saccharopine dehydrogenase-like oxidoreductase isforom 1 [Mus musculus]
saccharopine dehydrogenase family protein( domain architecture ID 11461686)
saccharopine dehydrogenase family protein contains a Rossmann fold NADP-binding domain, such as vertebrate saccharopine dehydrogenase-like oxidoreductase and mycobacterial trans-acting enoyl reductase
List of domain hits
Name | Accession | Description | Interval | E-value | |||||||
COG3268 | COG3268 | Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; |
1-425 | 5.37e-80 | |||||||
Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; : Pssm-ID: 442499 [Multi-domain] Cd Length: 368 Bit Score: 251.30 E-value: 5.37e-80
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
COG3268 | COG3268 | Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; |
1-425 | 5.37e-80 | |||||||
Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; Pssm-ID: 442499 [Multi-domain] Cd Length: 368 Bit Score: 251.30 E-value: 5.37e-80
|
|||||||||||
Sacchrp_dh_NADP | pfam03435 | Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain ... |
10-149 | 1.33e-20 | |||||||
Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain of saccharopine dehydrogenase. In some organizms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase. Pssm-ID: 397480 [Multi-domain] Cd Length: 120 Bit Score: 86.88 E-value: 1.33e-20
|
|||||||||||
nat-AmDH_N_like | cd24146 | N-terminal NAD(P)-binding domain of native NAD(P)H-dependent amine dehydrogenases (nat-AmDHs) ... |
57-151 | 5.92e-04 | |||||||
N-terminal NAD(P)-binding domain of native NAD(P)H-dependent amine dehydrogenases (nat-AmDHs) and similar proteins; The family corresponds to a group of native NAD(P)H-dependent amine dehydrogenases (nat-AmDHs) that catalyze the reductive amination of ketone and aldehyde substrates using NAD(P)H as the hydride source. nat-AmDHs can naturally catalyze the amination of 'neutral' carbonyl compounds using ammonia. They possess tremendous potential for the efficient asymmetric synthesis of alpha-chiral amines. The family also contains 2,4-diaminopentanoate dehydrogenase (DAPDH) and similar proteins. DAPDH, also known as ORD, is involved in the ornithine fermentation pathway. It catalyzes the oxidative deamination of (2R,4S)-2,4-diaminopentanoate ((2R,4S)-DAP) to yield 2-amino-4-ketopentanoate (AKP). Although DAPDH is more efficient with (2R,4S)-DAP, the diastereoisomer (2R,4R)-DAP can also be metabolized. Different forms of DAPDH exist which utilize NAD(+) (EC 1.4.1.26) or NAD(+)/NADP(+) (EC 1.4.1.12). Members of this family contain an N-terminal Rossmann fold NAD(P)-binding domain and a C-terminal dimerization domain. Pssm-ID: 467616 [Multi-domain] Cd Length: 157 Bit Score: 40.22 E-value: 5.92e-04
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
COG3268 | COG3268 | Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; |
1-425 | 5.37e-80 | |||||||
Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; Pssm-ID: 442499 [Multi-domain] Cd Length: 368 Bit Score: 251.30 E-value: 5.37e-80
|
|||||||||||
Sacchrp_dh_NADP | pfam03435 | Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain ... |
10-149 | 1.33e-20 | |||||||
Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain of saccharopine dehydrogenase. In some organizms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase. Pssm-ID: 397480 [Multi-domain] Cd Length: 120 Bit Score: 86.88 E-value: 1.33e-20
|
|||||||||||
Lys9 | COG1748 | Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]; Saccharopine ... |
44-155 | 3.36e-15 | |||||||
Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]; Saccharopine dehydrogenase, NADP-dependent is part of the Pathway/BioSystem: Lysine biosynthesis Pssm-ID: 441354 [Multi-domain] Cd Length: 352 Bit Score: 76.41 E-value: 3.36e-15
|
|||||||||||
YbjT | COG0702 | Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General ... |
11-155 | 4.09e-05 | |||||||
Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General function prediction only]; Pssm-ID: 440466 [Multi-domain] Cd Length: 215 Bit Score: 44.45 E-value: 4.09e-05
|
|||||||||||
nat-AmDH_N_like | cd24146 | N-terminal NAD(P)-binding domain of native NAD(P)H-dependent amine dehydrogenases (nat-AmDHs) ... |
57-151 | 5.92e-04 | |||||||
N-terminal NAD(P)-binding domain of native NAD(P)H-dependent amine dehydrogenases (nat-AmDHs) and similar proteins; The family corresponds to a group of native NAD(P)H-dependent amine dehydrogenases (nat-AmDHs) that catalyze the reductive amination of ketone and aldehyde substrates using NAD(P)H as the hydride source. nat-AmDHs can naturally catalyze the amination of 'neutral' carbonyl compounds using ammonia. They possess tremendous potential for the efficient asymmetric synthesis of alpha-chiral amines. The family also contains 2,4-diaminopentanoate dehydrogenase (DAPDH) and similar proteins. DAPDH, also known as ORD, is involved in the ornithine fermentation pathway. It catalyzes the oxidative deamination of (2R,4S)-2,4-diaminopentanoate ((2R,4S)-DAP) to yield 2-amino-4-ketopentanoate (AKP). Although DAPDH is more efficient with (2R,4S)-DAP, the diastereoisomer (2R,4R)-DAP can also be metabolized. Different forms of DAPDH exist which utilize NAD(+) (EC 1.4.1.26) or NAD(+)/NADP(+) (EC 1.4.1.12). Members of this family contain an N-terminal Rossmann fold NAD(P)-binding domain and a C-terminal dimerization domain. Pssm-ID: 467616 [Multi-domain] Cd Length: 157 Bit Score: 40.22 E-value: 5.92e-04
|
|||||||||||
YwnB | COG2910 | Putative NADH-flavin reductase [General function prediction only]; |
9-101 | 2.15e-03 | |||||||
Putative NADH-flavin reductase [General function prediction only]; Pssm-ID: 442154 [Multi-domain] Cd Length: 205 Bit Score: 39.07 E-value: 2.15e-03
|
|||||||||||
KDSR-like_SDR_c | cd08939 | 3-ketodihydrosphingosine reductase (KDSR) and related proteins, classical (c) SDR; These ... |
9-100 | 5.02e-03 | |||||||
3-ketodihydrosphingosine reductase (KDSR) and related proteins, classical (c) SDR; These proteins include members identified as KDSR, ribitol type dehydrogenase, and others. The group shows strong conservation of the active site tetrad and glycine rich NAD-binding motif of the classical SDRs. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187643 [Multi-domain] Cd Length: 239 Bit Score: 38.39 E-value: 5.02e-03
|
|||||||||||
SDR_a5 | cd05243 | atypical (a) SDRs, subgroup 5; This subgroup contains atypical SDRs, some of which are ... |
11-100 | 7.92e-03 | |||||||
atypical (a) SDRs, subgroup 5; This subgroup contains atypical SDRs, some of which are identified as putative NAD(P)-dependent epimerases, one as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif that is very similar to the extended SDRs, GXXGXXG, and binds NADP. Generally, this subgroup has poor conservation of the active site tetrad; however, individual sequences do contain matches to the YXXXK active site motif, the upstream Ser, and there is a highly conserved Asp in place of the usual active site Asn throughout the subgroup. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187554 [Multi-domain] Cd Length: 203 Bit Score: 37.60 E-value: 7.92e-03
|
|||||||||||
Blast search parameters | ||||
|