037 Cd Length: 54 Bit Score: 54.08 E-value: 1.02e-09
|
|||||||
Rcat_RBR_HHARI-like | cd20356 | Rcat domain found in human homolog of Drosophila Ariadne (HHARI) and similar proteins; This ... |
397-436 | 1.41e-09 | |||
Rcat domain found in human homolog of Drosophila Ariadne (HHARI) and similar proteins; This subfamily includes Drosophila melanogaster protein ariadne-1 (ARI-1), and its eukaryotic homologs, such as HHARI. ARI-1 is a widely expressed Drosophila RING-finger protein that localizes mainly in the cytoplasm, and is required for neural development. It interacts with the ubiquitin-conjugating enzyme, UbcD10. HHARI is also called H7-AP2, monocyte protein 6 (MOP-6), protein ariadne-1 homolog, Ariadne RBR E3 ubiquitin protein ligase 1 (ARIH1), ariadne-1 (ARI-1), UbcH7-binding protein, UbcM4-interacting protein, or ubiquitin-conjugating enzyme E2-binding protein. It is an RBR-type E3 ubiquitin-protein ligase highly expressed in nuclei, where it is co-localized with nuclear bodies including Cajal, PML, and Lewy bodies. It interacts with the E2 conjugating enzymes UbcH7, UbcH8, UbcM4 and UbcD10 in human, mouse and fly, and modulates the ubiquitylation of substrate proteins including single-minded 2 (SIM2) and translation initiation factor 4E homologous protein (4EHP). It functions as a potent mediator of DNA damage-induced translation arrest, which protects stem and cancer cells against genotoxic stress by initiating a 4EHP-mediated mRNA translation arrest. HHARI contains an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of HHARI and similar proteins that are essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439017 Cd Length: 58 Bit Score: 53.90 E-value: 1.41e-09
|
|||||||
Rcat_RBR_ARI7-like | cd22583 | Rcat domain found in E3 ubiquitin-protein ligase ARI7 and similar proteins; This subfamily ... |
401-436 | 1.59e-09 | |||
Rcat domain found in E3 ubiquitin-protein ligase ARI7 and similar proteins; This subfamily contains probable RBR-type E3 ubiquitin-protein ligases (EC 2.3.2.31) including Arabidopsis thaliana ARI5, ARI6, ARI7, and ARI8, as well as Dictyostelium discoideum RbrA (also called Ariadne-like ubiquitin ligase). They may function as part of E3 complexes, which accept ubiquitin from E2 ubiquitin-conjugating enzymes and then transfer it to substrates. RbrA may be required for normal cell-type proportioning and cell sorting during multicellular development, and is also necessary for spore cell viability. Members of this subfamily contain an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of ARI7-like proteins that are essential for RBR E3 ligase activity and adopt the same fold as the BRcat domain. Pssm-ID: 439034 Cd Length: 55 Bit Score: 53.61 E-value: 1.59e-09
|
|||||||
RING-HC_RAD5 | cd23131 | RING finger, HC subclass, found in radiation sensitivity protein 5 (RAD5) and similar proteins; ... |
221-269 | 4.40e-08 | |||
RING finger, HC subclass, found in radiation sensitivity protein 5 (RAD5) and similar proteins; RAD5, also known as revertibility protein 2 (REV2), or DNA repair protein RAD5, is a probable helicase, and a member of the UBC2/RAD6 epistasis group. It functions with the DNA repair protein RAD18 in error-free postreplication DNA repair. It is involved in the maintenance of wild-type rates of instability of simple repetitive sequences such as poly(GT) repeats. It may also be involved in maintaining a balance which acts in favor of error-prone non-homologous joining during DNA double-strand breaks repairs. It recruits the UBC13-MMS2 dimer to chromatin for DNA repair. RAD5 contains a typical C3HC4-type RING-HC finger. Pssm-ID: 438493 [Multi-domain] Cd Length: 65 Bit Score: 49.75 E-value: 4.40e-08
|
|||||||
Rcat_RBR_RNF144B | cd20369 | Rcat domain found in RING finger protein 144B (RNF144B); RNF144B, also called PIR2, IBR ... |
403-461 | 7.00e-08 | |||
Rcat domain found in RING finger protein 144B (RNF144B); RNF144B, also called PIR2, IBR domain-containing protein 2 (IBRDC2), or p53-inducible RING finger protein (p53RFP), is a transmembrane (TM) domain-containing RBR E3 ubiquitin-protein ligase that induces p53-dependent but caspase-independent apoptosis. It interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8, but not with UbcH5. It is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, suggesting a role in switching a cell from p53-mediated growth arrest to apoptosis. Moreover, RNF144B regulates the levels of Bax, a pro-apoptotic protein from the Bcl-2 family, and protects cells from unprompted Bax activation and cell death. It also regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63. RNF144B contains an RBR domain followed by a potential single-TM domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of RNF144B that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439030 Cd Length: 71 Bit Score: 49.64 E-value: 7.00e-08
|
|||||||
Rcat_RBR_RNF19 | cd20355 | Rcat domain found in the RING finger protein 19 (RNF19) subfamily; This subfamily includes ... |
403-439 | 1.58e-07 | |||
Rcat domain found in the RING finger protein 19 (RNF19) subfamily; This subfamily includes RING finger protein RNF19A and RNF19B, which are transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligases. RNF19A, also called double ring-finger protein (Dorfin) or p38, localizes to the ubiquitylated inclusions in Parkinson's disease (PD), dementia with Lewy bodies (LBs), multiple system atrophy, and amyotrophic lateral sclerosis (ALS). It interacts with Psmc3, a protein component of the 19S regulatory cap of the 26S proteasome, and further participates in the ubiquitin-proteasome system in acrosome biogenesis, spermatid head shaping, and development of the head-tail coupling apparatus and tail. It modulates the ubiquitination and degradation of calcium-sensing receptor (CaR), which may contribute to a general mechanism for CaR quality control during biosynthesis. Moreover, RNF19A can also ubiquitylate mutant superoxide dismutase 1 (SOD1), the causative gene of familial ALS. It may associate with the endoplasmic reticulum-associated degradation (ERAD) pathway, which is related to the pathogenesis of neurodegenerative disorders, such as PD or Alzheimer's disease. It is also involved in the pathogenic process of PD and LB formation by ubiquitylation of synphilin-1. RNF19B, also called IBR domain-containing protein 3, or natural killer (NK) lytic-associated molecule (NKLAM), plays a role in controlling tumor dissemination and metastasis. It is involved in the cytolytic function of NK cells and cytotoxic T lymphocytes (CTLs). It interacts with ubiquitin conjugates UbcH7 and UbcH8, and ubiquitinates uridine kinase like-1 protein, targeting it for degradation. RNF19B is a novel component of macrophage phagosomes and plays a role in macrophage anti-bacterial activity. It functions as a novel modulator of macrophage inducible nitric oxide synthase (iNOS) expression. Both RNF19A and RNF19B contain an RBR domain followed by three TMs. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of the RNF19 subfamily that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439016 Cd Length: 69 Bit Score: 48.25 E-value: 1.58e-07
|
|||||||
Rcat_RBR_CUL9 | cd20359 | Rcat domain found in cullin-9 (CUL-9) and similar proteins; CUL-9, also called ... |
402-437 | 2.78e-07 | |||
Rcat domain found in cullin-9 (CUL-9) and similar proteins; CUL-9, also called UbcH7-associated protein 1 (H7-AP1), p53-associated parkin-like cytoplasmic protein, or PARC, is a cytoplasmic RBR-type E3 ubiquitin-protein ligase that function as a tumor suppressor and promotes p53-dependent apoptosis. It mediates the ubiquitination and degradation of cytosolic cytochrome c to promote survival in neurons and cancer cells. It is also a critical downstream effector of the 3M complex in the maintenance of microtubules and genome integrity. Moreover, CUL-9, together with CUL-7, forms homodimers and heterodimers, as well as some atypical cullin RING ligase complexes, which may exhibit ubiquitin ligase activity. CUL-9 contains a CPH domain (conserved in Cul7, PARC, and HERC2 proteins), a DOC (DOC1/APC10) domain, cullin homology domains linked with E3 ligase function, and a C-terminal RBR domain previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of CUL-9 that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439020 Cd Length: 58 Bit Score: 47.24 E-value: 2.78e-07
|
|||||||
mRING-HC-C4C4_RBR_RNF144 | cd16632 | Modified RING finger, HC subclass (C4C4-type), found in RNF144 proteins; This group includes ... |
219-271 | 8.29e-07 | |||
Modified RING finger, HC subclass (C4C4-type), found in RNF144 proteins; This group includes RNF144A and RNF144B, both of which are transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligases. RNF144A, also known as UbcM4-interacting protein 4 (UIP4) or ubiquitin-conjugating enzyme 7-interacting protein 4, targets DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and thus promote DNA damage-induced cell apoptosis. It is transcriptionally repressed by metastasis-associated protein 1 (MTA1) and inhibits MTA1-driven cancer cell migration and invasion. RNF144B, also known as PIR2, IBR domain-containing protein 2 (IBRDC2), or p53-inducible RING finger protein (p53RFP), induces p53-dependent but caspase-independent apoptosis. It interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8, but not with UbcH5. It is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, suggesting a role in switching a cell from p53-mediated growth arrest to apoptosis. Moreover, RNF144B regulates the levels of Bax, a pro-apoptotic protein from the Bcl-2 family, and protects cells from unprompted Bax activation and cell death. It also regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63. Both RNF144A and RNF144B contain an RBR domain followed by a potential single-TM domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C4C4-type RING finger whose overall folding is similar to that of the C3HC4-type RING-HC finger. It is required for RBR-mediated ubiquitination. Pssm-ID: 438294 Cd Length: 53 Bit Score: 45.80 E-value: 8.29e-07
|
|||||||
Rcat_RBR_parkin | cd20357 | Rcat domain found in parkin and similar proteins; Parkin, also called Parkinson juvenile ... |
398-434 | 1.25e-06 | |||
Rcat domain found in parkin and similar proteins; Parkin, also called Parkinson juvenile disease protein 2, is an RBR-type E3 ubiquitin-protein ligase that is associated with recessive early onset Parkinson's disease (PD), and exerts a protective effect against dopamine-induced alpha-synuclein-dependent cell toxicity. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Parkin functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins, such as BCL2, SYT11, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPT5, TOMM20, USP30, ZNF746, and AIMP2. It mediates monoubiquitination as well as Lys6-, Lys11-, Lys48- and Lys63-linked polyubiquitination of substrates depending on the context. Parkin may enhance cell viability and protects dopaminergic neurons from oxidative stress-mediated death by regulating mitochondrial function. It also limits the production of reactive oxygen species (ROS), and regulates cyclin-E during neuronal apoptosis. Moreover, parkin displays a ubiquitin ligase-independent function in transcriptional repression of p53. Parkin contains an N-terminal ubiquitin-like domain and a C-terminal RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of parkin that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439018 Cd Length: 55 Bit Score: 45.46 E-value: 1.25e-06
|
|||||||
BRcat_RBR_EMI | cd20348 | BRcat domain found in early mitotic inhibitor (EMI) subfamily of F-box proteins; The EMI ... |
310-353 | 2.98e-06 | |||
BRcat domain found in early mitotic inhibitor (EMI) subfamily of F-box proteins; The EMI subfamily includes FBXO5 (EMI1) and FBXO43 (EMI2), which are anaphase-promoting-complex/cyclosome (APC/C) inhibitors that bind APC/C-CCD20 (Cell division cycle protein 20) and/or APC/C-CDH1 (CDC20 homolog 1) complexes. FBXO5, also called FBX5, or early mitotic inhibitor 1 (EMI1), acts as a regulator that inhibits the anaphase-promoting complex/cyclosome (APC/C), which controls cell cycle progression through the sequential degradation of various substrates from S phase to early mitosis. During the mitotic cell cycle, it plays a role as both substrate and inhibitor of the APC-FZR1 complex. During G1 phase, it plays a role as substrate of the APC-FZR1 complex E3 ligase. FBXO43, also called FBX43, or endogenous meiotic inhibitor 2 (EMI2), plays a key role during the meiotic cell cycle. It is required to establish and maintain the arrest of oocytes at the second meiotic metaphase until fertilization. It probably acts by inhibiting the APC/C ubiquitin ligase. It may recognize and bind to some phosphorylated proteins and promote their ubiquitination and degradation. Both FBXO5 and FBXO43 contain an F-box domain, and the first half of the RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the BRcat domain of the EMI subfamily that adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. Pssm-ID: 439009 Cd Length: 51 Bit Score: 44.27 E-value: 2.98e-06
|
|||||||
Rcat_RBR_RNF217 | cd20350 | Rcat domain found in RING finger protein 217 (RNF217); RNF217, also called IBR ... |
400-434 | 3.65e-06 | |||
Rcat domain found in RING finger protein 217 (RNF217); RNF217, also called IBR domain-containing protein 1 (IBRDC1), is a transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligase, with different splice variants, that is mainly expressed in testis and skeletal muscle. It interacts with the anti-apoptotic protein HAX1, and is adjacent to a translocation breakpoint involving ETV6 in childhood acute lymphoblastic leukemia (ALL). RNF217 contains an RBR domain followed by TMs. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of RNF217 that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439011 Cd Length: 68 Bit Score: 44.27 E-value: 3.65e-06
|
|||||||
Rcat_RBR_RNF144A | cd20368 | Rcat domain found in RING finger protein 144A (RNF144A); RNF144A, also called ... |
403-461 | 7.68e-06 | |||
Rcat domain found in RING finger protein 144A (RNF144A); RNF144A, also called UbcM4-interacting protein 4 (UIP4), or ubiquitin-conjugating enzyme 7-interacting protein 4, is a transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligase that targets DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and thus promotes DNA damage-induced cell apoptosis. It is transcriptionally repressed by metastasis-associated protein 1 (MTA1) and inhibits MTA1-driven cancer cell migration and invasion. RNF144A contains an RBR domain followed by a potential single-TM domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of RNF144A that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439029 Cd Length: 76 Bit Score: 43.86 E-value: 7.68e-06
|
|||||||
Rcat_RBR_RNF216 | cd20353 | Rcat domain found in RING finger protein 216 (RNF216); RNF216, also called Triad ... |
405-447 | 1.03e-05 | |||
Rcat domain found in RING finger protein 216 (RNF216); RNF216, also called Triad domain-containing protein 3 (Triad3A), ubiquitin-conjugating enzyme 7-interacting protein 1, or zinc finger protein inhibiting NF-kappa-B (ZIN), is an RBR-type E3 ubiquitin-protein ligase that interacts with several components of the Toll-like receptor (TLR) signaling and promotes their proteolytic degradation. It negatively regulates the RIG-I RNA sensing pathway through Lys48-linked, ubiquitin-mediated degradation of the tumor necrosis factor receptor-associated factor 3 (TRAF3) adapter following RNA virus infection. It also controls ubiquitination and proteasomal degradation of receptor-interacting protein 1 (RIP1), a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappa B activation, following disruption of Hsp90 binding. Moreover, RNF216 is involved in inflammatory diseases by strongly inhibiting autophagy in macrophages. It interacts with and ubiquitinates BECN1, a key regulator in autophagy, thereby contributing to BECN1 degradation. It regulates synaptic strength by ubiquitination of Arc, resulting in its rapid proteasomal degradation. It is also a key negative regulator of sustained 2DL4/KIR2DL4 (killer cell Ig-like receptor with two Ig-like domains and a long cytoplasmic domain 4)-mediated NF-kappaB signaling from internalized 2DL4, which functions by promoting ubiquitylation and degradation of endocytosed receptor from early endosomes. Furthermore, RNF216 interacts with human immunodeficiency virus type 1 (HIV-1) virion infectivity factor (Vif) protein, which is essential for the productive infection of primary human CD4 T lymphocytes and macrophages. Mutations in RNF216 may result in Gordon Holmes syndrome, a condition defined by hypogonadotropic hypogonadism and cerebellar ataxia, as well as in autosomal recessive Huntington-like disorder. RNF216 contains an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. The family corresponds to the Rcat domain of RNF216 that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439014 Cd Length: 57 Bit Score: 43.00 E-value: 1.03e-05
|
|||||||
RING-HC_RBR_HEL2-like | cd16625 | RING finger, HC subclass, found in Saccharomyces cerevisiae histone E3 ligase 2 (HEL2) and ... |
219-276 | 1.89e-05 | |||
RING finger, HC subclass, found in Saccharomyces cerevisiae histone E3 ligase 2 (HEL2) and similar proteins; HEL2 is an E3 ubiquitin-protein ligase that interacts with the E2 ubiquitin-conjugating enzyme UBC4 and histones H3 and H4. It plays an important role in regulating histone protein levels and also likely to contribute to the maintenance of genomic stability in the budding yeast. HEL2 can be phosphorylated by the DNA damage checkpoint kinase and histone protein regulator Rad53. This subfamily also includes Schizosaccharomyces pombe histone E3 ligase 1 (HEL1), also known as DNA-break-localizing protein 4 (dbl4), and Dictyostelium discoideum Ariadne-like ubiquitin ligase (RbrA). RbrA may act as an E3 ubiquitin-protein ligase that appears to be required for normal cell-type proportioning and cell sorting during multicellular development, and is also necessary for spore cell viability. Members of this subfamily contain an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. Pssm-ID: 438287 Cd Length: 57 Bit Score: 41.98 E-value: 1.89e-05
|
|||||||
RING-HC_SpRad8-like | cd16572 | RING finger, HC subclass, found in Schizosaccharomyces pombe DNA repair protein Rad8 (SpRad8) ... |
221-269 | 3.91e-05 | |||
RING finger, HC subclass, found in Schizosaccharomyces pombe DNA repair protein Rad8 (SpRad8) and similar proteins; SpRad8 is a conserved protein homologous to Saccharomyces cerevisiae DNA repair protein Rad5 and human helicase-like transcription factor (HLTF) that is required for error-free postreplication repair by contributing to polyubiquitylation of PCNA. SpRad8 contains a C3HC4-type RING-HC finger responsible for the E3 ubiquitin ligase activity, a SNF2-family helicase domain including an ATP binding site, and a family-specific HIRAN domain (HIP116, Rad5p N-terminal domain) that contributes to nuclear localization. Pssm-ID: 438234 [Multi-domain] Cd Length: 61 Bit Score: 41.34 E-value: 3.91e-05
|
|||||||
RING-HC_ARI6-like | cd23141 | RING finger, HC subclass, found in Arabidopsis thaliana protein ariadne homolog 6 (ARI6) and ... |
219-275 | 5.90e-05 | |||
RING finger, HC subclass, found in Arabidopsis thaliana protein ariadne homolog 6 (ARI6) and similar proteins; This subfamily includes ARI6 and ARI11. They might act as E3 ubiquitin-protein ligases, or as part of E3 complexes, which accept ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfer it to substrates. Members of this subfamily contain a typical C3HC4-type RING-HC finger. Pssm-ID: 438503 [Multi-domain] Cd Length: 62 Bit Score: 40.93 E-value: 5.90e-05
|
|||||||
BRcat_RBR | cd20335 | BRcat (benign-catalytic) domain, part of the RBR (RING1-BRcat-Rcat) domain; The RBR family of ... |
305-352 | 6.14e-05 | |||
BRcat (benign-catalytic) domain, part of the RBR (RING1-BRcat-Rcat) domain; The RBR family of RING-type E3 ligases are characterized by containing an RBR domain, which was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. It is composed of an extended RING domain (RING1) followed by an in-between RING (IBR) domain and the catalytic domain, which is structurally an IBR domain but is commonly designated as RING2. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently, where the IBR and RING2 domains have been renamed as BRcat and Rcat domains, respectively. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. The BRcat domain adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. RBR family members play roles in protein quality control and can indirectly regulate transcription. Evidence suggests that RBR proteins are often parts of cullin-containing ubiquitin ligase complexes. The model corresponds to the BRcat domain. Pssm-ID: 438996 Cd Length: 53 Bit Score: 40.60 E-value: 6.14e-05
|
|||||||
Rcat_RBR_unk | cd22584 | Rcat domain found in an uncharacterized subfamily of RBR proteins; This subfamily contains ... |
403-434 | 8.48e-05 | |||
Rcat domain found in an uncharacterized subfamily of RBR proteins; This subfamily contains uncharacterized members of the RBR family, including Arabidopsis thaliana mutator-like transposase and hypothetical protein At2g19610/F3P11.21. The RBR family of RING-type E3 ligases are characterized by containing a RBR domain, which was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. It is composed of an extended RING domain (RING1) followed by an in-between RING (IBR) domain and the catalytic domain, which is structurally an IBR domain but is commonly designated RING2. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently, where the IBR and RING2 domains have been renamed as BRcat and Rcat domains, respectively. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. RBR family members play roles in protein quality control and can indirectly regulate transcription. Evidence suggests that RBR proteins are often parts of cullin-containing ubiquitin ligase complexes. This model corresponds to the Rcat domain that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439035 Cd Length: 37 Bit Score: 39.52 E-value: 8.48e-05
|
|||||||
RWD_GCN2 | cd23823 | RWD domain of eIF-2-alpha kinase GCN2 and related proteins; GCN2 (EC 2.7.11.1), also called ... |
7-132 | 1.00e-04 | |||
RWD domain of eIF-2-alpha kinase GCN2 and related proteins; GCN2 (EC 2.7.11.1), also called eukaryotic translation initiation factor 2-alpha kinase 4 (EIF2AK4), acts as a metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability. It also plays a role in modulating the adaptive immune response to yellow fever virus infection and promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation. Pssm-ID: 467659 Cd Length: 117 Bit Score: 41.82 E-value: 1.00e-04
|
|||||||
zf-RING_5 | pfam14634 | zinc-RING finger domain; |
221-256 | 2.04e-04 | |||
zinc-RING finger domain; Pssm-ID: 434085 [Multi-domain] Cd Length: 43 Bit Score: 38.95 E-value: 2.04e-04
|
|||||||
BRcat_Rcat_RBR | cd14799 | BRcat (benign-catalytic) and Rcat (required-for-catalysis) domains, part of the RBR ... |
401-436 | 5.66e-04 | |||
BRcat (benign-catalytic) and Rcat (required-for-catalysis) domains, part of the RBR (RING1-BRcat-Rcat) domain; The RBR family of RING-type E3 ligases are characterized by containing an RBR (RING1-BRcat-Rcat) domain, which was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. It is composed of an extended RING domain (RING1) followed by an in-between RING (IBR) domain and the catalytic domain, which is structurally an IBR domain but is commonly designated as RING2. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBRs has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis), where the IBR and RING2 domains have been renamed as BRcat and Rcat domains, respectively. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. The BRcat domain adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. RBR family members play roles in protein quality control and can indirectly regulate transcription. Evidence suggests that RBR proteins are often parts of cullin-containing ubiquitin ligase complexes. Pssm-ID: 438995 Cd Length: 37 Bit Score: 37.48 E-value: 5.66e-04
|
|||||||
Rcat_RBR_RNF19B | cd20371 | Rcat domain found in RING finger protein 19B (RNF19B); RNF19B, also called IBR ... |
403-439 | 7.20e-04 | |||
Rcat domain found in RING finger protein 19B (RNF19B); RNF19B, also called IBR domain-containing protein 3, or natural killer (NK) lytic-associated molecule (NKLAM), is a transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligase that plays a role in controlling tumor dissemination and metastasis. It is involved in the cytolytic function of NK cells and cytotoxic T lymphocytes (CTLs). It interacts with ubiquitin conjugates UbcH7 and UbcH8, and ubiquitinates uridine kinase like-1 protein, targeting it for degradation. Moreover, RNF19B is a novel component of macrophage phagosomes and plays a role in macrophage anti-bacterial activity. It functions as a novel modulator of macrophage inducible nitric oxide synthase (iNOS) expression. RNF19B contains an RBR domain followed by three TMs. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of RNF19B that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439032 Cd Length: 70 Bit Score: 38.16 E-value: 7.20e-04
|
|||||||
RING-HC_RBR_HHARI | cd16626 | RING finger, HC subclass, found in human homolog of Drosophila ariadne (HHARI) and similar ... |
220-271 | 7.27e-04 | |||
RING finger, HC subclass, found in human homolog of Drosophila ariadne (HHARI) and similar proteins; This subfamily includes Drosophila melanogaster protein ariadne-1 (ARI-1), and its eukaryotic homologs, such as HHARI. ARI-1 is a widely expressed Drosophila RING-finger protein that localizes mainly in the cytoplasm and is required for neural development. It interacts with a novel ubiquitin-conjugating enzyme, UbcD10. HHARI, also known as H7-AP2, monocyte protein 6 (MOP-6), protein ariadne-1 homolog, Ariadne RBR E3 ubiquitin protein ligase 1 (ARIH1), ariadne-1 (ARI-1), UbcH7-binding protein, UbcM4-interacting protein, or ubiquitin-conjugating enzyme E2-binding protein 1, is an RBR-type E3 ubiquitin-protein ligase highly expressed in nuclei, where it is co-localized with nuclear bodies including Cajal, PML, and Lewy bodies. It interacts with the E2 conjugating enzymes UbcH7, UbcH8, UbcM4, and UbcD10 in human, mouse, and fly, and modulates the ubiquitylation of substrate proteins including single-minded 2 (SIM2) and translation initiation factor 4E homologous protein (4EHP). It functions as a potent mediator of DNA damage-induced translation arrest, which protects stem and cancer cells against genotoxic stress by initiating a 4EHP-mediated mRNA translation arrest. HHARI contains an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. Pssm-ID: 438288 Cd Length: 59 Bit Score: 37.71 E-value: 7.27e-04
|
|||||||
BRcat_RBR_TRIAD1 | cd20344 | BRcat domain found in two RING fingers and DRIL [double RING finger linked] 1 (TRIAD1); TRIAD1, ... |
309-353 | 8.04e-04 | |||
BRcat domain found in two RING fingers and DRIL [double RING finger linked] 1 (TRIAD1); TRIAD1, also called ariadne-2 (ARI-2), protein ariadne-2 homolog, Ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2), or UbcM4-interacting protein 48, is an RBR-type E3 ubiquitin-protein ligase that catalyzes the formation of polyubiquitin chains linked via lysine-48 as well as lysine-63 residues. Its auto-ubiquitylation can be catalyzed by the E2 conjugating enzyme UBCH7. TRIAD1 has been implicated in hematopoiesis, specifically in myelopoiesis, as well as in embryogenesis. It functions as a regulator of endosomal transport, and is required for the proper function of multivesicular bodies. It also acts as a novel ubiquitination target for proteasome-dependent degradation by murine double minute 2 (MDM2). As a proapoptotic protein, TRIAD1 promotes p53 activation, and inhibits MDM2-mediated p53 ubiquitination and degradation. Furthermore, TRIAD1 can inhibit the ubiquitination and proteasomal degradation of growth factor independence 1 (Gfi1), a transcriptional repressor essential for the function and development of many different hematopoietic lineages. TRIAD1 contains an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the BRcat domain of TRIAD1 that adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. Pssm-ID: 439005 Cd Length: 72 Bit Score: 38.07 E-value: 8.04e-04
|
|||||||
RWD_DRWD_ELF-like | cd11605 | RWD, DRWD, and ELF domain family; The family includes the RWD, double-RWD (DRWD), and ELF ... |
15-130 | 8.56e-04 | |||
RWD, DRWD, and ELF domain family; The family includes the RWD, double-RWD (DRWD), and ELF domains. They belong to the ubiquitin-conjugating (UBC) superfamily that represents a structural domain with an alpha-beta(4)-alpha(3) core fold. The RWD domain (named after three major RWD-containing proteins: RING finger, WD-repeat-containing proteins and DEXD-like helicases) mediates protein-protein interactions in a variety of pathways in eukaryotes. The DRWD domain is responsible for substrate binding. It is involved in interactions with other kinetochore proteins. The ELF (N-terminal E2-like fold) domain is found in all Fanconi anemia group L protein (FANCL) homologs. It is required to promote efficient DNA damage-induced FANCD2 (Fanconi anemia group D2 protein) monoubiquitination in vertebrate cells. Pssm-ID: 467641 Cd Length: 94 Bit Score: 38.70 E-value: 8.56e-04
|
|||||||
BRcat_RBR_FBXO43 | cd20365 | BRcat domain found in F-box only protein 43 (FBXO43); FBXO43, also called FBX43 or endogenous ... |
310-351 | 8.80e-04 | |||
BRcat domain found in F-box only protein 43 (FBXO43); FBXO43, also called FBX43 or endogenous meiotic inhibitor 2 (EMI2), plays a key role during the meiotic cell cycle. It is required to establish and maintain the arrest of oocytes at the second meiotic metaphase until fertilization. It probably acts by inhibiting the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. It may recognize and bind to some phosphorylated proteins and promotes their ubiquitination and degradation. FBXO43 contains an F-box domain, and the first half of the RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the BRcat (benign-catalytic) domain that adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. Pssm-ID: 439026 Cd Length: 51 Bit Score: 37.08 E-value: 8.80e-04
|
|||||||
mRING-HC-C4C4_RBR_RNF144A | cd16777 | Modified RING finger, HC subclass (C4C4-type), found in RING finger protein 144A (RNF144A); ... |
221-271 | 1.26e-03 | |||
Modified RING finger, HC subclass (C4C4-type), found in RING finger protein 144A (RNF144A); RNF144A, also known as UbcM4-interacting protein 4 (UIP4) or ubiquitin-conjugating enzyme 7-interacting protein 4, is a transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligase that targets DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and thus promotes DNA damage-induced cell apoptosis. It is transcriptionally repressed by metastasis-associated protein 1 (MTA1) and inhibits MTA1-driven cancer cell migration and invasion. RNF144A contains an RBR domain followed by a potential single-TM domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C4C4-type RING finger whose overall folding is similar to that of the C3HC4-type RING-HC finger. It is responsible for the interaction of E2-conjugating enzymes UbcH7 and UbcH8. Pssm-ID: 438433 Cd Length: 55 Bit Score: 36.88 E-value: 1.26e-03
|
|||||||
mRING-HC-C4C4_RBR_HOIP | cd16631 | Modified RING finger, HC subclass (C4C4-type), found in HOIL-1-interacting protein (HOIP) and ... |
221-267 | 1.28e-03 | |||
Modified RING finger, HC subclass (C4C4-type), found in HOIL-1-interacting protein (HOIP) and similar proteins; HOIP, also known as RING finger protein 31 (RNF31) or zinc in-between-RING-finger ubiquitin-associated domain protein, together with HOIL-1 and SHARPIN, forms the E3-ligase complex (also known as linear-ubiquitin-chain assembly complex LUBAC) that regulates NF-kappaB activity and apoptosis. It also interacts with the atypical mammalian orphan receptor DAX-1, trigger DAX-1 ubiquitination and stabilization, and participate in repressing steroidogenic gene expression. HOIP contains three Npl4 zinc fingers, a central ubiquitin-associated (UBA) domain responsible for the interaction with the N-terminal ubiquitin-like domain (UBL) of HOIL-1L, an RBR domain, and a C-terminal linear chain determining domain (LDD). The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C4C4-type RING finger motif whose overall folding is similar to that of the C3HC4-type RING-HC finger. It is required for RBR-mediated ubiquitination. Pssm-ID: 438293 Cd Length: 54 Bit Score: 36.87 E-value: 1.28e-03
|
|||||||
Rcat_RBR_RNF19A | cd20370 | Rcat domain found in RING finger protein 19A (RNF19A); RNF19A, also called double ring-finger ... |
403-439 | 1.37e-03 | |||
Rcat domain found in RING finger protein 19A (RNF19A); RNF19A, also called double ring-finger protein (Dorfin), or p38, is a transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligase that localizes to the ubiquitylated inclusions in Parkinson's disease (PD), dementia with Lewy bodies (LBs), multiple system atrophy, and amyotrophic lateral sclerosis (ALS). It interacts with Psmc3, a protein component of the 19S regulatory cap of the 26S proteasome, and further participates in the ubiquitin-proteasome system in acrosome biogenesis, spermatid head shaping, and development of the head-tail coupling apparatus and tail. It modulates the ubiquitination and degradation of calcium-sensing receptor (CaR), which may contribute to a general mechanism for CaR quality control during biosynthesis. Moreover, RNF19A can also ubiquitylate mutant superoxide dismutase 1 (SOD1), the causative gene of familial ALS. It may associate with endoplasmic reticulum-associated degradation (ERAD) pathway, which is related to the pathogenesis of neurodegenerative disorders, such as PD or Alzheimer's disease. It is also involved in the pathogenic process of PD and LB formation by ubiquitylation of synphilin-1. RNF19A contains an RBR domain followed by three TMs. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of RNF19A that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439031 Cd Length: 74 Bit Score: 37.32 E-value: 1.37e-03
|
|||||||
zf-C3HC4 | pfam00097 | Zinc finger, C3HC4 type (RING finger); The C3HC4 type zinc-finger (RING finger) is a ... |
221-266 | 1.61e-03 | |||
Zinc finger, C3HC4 type (RING finger); The C3HC4 type zinc-finger (RING finger) is a cysteine-rich domain of 40 to 60 residues that coordinates two zinc ions, and has the consensus sequence: C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C where X is any amino acid. Many proteins containing a RING finger play a key role in the ubiquitination pathway. Pssm-ID: 395049 [Multi-domain] Cd Length: 40 Bit Score: 36.18 E-value: 1.61e-03
|
|||||||
zf-RING_2 | pfam13639 | Ring finger domain; |
221-255 | 1.65e-03 | |||
Ring finger domain; Pssm-ID: 433370 [Multi-domain] Cd Length: 44 Bit Score: 36.23 E-value: 1.65e-03
|
|||||||
BRcat_RBR_parkin | cd20340 | BRcat domain found in parkin and similar proteins; Parkin, also called Parkinson juvenile ... |
308-346 | 2.26e-03 | |||
BRcat domain found in parkin and similar proteins; Parkin, also called Parkinson juvenile disease protein 2, is an RBR-type E3 ubiquitin-protein ligase that is associated with recessive early onset Parkinson's disease (PD), and exerts a protective effect against dopamine-induced alpha-synuclein-dependent cell toxicity. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Parkin functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins, such as BCL2, SYT11, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPT5, TOMM20, USP30, ZNF746 and AIMP2. It mediates monoubiquitination as well as Lys6-, Lys11-, Lys48- and Lys63-linked polyubiquitination of substrates depending on the context. Parkin may enhance cell viability and protects dopaminergic neurons from oxidative stress-mediated death by regulating mitochondrial function. It also limits the production of reactive oxygen species (ROS), and regulates cyclin-E during neuronal apoptosis. Moreover, parkin displays a ubiquitin ligase-independent function in transcriptional repression of p53. Parkin contains an N-terminal ubiquitin-like domain and a C-terminal RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the BRcat domain of parkin that adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. Pssm-ID: 439001 Cd Length: 77 Bit Score: 36.87 E-value: 2.26e-03
|
|||||||
mRING-HC-C4C4_RBR_RNF144B | cd16778 | Modified RING finger, HC subclass (C4C4-type), found in RING finger protein 144B (RNF144B); ... |
220-272 | 2.64e-03 | |||
Modified RING finger, HC subclass (C4C4-type), found in RING finger protein 144B (RNF144B); RNF144B, also known as PIR2, IBR domain-containing protein 2 (IBRDC2), or p53-inducible RING finger protein (p53RFP), is a transmembrane (TM) domain-containing RBR (RING1-IBR-RING2) E3 ubiquitin-protein ligase that induces p53-dependent, but caspase-independent apoptosis. It interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8, but not with UbcH5. It is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, suggesting a role in switching a cell from p53-mediated growth arrest to apoptosis. Moreover, RNF144B regulates the levels of Bax, a pro-apoptotic protein from the Bcl-2 family, and protects cells from unprompted Bax activation and cell death. It also regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63. RNF144B contains an RBR domain followed by a potential single-TM domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C4C4-type RING finger whose overall folding is similar to that of the C3HC4-type RING-HC finger. It is required for RBR-mediated ubiquitination. Pssm-ID: 438434 Cd Length: 57 Bit Score: 35.96 E-value: 2.64e-03
|
|||||||
RING-HC_RBR_RNF19 | cd16629 | RING finger, HC subclass, found in the family of RING finger proteins RNF19A, RNF19B and ... |
221-277 | 3.98e-03 | |||
RING finger, HC subclass, found in the family of RING finger proteins RNF19A, RNF19B and similar proteins; The family includes RING finger protein RNF19A and RNF19B, both of which are transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligases. RNF19A, also known as double ring-finger protein (Dorfin) or p38, localizes to the ubiquitylated inclusions in Parkinson's disease (PD), dementia with Lewy bodies, multiple system atrophy, and amyotrophic lateral sclerosis (ALS). It interacts with Psmc3, a protein component of the 19S regulatory cap of the 26S proteasome, and further participates in the ubiquitin-proteasome system in acrosome biogenesis, spermatid head shaping, and development of the head-tail coupling apparatus and tail. It modulates the ubiquitination and degradation of calcium-sensing receptor (CaR), which may contribute to a general mechanism for CaR quality control during biosynthesis. Moreover, RNF19A can also ubiquitylate mutant superoxide dismutase 1 (SOD1), the causative gene of familial ALS. It may associate with endoplasmic reticulum-associated degradation (ERAD) pathway, which is related to the pathogenesis of neurodegenerative disorders, such as PD or Alzheimer's disease. RNF19B, also known as IBR domain-containing protein 3 or natural killer lytic-associated molecule (NKLAM), plays a role in controlling tumor dissemination and metastasis. It is involved in the cytolytic function of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). It interacts with ubiquitin conjugates UbcH7 and UbcH8, and ubiquitinates uridine kinase like-1 (URKL-1) protein, targeting it for degradation. Moreover, RNF19B is a novel component of macrophage phagosomes and plays a role in macrophage anti-bacterial activity. It functions as a novel modulator of macrophage inducible nitric oxide synthase (iNOS) expression. Both RNF19A and RNF19B contain an RBR domain followed by three TMs. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. Pssm-ID: 438291 [Multi-domain] Cd Length: 56 Bit Score: 35.50 E-value: 3.98e-03
|
|||||||
BRcat_RBR_RNF144 | cd20349 | BRcat domain found in the RNF144 protein subfamily; The RNF144 subfamily includes RNF144A and ... |
309-351 | 5.37e-03 | |||
BRcat domain found in the RNF144 protein subfamily; The RNF144 subfamily includes RNF144A and RNF144B, which are transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligases. RNF144A, also called UbcM4-interacting protein 4 (UIP4), or ubiquitin-conjugating enzyme 7-interacting protein 4, targets DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and thus promotes DNA damage-induced cell apoptosis. It is transcriptionally repressed by metastasis-associated protein 1 (MTA1) and inhibits MTA1-driven cancer cell migration and invasion. RNF144B, also called PIR2, IBR domain-containing protein 2 (IBRDC2), or p53-inducible RING finger protein (p53RFP), induces p53-dependent but caspase-independent apoptosis. It interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8, but not with UbcH5. It is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, suggesting a role in switching a cell from p53-mediated growth arrest to apoptosis. Moreover, RNF144B regulates the levels of Bax, a pro-apoptotic protein from the Bcl-2 family, and protects cells from unprompted Bax activation and cell death. It also regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63. Both RNF144A and RNF144B contain an RBR domain followed by a potential single-TM domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the BRcat domain of the RNF144 protein subfamily that adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. Pssm-ID: 439010 Cd Length: 64 Bit Score: 35.44 E-value: 5.37e-03
|
|||||||
RING-HC_RBR_ANKIB1 | cd16774 | RING finger, HC subclass, found in ankyrin repeat and IBR domain-containing protein 1 (ANKIB1) ... |
220-272 | 5.45e-03 | |||
RING finger, HC subclass, found in ankyrin repeat and IBR domain-containing protein 1 (ANKIB1) and similar proteins; ANKIB1 is an RBR-type E3 ubiquitin-protein ligase that may function as part of an E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. It contains an N-terminal ankyrin repeat domain and an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. Pssm-ID: 438430 Cd Length: 58 Bit Score: 35.09 E-value: 5.45e-03
|
|||||||
Rcat_RBR_HOIL1 | cd20358 | Rcat domain found in heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1) and similar proteins; ... |
405-436 | 7.29e-03 | |||
Rcat domain found in heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1) and similar proteins; HOIL-1 is also called RBCK1, HOIL-1L, RanBP-type and C3HC4-type zinc finger-containing protein 1, HBV-associated factor 4, Hepatitis B virus X-associated protein 4, RING finger protein 54 (RNF54), ubiquitin-conjugating enzyme 7-interacting protein 3, or UbcM4-interacting protein 28 (UIP28). Together with the E3 ubiquitin-protein ligase RNF31 (also known as HOIP) and SHANK-associated RH domain interacting protein (SHARPIN), it forms the E3-ligase complex (also known as linear-ubiquitin-chain assembly complex LUBAC) that regulates NF-kappaB activity and apoptosis through conjugation of linear polyubiquitin chains to NF-kappaB essential modulator (also known as NEMO or IKBKG). HOIL-1 plays a crucial role in TNF-alpha-mediated NF-kappaB activation. It also functions as an ubiquitin-protein ligase E3 that interacts with not only PKCbeta but also PKCzeta. It can recognize heme-oxidized IRP2 (iron regulatory protein2) and is thought to affect the turnover of oxidatively damaged proteins. HOIL-1 contains an N-terminal ubiqutin-like (UBL) domain and an Npl4 zinc-finger (NZF) domain, which regulate the interaction with the LUBAC subunit RNF31 and ubiquitin, respectively. The NZF domain belongs to RanBP2-type zinc finger (zf-RanBP2) domain superfamily. In addition, HOIL-1 has an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been changed to RING1-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase functions to facilitate the ubiquitination reaction. This model corresponds to the Rcat domain of HOIL1 that is essential for RBR E3 ligase activity and adopts the same fold as the BRcat domain. Pssm-ID: 439019 Cd Length: 73 Bit Score: 35.42 E-value: 7.29e-03
|
|||||||
Blast search parameters | ||||
|