ribosomal RNA-processing protein 7 homolog A [Homo sapiens]
List of domain hits
Name | Accession | Description | Interval | E-value | |||
RRM_Rrp7A | cd12294 | RNA recognition motif in ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar ... |
59-159 | 1.43e-55 | |||
RNA recognition motif in ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins; This subfamily corresponds to the RRM of Rrp7A, also termed gastric cancer antigen Zg14, a homolog of yeast ribosomal RNA-processing protein 7 (Rrp7p), and mainly found in Metazoa. Rrp7p is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. In contrast, the cellular function of Rrp7A remains unclear currently. Rrp7A harbors an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal Rrp7 domain. : Pssm-ID: 409735 [Multi-domain] Cd Length: 103 Bit Score: 174.43 E-value: 1.43e-55
|
|||||||
RRP7_Rrp7A | cd12951 | RRP7 domain ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins; The ... |
151-280 | 1.51e-54 | |||
RRP7 domain ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins; The family corresponds to the RRP7 domain of Rrp7A, also termed gastric cancer antigen Zg14, and similar proteins which are yeast ribosomal RNA-processing protein 7 (Rrp7p) homologs mainly found in Metazoans. The cellular function of Rrp7A remains unclear currently. Rrp7A harbors an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RRP7 domain. : Pssm-ID: 240578 [Multi-domain] Cd Length: 129 Bit Score: 172.85 E-value: 1.51e-54
|
|||||||
dRRM_Rrp7p super family | cl40585 | deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and ... |
22-88 | 6.74e-10 | |||
deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and similar proteins; Rrp7p is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Rrp7p contains a deviant RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a RRP7 domain. The classic RRM fold has a topology of beta1-alpha1-beta2-beta3-alpha2-beta4 with juxtaposed N- and C-termini. By contrast, the N-terminal region of Rrp7 displays a cyclic permutation of RRM topology: the strand equivalent to RRM beta4 is shuffled to the N-terminus of the strand equivalent to RRM beta1. Moreover, Rrp7 has an extra strand beta1, which, together with other four beta-strands, forms an antiparallel five-stranded beta-sheet. The actual alignment was detected with superfamily member cd12293: Pssm-ID: 454777 [Multi-domain] Cd Length: 105 Bit Score: 55.43 E-value: 6.74e-10
|
|||||||
Name | Accession | Description | Interval | E-value | |||
RRM_Rrp7A | cd12294 | RNA recognition motif in ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar ... |
59-159 | 1.43e-55 | |||
RNA recognition motif in ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins; This subfamily corresponds to the RRM of Rrp7A, also termed gastric cancer antigen Zg14, a homolog of yeast ribosomal RNA-processing protein 7 (Rrp7p), and mainly found in Metazoa. Rrp7p is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. In contrast, the cellular function of Rrp7A remains unclear currently. Rrp7A harbors an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal Rrp7 domain. Pssm-ID: 409735 [Multi-domain] Cd Length: 103 Bit Score: 174.43 E-value: 1.43e-55
|
|||||||
RRP7_Rrp7A | cd12951 | RRP7 domain ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins; The ... |
151-280 | 1.51e-54 | |||
RRP7 domain ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins; The family corresponds to the RRP7 domain of Rrp7A, also termed gastric cancer antigen Zg14, and similar proteins which are yeast ribosomal RNA-processing protein 7 (Rrp7p) homologs mainly found in Metazoans. The cellular function of Rrp7A remains unclear currently. Rrp7A harbors an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RRP7 domain. Pssm-ID: 240578 [Multi-domain] Cd Length: 129 Bit Score: 172.85 E-value: 1.51e-54
|
|||||||
RRP7 | pfam12923 | Ribosomal RNA-processing protein 7 (RRP7) C-terminal domain; RRP7 is an essential protein in ... |
162-280 | 8.03e-41 | |||
Ribosomal RNA-processing protein 7 (RRP7) C-terminal domain; RRP7 is an essential protein in yeast that is involved in pre-rRNA processing and ribosome assembly. It is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Pssm-ID: 432877 Cd Length: 119 Bit Score: 137.44 E-value: 8.03e-41
|
|||||||
dRRM_Rrp7p | cd12293 | deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and ... |
22-88 | 6.74e-10 | |||
deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and similar proteins; Rrp7p is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Rrp7p contains a deviant RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a RRP7 domain. The classic RRM fold has a topology of beta1-alpha1-beta2-beta3-alpha2-beta4 with juxtaposed N- and C-termini. By contrast, the N-terminal region of Rrp7 displays a cyclic permutation of RRM topology: the strand equivalent to RRM beta4 is shuffled to the N-terminus of the strand equivalent to RRM beta1. Moreover, Rrp7 has an extra strand beta1, which, together with other four beta-strands, forms an antiparallel five-stranded beta-sheet. Pssm-ID: 410983 [Multi-domain] Cd Length: 105 Bit Score: 55.43 E-value: 6.74e-10
|
|||||||
RRM | smart00360 | RNA recognition motif; |
60-135 | 4.26e-05 | |||
RNA recognition motif; Pssm-ID: 214636 [Multi-domain] Cd Length: 73 Bit Score: 41.04 E-value: 4.26e-05
|
|||||||
RRM_1 | pfam00076 | RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ... |
61-134 | 7.26e-05 | |||
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease. Pssm-ID: 425453 [Multi-domain] Cd Length: 70 Bit Score: 40.29 E-value: 7.26e-05
|
|||||||
Name | Accession | Description | Interval | E-value | |||
RRM_Rrp7A | cd12294 | RNA recognition motif in ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar ... |
59-159 | 1.43e-55 | |||
RNA recognition motif in ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins; This subfamily corresponds to the RRM of Rrp7A, also termed gastric cancer antigen Zg14, a homolog of yeast ribosomal RNA-processing protein 7 (Rrp7p), and mainly found in Metazoa. Rrp7p is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. In contrast, the cellular function of Rrp7A remains unclear currently. Rrp7A harbors an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal Rrp7 domain. Pssm-ID: 409735 [Multi-domain] Cd Length: 103 Bit Score: 174.43 E-value: 1.43e-55
|
|||||||
RRP7_Rrp7A | cd12951 | RRP7 domain ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins; The ... |
151-280 | 1.51e-54 | |||
RRP7 domain ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins; The family corresponds to the RRP7 domain of Rrp7A, also termed gastric cancer antigen Zg14, and similar proteins which are yeast ribosomal RNA-processing protein 7 (Rrp7p) homologs mainly found in Metazoans. The cellular function of Rrp7A remains unclear currently. Rrp7A harbors an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RRP7 domain. Pssm-ID: 240578 [Multi-domain] Cd Length: 129 Bit Score: 172.85 E-value: 1.51e-54
|
|||||||
RRP7_like | cd12932 | RRP7 domain ribosomal RNA-processing protein 7 (Rrp7p), ribosomal RNA-processing protein 7 ... |
151-268 | 1.29e-41 | |||
RRP7 domain ribosomal RNA-processing protein 7 (Rrp7p), ribosomal RNA-processing protein 7 homolog A (Rrp7A), and similar proteins; This CD corresponds to the RRP7 domain of Rrp7p and Rrp7A. Rrp7p is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Rrp7A, also termed gastric cancer antigen Zg14, is the Rrp7p homolog mainly found in Metazoans. The cellular function of Rrp7A remains unclear currently. Both Rrp7p and Rrp7A harbor an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RRP7 domain. Pssm-ID: 240576 [Multi-domain] Cd Length: 118 Bit Score: 139.31 E-value: 1.29e-41
|
|||||||
RRP7 | pfam12923 | Ribosomal RNA-processing protein 7 (RRP7) C-terminal domain; RRP7 is an essential protein in ... |
162-280 | 8.03e-41 | |||
Ribosomal RNA-processing protein 7 (RRP7) C-terminal domain; RRP7 is an essential protein in yeast that is involved in pre-rRNA processing and ribosome assembly. It is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Pssm-ID: 432877 Cd Length: 119 Bit Score: 137.44 E-value: 8.03e-41
|
|||||||
RRP7_Rrp7p | cd12950 | RRP7 domain ribosomal RNA-processing protein 7 (Rrp7p) and similar proteins; This CD ... |
151-275 | 5.39e-20 | |||
RRP7 domain ribosomal RNA-processing protein 7 (Rrp7p) and similar proteins; This CD corresponds to the RRP7 domain of Rrp7p. Rrp7p is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly. Rrp7p contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RRP7 domain. Pssm-ID: 240577 Cd Length: 128 Bit Score: 83.48 E-value: 5.39e-20
|
|||||||
dRRM_Rrp7p | cd12293 | deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and ... |
22-88 | 6.74e-10 | |||
deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and similar proteins; Rrp7p is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Rrp7p contains a deviant RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a RRP7 domain. The classic RRM fold has a topology of beta1-alpha1-beta2-beta3-alpha2-beta4 with juxtaposed N- and C-termini. By contrast, the N-terminal region of Rrp7 displays a cyclic permutation of RRM topology: the strand equivalent to RRM beta4 is shuffled to the N-terminus of the strand equivalent to RRM beta1. Moreover, Rrp7 has an extra strand beta1, which, together with other four beta-strands, forms an antiparallel five-stranded beta-sheet. Pssm-ID: 410983 [Multi-domain] Cd Length: 105 Bit Score: 55.43 E-value: 6.74e-10
|
|||||||
RRM1_RBM34 | cd12394 | RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; ... |
59-140 | 1.54e-09 | |||
RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM1 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein. Pssm-ID: 409828 [Multi-domain] Cd Length: 91 Bit Score: 53.75 E-value: 1.54e-09
|
|||||||
RRM_SF | cd00590 | RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ... |
61-136 | 2.88e-06 | |||
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs). Pssm-ID: 409669 [Multi-domain] Cd Length: 72 Bit Score: 44.20 E-value: 2.88e-06
|
|||||||
RRM | smart00360 | RNA recognition motif; |
60-135 | 4.26e-05 | |||
RNA recognition motif; Pssm-ID: 214636 [Multi-domain] Cd Length: 73 Bit Score: 41.04 E-value: 4.26e-05
|
|||||||
RRM_1 | pfam00076 | RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ... |
61-134 | 7.26e-05 | |||
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease. Pssm-ID: 425453 [Multi-domain] Cd Length: 70 Bit Score: 40.29 E-value: 7.26e-05
|
|||||||
RRM_II_PABPs | cd12306 | RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ... |
62-140 | 1.52e-04 | |||
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only. Pssm-ID: 409747 [Multi-domain] Cd Length: 73 Bit Score: 39.21 E-value: 1.52e-04
|
|||||||
RRM1_RBM39_like | cd12283 | RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar ... |
60-140 | 1.40e-03 | |||
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar proteins; This subfamily corresponds to the RRM1 of RNA-binding protein 39 (RBM39), RNA-binding protein 23 (RBM23) and similar proteins. RBM39 (also termed HCC1) is a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor. Pssm-ID: 409725 [Multi-domain] Cd Length: 73 Bit Score: 36.44 E-value: 1.40e-03
|
|||||||
RRM2_Prp24 | cd12297 | RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ... |
60-158 | 1.72e-03 | |||
RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM2 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation. Pssm-ID: 409738 [Multi-domain] Cd Length: 78 Bit Score: 36.59 E-value: 1.72e-03
|
|||||||
RRM3_Prp24 | cd12298 | RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ... |
59-140 | 1.85e-03 | |||
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation. Pssm-ID: 409739 [Multi-domain] Cd Length: 78 Bit Score: 36.47 E-value: 1.85e-03
|
|||||||
RRM2_RIM4_like | cd12454 | RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; ... |
58-134 | 1.94e-03 | |||
RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM2 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1. Pssm-ID: 409888 [Multi-domain] Cd Length: 80 Bit Score: 36.30 E-value: 1.94e-03
|
|||||||
RRM_Rrp7 | pfam17799 | Rrp7 RRM-like N-terminal domain; This domain corresponds to the N-terminal RNA-binding domain ... |
22-103 | 1.97e-03 | |||
Rrp7 RRM-like N-terminal domain; This domain corresponds to the N-terminal RNA-binding domain found in the Rrp7 protein. It has an RRM-like fold with a circular permutation. Pssm-ID: 436053 Cd Length: 162 Bit Score: 38.21 E-value: 1.97e-03
|
|||||||
RRM_Vip1 | cd12268 | RNA recognition motif (RRM) found in fission yeast protein Vip1 and similar proteins; This ... |
61-144 | 2.49e-03 | |||
RNA recognition motif (RRM) found in fission yeast protein Vip1 and similar proteins; This subfamily corresponds to Vip1, an RNA-binding protein encoded by gene vip1 from fission yeast Schizosaccharomyces pombe. Its biological role remains unclear. Vip1 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Pssm-ID: 240714 [Multi-domain] Cd Length: 68 Bit Score: 35.97 E-value: 2.49e-03
|
|||||||
RRM_Vip1_like | cd12269 | RNA recognition motif (RRM) found in a group of uncharacterized plant proteins similar to ... |
63-141 | 2.67e-03 | |||
RNA recognition motif (RRM) found in a group of uncharacterized plant proteins similar to fission yeast Vip1; This subfamily corresponds to the Vip1-like, uncharacterized proteins found in plants. Although their biological roles remain unclear, these proteins show high sequence similarity to the fission yeast Vip1. Like Vip1 protein, members in this family contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Pssm-ID: 409712 [Multi-domain] Cd Length: 69 Bit Score: 35.59 E-value: 2.67e-03
|
|||||||
RRM3_PTBPH3 | cd12698 | RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 3 ... |
58-116 | 4.29e-03 | |||
RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subgroup corresponds to the RRM3 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Pssm-ID: 410098 [Multi-domain] Cd Length: 76 Bit Score: 35.41 E-value: 4.29e-03
|
|||||||
RRM_SRSF11_SREK1 | cd12259 | RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 11 (SRSF11), ... |
63-141 | 5.70e-03 | |||
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 11 (SRSF11), splicing regulatory glutamine/lysine-rich protein 1 (SREK1) and similar proteins; This subfamily corresponds to the RRM domain of SRSF11 (SRp54 or p54), SREK1 ( SFRS12 or SRrp86) and similar proteins, a group of proteins containing regions rich in serine-arginine dipeptides (SR protein family). These are involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. SR proteins have been identified as crucial regulators of alternative splicing. Different SR proteins display different substrate specificity, have distinct functions in alternative splicing of different pre-mRNAs, and can even negatively regulate splicing. All SR family members are characterized by the presence of one or two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and the C-terminal regions rich in serine and arginine dipeptides (SR domains). The RRM domain is responsible for RNA binding and specificity in both alternative and constitutive splicing. In contrast, SR domains are thought to be protein-protein interaction domains that are often interchangeable. Pssm-ID: 409704 [Multi-domain] Cd Length: 76 Bit Score: 34.99 E-value: 5.70e-03
|
|||||||
Blast search parameters | ||||
|