NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1885894970|ref|NP_001372990|]
View 

aminopeptidase O isoform 5 [Homo sapiens]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
Leuk-A4-hydro_C super family cl08525
Leukotriene A4 hydrolase, C-terminal; Members of this family adopt a structure consisting of ...
291-341 5.53e-12

Leukotriene A4 hydrolase, C-terminal; Members of this family adopt a structure consisting of two layers of parallel alpha-helices, five in the inner layer and four in the outer, arranged in an antiparallel manner, with perpendicular loops containing short helical segments on top. They are required for the formation of a deep cleft harbouring the catalytic Zn2+ site in Leukotriene A4 hydrolase.


The actual alignment was detected with superfamily member pfam09127:

Pssm-ID: 462686  Cd Length: 112  Bit Score: 62.12  E-value: 5.53e-12
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1885894970 291 QKTLSPRTLQSLQRTYHLQD-QDAEVRHRWCELIVKHKFTKAYKSVERFLQE 341
Cdd:pfam09127  16 FSPLSPEQLKALDEVYKLSEsKNAEIRFRWLRLALKAKYEPAYPEVAEFLGE 67
GluZincin super family cl14813
Gluzincin Peptidase family (thermolysin-like proteinases, TLPs) which includes peptidases M1, ...
141-222 2.32e-07

Gluzincin Peptidase family (thermolysin-like proteinases, TLPs) which includes peptidases M1, M2, M3, M4, M13, M32 and M36 (fungalysins); The Gluzincin family (thermolysin-like peptidases or TLPs) includes several zinc-dependent metallopeptidases such as M1, M2, M3, M4, M13, M32, M36 peptidases (MEROPS classification), which contain the HEXXH motif as part of their active site. Peptidases in this family bind a single catalytic zinc ion which is tetrahedrally co-ordinated by three amino acid ligands and a water molecule that forms the nucleophile on activation during catalysis. The M1 family includes aminopeptidase N (APN) and leukotriene A4 hydrolase (LTA4H). APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and is present in a variety of human tissues and cell types. LTA4H is a bifunctional enzyme, possessing an aminopeptidase as well as an epoxide hydrolase activity such that the two activities occupy different, but overlapping sites. The M3_like peptidases include the M2_ACE, M3 or neurolysin-like family (subfamilies M3B_PepF and M3A) and M32_Taq peptidases. The M2 peptidase angiotensin converting enzyme (ACE, EC 3.4.15.1) catalyzes the conversion of decapeptide angiotensin I to the potent vasopressor octapeptide angiotensin II. ACE is a key component of the renin-angiotensin system that regulates blood pressure, thus ACE inhibitors are important for the treatment of hypertension. M3A includes thimet oligopeptidase (TOP; endopeptidase 3.4.24.15), neurolysin (3.4.24.16), and the mitochondrial intermediate peptidase; and M3B includes oligopeptidase F. The M32 family includes eukaryotic enzymes from protozoa Trypanosoma cruzi, a causative agent of Chagas' disease, and from Leishmania major, a parasite that causes leishmaniasis, making these enzymes attractive targets for drug development. The M4 family includes secreted protease thermolysin (EC 3.4.24.27), pseudolysin, aureolysin, and neutral protease as well as bacillolysin (EC 3.4.24.28) that degrade extracellular proteins and peptides for bacterial nutrition, especially prior to sporulation. Thermolysin is widely used as a nonspecific protease to obtain fragments for peptide sequencing as well as in production of the artificial sweetener aspartame. The M13 family includes neprilysin (EC 3.4.24.11) and endothelin-converting enzyme I (ECE-1, EC 3.4.24.71), which fulfill a broad range of physiological roles due to the greater variation in the S2' subsite allowing substrate specificity and are prime therapeutic targets for selective inhibition. The peptidase M36 fungalysin family includes endopeptidases from pathogenic fungi. Fungalysin hydrolyzes extracellular matrix proteins such as elastin and keratin. Aspergillus fumigatus causes the pulmonary disease aspergillosis by invading the lungs of immuno-compromised animals and secreting fungalysin that possibly breaks down proteinaceous structural barriers.


The actual alignment was detected with superfamily member cd09599:

Pssm-ID: 472708 [Multi-domain]  Cd Length: 442  Bit Score: 52.85  E-value: 2.32e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1885894970 141 IKHGLNPEKIFMQVHYLKGYFLLRFLAKRLGDETYFSFLRKFVHTFHGQLILSQDFLQMLLENIPEEKRLELSVENIyQD 220
Cdd:cd09599   361 DLKGVDPDDAFSSVPYEKGFQFLYYLEQLGGREVFDPFLRAYFKKFAFQSIDTEDFKDFLLEYFAEDKPEILDKIDW-DA 439

                  ..
gi 1885894970 221 WL 222
Cdd:cd09599   440 WL 441
 
Name Accession Description Interval E-value
Leuk-A4-hydro_C pfam09127
Leukotriene A4 hydrolase, C-terminal; Members of this family adopt a structure consisting of ...
291-341 5.53e-12

Leukotriene A4 hydrolase, C-terminal; Members of this family adopt a structure consisting of two layers of parallel alpha-helices, five in the inner layer and four in the outer, arranged in an antiparallel manner, with perpendicular loops containing short helical segments on top. They are required for the formation of a deep cleft harbouring the catalytic Zn2+ site in Leukotriene A4 hydrolase.


Pssm-ID: 462686  Cd Length: 112  Bit Score: 62.12  E-value: 5.53e-12
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1885894970 291 QKTLSPRTLQSLQRTYHLQD-QDAEVRHRWCELIVKHKFTKAYKSVERFLQE 341
Cdd:pfam09127  16 FSPLSPEQLKALDEVYKLSEsKNAEIRFRWLRLALKAKYEPAYPEVAEFLGE 67
M1_LTA4H cd09599
Peptidase M1 family including Leukotriene A4 hydrolase catalytic domain; This model represents ...
141-222 2.32e-07

Peptidase M1 family including Leukotriene A4 hydrolase catalytic domain; This model represents the N-terminal catalytic domain of leukotriene A4 hydrolase (LTA4H; E.C. 3.3.2.6) and the close homolog cold-active aminopeptidase (Colwellia psychrerythraea-type peptidase; ColAP), both members of the aminopeptidase M1 family. LTA4H is a bifunctional enzyme, possessing an aminopeptidase as well as an epoxide hydrolase activity. The two activities occupy different, but overlapping sites. The activity and physiological relevance of the aminopeptidase is poorly understood while the epoxide hydrolase converts leukotriene A4 (LTA4) into leukotriene B4 (LTB4), a potent chemotaxin that is fundamental to the inflammatory response of mammals. It accepts a variety of substrates, including some opioid, di- and tripeptides, as well as chromogenic aminoacyl-p-nitroanilide derivatives. The aminopeptidase activity of LTA4H is possibly involved in the processing of peptides related to inflammation and host defense. Kinetic analysis shows that LTA4H hydrolyzes arginyl tripeptides with high efficiency and specificity, indicating its function as an arginyl aminopeptidase. Thermodynamic characterization using different biophysical methods shows that structurally distinct inhibitors of the LTA4H occupy different regions of the binding site; while some (RB202, ARM1 and SC57461A) bind to the hydrophobic hydrolase side, both bestatin and captopril are located at the hydrophilic peptidase side. LTB4H overexpression is associated with different pathological conditions and diseases such as cystic fibrosis, coronary heart disease, sepsis, shock, connective tissue disease, and chronic obstructive pulmonary disease. It is also overexpressed in certain human cancers, and has been identified as a functionally important target for mediating anticancer properties of resveratrol, a well-known red wine polyphenolic compound with cancer chemopreventive activity.


Pssm-ID: 341062 [Multi-domain]  Cd Length: 442  Bit Score: 52.85  E-value: 2.32e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1885894970 141 IKHGLNPEKIFMQVHYLKGYFLLRFLAKRLGDETYFSFLRKFVHTFHGQLILSQDFLQMLLENIPEEKRLELSVENIyQD 220
Cdd:cd09599   361 DLKGVDPDDAFSSVPYEKGFQFLYYLEQLGGREVFDPFLRAYFKKFAFQSIDTEDFKDFLLEYFAEDKPEILDKIDW-DA 439

                  ..
gi 1885894970 221 WL 222
Cdd:cd09599   440 WL 441
PepN COG0308
Aminopeptidase N, contains DUF3458 domain [Amino acid transport and metabolism];
140-229 1.52e-06

Aminopeptidase N, contains DUF3458 domain [Amino acid transport and metabolism];


Pssm-ID: 440077 [Multi-domain]  Cd Length: 609  Bit Score: 50.41  E-value: 1.52e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1885894970 140 VIKHGLNPEKIFMQVHYLKGYFLLRFLAKRLGDETYFSFLRKFVHTFHGQLILSQDFLQMLlenipeEKRLELSVENIYQ 219
Cdd:COG0308   364 RPDDYPEIENFFDGIVYEKGALVLHMLRTLLGDEAFRAGLRLYFARHAGGNATTEDFLAAL------EEASGRDLSAFFD 437
                          90
                  ....*....|
gi 1885894970 220 DWLESSGIPK 229
Cdd:COG0308   438 QWLYQAGLPT 447
Peptidase_M1 pfam01433
Peptidase family M1 domain; Members of this family are aminopeptidases. The members differ ...
119-202 2.20e-04

Peptidase family M1 domain; Members of this family are aminopeptidases. The members differ widely in specificity, hydrolysing acidic, basic or neutral N-terminal residues. This family includes leukotriene-A4 hydrolase, this enzyme also has an aminopeptidase activity.


Pssm-ID: 426262 [Multi-domain]  Cd Length: 219  Bit Score: 42.28  E-value: 2.20e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1885894970 119 SLGMARPSKDKTGHTSDsgasvikhglnPEKIFMQVHYLKGYFLLRFLAKRLGDETYFSFLRKFVHTFHGQLILSQDFLQ 198
Cdd:pfam01433 133 ALDSSHPITQNVNDPSE-----------IDDIFDAIPYEKGASVLRMLETLLGEEVFQKGLRSYLKKFQYGNATTEDLWD 201

                  ....
gi 1885894970 199 MLLE 202
Cdd:pfam01433 202 ALSE 205
 
Name Accession Description Interval E-value
Leuk-A4-hydro_C pfam09127
Leukotriene A4 hydrolase, C-terminal; Members of this family adopt a structure consisting of ...
291-341 5.53e-12

Leukotriene A4 hydrolase, C-terminal; Members of this family adopt a structure consisting of two layers of parallel alpha-helices, five in the inner layer and four in the outer, arranged in an antiparallel manner, with perpendicular loops containing short helical segments on top. They are required for the formation of a deep cleft harbouring the catalytic Zn2+ site in Leukotriene A4 hydrolase.


Pssm-ID: 462686  Cd Length: 112  Bit Score: 62.12  E-value: 5.53e-12
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1885894970 291 QKTLSPRTLQSLQRTYHLQD-QDAEVRHRWCELIVKHKFTKAYKSVERFLQE 341
Cdd:pfam09127  16 FSPLSPEQLKALDEVYKLSEsKNAEIRFRWLRLALKAKYEPAYPEVAEFLGE 67
M1_LTA4H cd09599
Peptidase M1 family including Leukotriene A4 hydrolase catalytic domain; This model represents ...
141-222 2.32e-07

Peptidase M1 family including Leukotriene A4 hydrolase catalytic domain; This model represents the N-terminal catalytic domain of leukotriene A4 hydrolase (LTA4H; E.C. 3.3.2.6) and the close homolog cold-active aminopeptidase (Colwellia psychrerythraea-type peptidase; ColAP), both members of the aminopeptidase M1 family. LTA4H is a bifunctional enzyme, possessing an aminopeptidase as well as an epoxide hydrolase activity. The two activities occupy different, but overlapping sites. The activity and physiological relevance of the aminopeptidase is poorly understood while the epoxide hydrolase converts leukotriene A4 (LTA4) into leukotriene B4 (LTB4), a potent chemotaxin that is fundamental to the inflammatory response of mammals. It accepts a variety of substrates, including some opioid, di- and tripeptides, as well as chromogenic aminoacyl-p-nitroanilide derivatives. The aminopeptidase activity of LTA4H is possibly involved in the processing of peptides related to inflammation and host defense. Kinetic analysis shows that LTA4H hydrolyzes arginyl tripeptides with high efficiency and specificity, indicating its function as an arginyl aminopeptidase. Thermodynamic characterization using different biophysical methods shows that structurally distinct inhibitors of the LTA4H occupy different regions of the binding site; while some (RB202, ARM1 and SC57461A) bind to the hydrophobic hydrolase side, both bestatin and captopril are located at the hydrophilic peptidase side. LTB4H overexpression is associated with different pathological conditions and diseases such as cystic fibrosis, coronary heart disease, sepsis, shock, connective tissue disease, and chronic obstructive pulmonary disease. It is also overexpressed in certain human cancers, and has been identified as a functionally important target for mediating anticancer properties of resveratrol, a well-known red wine polyphenolic compound with cancer chemopreventive activity.


Pssm-ID: 341062 [Multi-domain]  Cd Length: 442  Bit Score: 52.85  E-value: 2.32e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1885894970 141 IKHGLNPEKIFMQVHYLKGYFLLRFLAKRLGDETYFSFLRKFVHTFHGQLILSQDFLQMLLENIPEEKRLELSVENIyQD 220
Cdd:cd09599   361 DLKGVDPDDAFSSVPYEKGFQFLYYLEQLGGREVFDPFLRAYFKKFAFQSIDTEDFKDFLLEYFAEDKPEILDKIDW-DA 439

                  ..
gi 1885894970 221 WL 222
Cdd:cd09599   440 WL 441
PepN COG0308
Aminopeptidase N, contains DUF3458 domain [Amino acid transport and metabolism];
140-229 1.52e-06

Aminopeptidase N, contains DUF3458 domain [Amino acid transport and metabolism];


Pssm-ID: 440077 [Multi-domain]  Cd Length: 609  Bit Score: 50.41  E-value: 1.52e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1885894970 140 VIKHGLNPEKIFMQVHYLKGYFLLRFLAKRLGDETYFSFLRKFVHTFHGQLILSQDFLQMLlenipeEKRLELSVENIYQ 219
Cdd:COG0308   364 RPDDYPEIENFFDGIVYEKGALVLHMLRTLLGDEAFRAGLRLYFARHAGGNATTEDFLAAL------EEASGRDLSAFFD 437
                          90
                  ....*....|
gi 1885894970 220 DWLESSGIPK 229
Cdd:COG0308   438 QWLYQAGLPT 447
Peptidase_M1 pfam01433
Peptidase family M1 domain; Members of this family are aminopeptidases. The members differ ...
119-202 2.20e-04

Peptidase family M1 domain; Members of this family are aminopeptidases. The members differ widely in specificity, hydrolysing acidic, basic or neutral N-terminal residues. This family includes leukotriene-A4 hydrolase, this enzyme also has an aminopeptidase activity.


Pssm-ID: 426262 [Multi-domain]  Cd Length: 219  Bit Score: 42.28  E-value: 2.20e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1885894970 119 SLGMARPSKDKTGHTSDsgasvikhglnPEKIFMQVHYLKGYFLLRFLAKRLGDETYFSFLRKFVHTFHGQLILSQDFLQ 198
Cdd:pfam01433 133 ALDSSHPITQNVNDPSE-----------IDDIFDAIPYEKGASVLRMLETLLGEEVFQKGLRSYLKKFQYGNATTEDLWD 201

                  ....
gi 1885894970 199 MLLE 202
Cdd:pfam01433 202 ALSE 205
M1_APN_like cd09604
Peptidase M1 family similar to aminopeptidase N catalytic domain; This family contains ...
156-222 3.85e-04

Peptidase M1 family similar to aminopeptidase N catalytic domain; This family contains bacterial M1 peptidases with smilarity to the catalytic domain of aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established.


Pssm-ID: 341067 [Multi-domain]  Cd Length: 440  Bit Score: 42.65  E-value: 3.85e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1885894970 156 YLKGYFLLRFLAKRLGDETYFSFLRKFVHTFHGQLILSQDFLQMLlenipeEKRLELSVENIYQDWL 222
Cdd:cd09604   380 YSKGALFLEELREELGDEAFDKALREYYRRYKFKHPTPEDFFRTA------EEVSGKDLDWFFRGWL 440
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH