NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|42822887|ref|NP_002027|]
View 

atypical chemokine receptor 1 isoform b [Homo sapiens]

Protein Classification

G protein-coupled receptor family protein; olfactory receptor( domain architecture ID 11606633)

G protein-coupled receptor family protein is a seven-transmembrane G protein-coupled receptor (7TM-GPCR) family protein which typically transmits an extracellular signal into the cell by the conformational rearrangement of the 7TM helices and by the subsequent binding and activation of an intracellular heterotrimeric G protein; GPCR ligands include light-sensitive compounds, odors, pheromones, hormones, and neurotransmitters; olfactory receptor plays a central role in olfaction or the sense of smell, similar to human family 6 olfactory receptors; belongs to the class A rhodopsin-like family of G protein-coupled receptors; binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf)

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
7tmA_ACKR1_DARC cd15010
Duffy antigen receptor for chemokines, member of the class A family of seven-transmembrane G ...
60-316 6.59e-115

Duffy antigen receptor for chemokines, member of the class A family of seven-transmembrane G protein-coupled receptors; Atypical chemokine receptor 1 (ACKR1), also known as DARC (Duffy antigen receptor for chemokines) or Fy glycoprotein (GpFy), was originally identified on erythrocytes. ACKR1 is also ubiquitously expressed by endothelial cells of venules and is highly promiscuous among all chemokine receptor. It binds many proinflammatory chemokines from both the CC and CXC subfamilies, including CCL2, CCL5, CCL7, CCL11, CXCL1, CXCL2, CXCL3, and CXCL5. Erythrocyte ACKR1 is thought to act as a chemokine sink, limiting the levels of circulating chemokines, thereby controlling leukocyte activation. ACKR1-deficient erythrocytes are shown to confer resistance to the malarial parasite, Plasmodium vivax. On the other hand, ACKR1-expressing endothelial cells can internalize chemokines. ACKR1-internalized chemokines can be moved intact across the endothelium and promotes neutrophil transmigration. Unlike the classical chemokine receptors that contain a conserved DRYLAIV motif in the second intracellular loop, which is required for G-protein coupling, the ACKRs lack this conserved motif and fail to couple to G-proteins and induce classical GPCR signaling. Five receptors have been identified for the ACKR family, including CC-Chemokine Receptors like 1 and 2 (CCRL1 and CCRL2), CXCR7, DARC, and D6. Both ACKR1 (DARC) and ACKR3 (CXCR7) show low sequence homology to the classic chemokine receptors.


:

Pssm-ID: 410631  Cd Length: 257  Bit Score: 333.30  E-value: 6.59e-115
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887  60 SALPFFILTSVLGILASSTVLFMLFRPLFRWQLCPGWPVLAQLAVGSALFSIVVPVLAPGLGSTRSSALCSLGYCVWYGS 139
Cdd:cd15010   1 SALPFFALTSALGILASGALLVALLRPLFRWQWPPSRPLLAQLAVGSALFSIVVPILAPGLSQGWGTGLCKLAYLVWYGS 80
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887 140 AFAQALLLGCHASLGHRLGAGQVPGLTLGLTVGIWGVAALLTLPVTLASGASGGLCTLIYSTELKALQATHTVACLAIFV 219
Cdd:cd15010  81 AFAQALLVGCHACLGPWLGWGQVPGLTLGLAVGLWGAAALLALPVALASGTSGGPCTLRSSRDLEALYLTHLAACLAIFV 160
                       170       180       190       200       210       220       230       240
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887 220 LLPLGLFGAKGLKKALGMGPGPWMNILWAWFIFWWPHGVVLGLDFLVRSKLLLLSTCLAQQALDLLLNLAEALAILHCVA 299
Cdd:cd15010 161 LLPLGLLGAKGLKTALRVGPGPWVGVLWLWFIFWWPYGVVLGLDFLVRSKLLLLSTCGAQEALDYMLGLSEALGILHCVA 240
                       250
                ....*....|....*..
gi 42822887 300 TPLLLALFCHQATRTLL 316
Cdd:cd15010 241 TPLLLALVCHQATHTSP 257
 
Name Accession Description Interval E-value
7tmA_ACKR1_DARC cd15010
Duffy antigen receptor for chemokines, member of the class A family of seven-transmembrane G ...
60-316 6.59e-115

Duffy antigen receptor for chemokines, member of the class A family of seven-transmembrane G protein-coupled receptors; Atypical chemokine receptor 1 (ACKR1), also known as DARC (Duffy antigen receptor for chemokines) or Fy glycoprotein (GpFy), was originally identified on erythrocytes. ACKR1 is also ubiquitously expressed by endothelial cells of venules and is highly promiscuous among all chemokine receptor. It binds many proinflammatory chemokines from both the CC and CXC subfamilies, including CCL2, CCL5, CCL7, CCL11, CXCL1, CXCL2, CXCL3, and CXCL5. Erythrocyte ACKR1 is thought to act as a chemokine sink, limiting the levels of circulating chemokines, thereby controlling leukocyte activation. ACKR1-deficient erythrocytes are shown to confer resistance to the malarial parasite, Plasmodium vivax. On the other hand, ACKR1-expressing endothelial cells can internalize chemokines. ACKR1-internalized chemokines can be moved intact across the endothelium and promotes neutrophil transmigration. Unlike the classical chemokine receptors that contain a conserved DRYLAIV motif in the second intracellular loop, which is required for G-protein coupling, the ACKRs lack this conserved motif and fail to couple to G-proteins and induce classical GPCR signaling. Five receptors have been identified for the ACKR family, including CC-Chemokine Receptors like 1 and 2 (CCRL1 and CCRL2), CXCR7, DARC, and D6. Both ACKR1 (DARC) and ACKR3 (CXCR7) show low sequence homology to the classic chemokine receptors.


Pssm-ID: 410631  Cd Length: 257  Bit Score: 333.30  E-value: 6.59e-115
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887  60 SALPFFILTSVLGILASSTVLFMLFRPLFRWQLCPGWPVLAQLAVGSALFSIVVPVLAPGLGSTRSSALCSLGYCVWYGS 139
Cdd:cd15010   1 SALPFFALTSALGILASGALLVALLRPLFRWQWPPSRPLLAQLAVGSALFSIVVPILAPGLSQGWGTGLCKLAYLVWYGS 80
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887 140 AFAQALLLGCHASLGHRLGAGQVPGLTLGLTVGIWGVAALLTLPVTLASGASGGLCTLIYSTELKALQATHTVACLAIFV 219
Cdd:cd15010  81 AFAQALLVGCHACLGPWLGWGQVPGLTLGLAVGLWGAAALLALPVALASGTSGGPCTLRSSRDLEALYLTHLAACLAIFV 160
                       170       180       190       200       210       220       230       240
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887 220 LLPLGLFGAKGLKKALGMGPGPWMNILWAWFIFWWPHGVVLGLDFLVRSKLLLLSTCLAQQALDLLLNLAEALAILHCVA 299
Cdd:cd15010 161 LLPLGLLGAKGLKTALRVGPGPWVGVLWLWFIFWWPYGVVLGLDFLVRSKLLLLSTCGAQEALDYMLGLSEALGILHCVA 240
                       250
                ....*....|....*..
gi 42822887 300 TPLLLALFCHQATRTLL 316
Cdd:cd15010 241 TPLLLALVCHQATHTSP 257
 
Name Accession Description Interval E-value
7tmA_ACKR1_DARC cd15010
Duffy antigen receptor for chemokines, member of the class A family of seven-transmembrane G ...
60-316 6.59e-115

Duffy antigen receptor for chemokines, member of the class A family of seven-transmembrane G protein-coupled receptors; Atypical chemokine receptor 1 (ACKR1), also known as DARC (Duffy antigen receptor for chemokines) or Fy glycoprotein (GpFy), was originally identified on erythrocytes. ACKR1 is also ubiquitously expressed by endothelial cells of venules and is highly promiscuous among all chemokine receptor. It binds many proinflammatory chemokines from both the CC and CXC subfamilies, including CCL2, CCL5, CCL7, CCL11, CXCL1, CXCL2, CXCL3, and CXCL5. Erythrocyte ACKR1 is thought to act as a chemokine sink, limiting the levels of circulating chemokines, thereby controlling leukocyte activation. ACKR1-deficient erythrocytes are shown to confer resistance to the malarial parasite, Plasmodium vivax. On the other hand, ACKR1-expressing endothelial cells can internalize chemokines. ACKR1-internalized chemokines can be moved intact across the endothelium and promotes neutrophil transmigration. Unlike the classical chemokine receptors that contain a conserved DRYLAIV motif in the second intracellular loop, which is required for G-protein coupling, the ACKRs lack this conserved motif and fail to couple to G-proteins and induce classical GPCR signaling. Five receptors have been identified for the ACKR family, including CC-Chemokine Receptors like 1 and 2 (CCRL1 and CCRL2), CXCR7, DARC, and D6. Both ACKR1 (DARC) and ACKR3 (CXCR7) show low sequence homology to the classic chemokine receptors.


Pssm-ID: 410631  Cd Length: 257  Bit Score: 333.30  E-value: 6.59e-115
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887  60 SALPFFILTSVLGILASSTVLFMLFRPLFRWQLCPGWPVLAQLAVGSALFSIVVPVLAPGLGSTRSSALCSLGYCVWYGS 139
Cdd:cd15010   1 SALPFFALTSALGILASGALLVALLRPLFRWQWPPSRPLLAQLAVGSALFSIVVPILAPGLSQGWGTGLCKLAYLVWYGS 80
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887 140 AFAQALLLGCHASLGHRLGAGQVPGLTLGLTVGIWGVAALLTLPVTLASGASGGLCTLIYSTELKALQATHTVACLAIFV 219
Cdd:cd15010  81 AFAQALLVGCHACLGPWLGWGQVPGLTLGLAVGLWGAAALLALPVALASGTSGGPCTLRSSRDLEALYLTHLAACLAIFV 160
                       170       180       190       200       210       220       230       240
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887 220 LLPLGLFGAKGLKKALGMGPGPWMNILWAWFIFWWPHGVVLGLDFLVRSKLLLLSTCLAQQALDLLLNLAEALAILHCVA 299
Cdd:cd15010 161 LLPLGLLGAKGLKTALRVGPGPWVGVLWLWFIFWWPYGVVLGLDFLVRSKLLLLSTCGAQEALDYMLGLSEALGILHCVA 240
                       250
                ....*....|....*..
gi 42822887 300 TPLLLALFCHQATRTLL 316
Cdd:cd15010 241 TPLLLALVCHQATHTSP 257
7tm_GPCRs cd14964
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ...
61-267 1.55e-22

seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections.


Pssm-ID: 410628 [Multi-domain]  Cd Length: 267  Bit Score: 94.80  E-value: 1.55e-22
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887  61 ALPFFILTSVLGILASSTVLFMLFRPLFRWqlCPGWPVLAQLAVGSALFSIVVPVLAPGLGST----RSSALCSLGYCVW 136
Cdd:cd14964   1 TTIILSLLTCLGLLGNLLVLLSLVRLRKRP--RSTRLLLASLAACDLLASLVVLVLFFLLGLTeassRPQALCYLIYLLW 78
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887 137 YGSAFaqALLLGCHASLGHRLGAGQ---------VPGLTLGLTVGIWGVAALLTLPVTLASGASGGLCTLIYSTELKALQ 207
Cdd:cd14964  79 YGANL--ASIWTTLVLTYHRYFALCgplkytrlsSPGKTRVIILGCWGVSLLLSIPPLVGKGAIPRYNTLTGSCYLICTT 156
                       170       180       190       200       210       220       230       240
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 42822887 208 ATHTVACLAIFVLLPLGLFGAKGLKKAL--------------------GMGPGPWMNILWAWFIFWWPHGVVLGLDFLVR 267
Cdd:cd14964 157 IYLTWGFLLVSFLLPLVAFLVIFSRIVLrlrrrvrairsaaslntdknLKATKSLLILVITFLLCWLPFSIVFILHALVA 236
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH