polypeptide N-acetylgalactosaminyltransferase 11 isoform 7 [Homo sapiens]
List of domain hits
Name | Accession | Description | Interval | E-value | ||
Glyco_tranf_GTA_type super family | cl11394 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a ... |
154-195 | 1.06e-23 | ||
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold; Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. The actual alignment was detected with superfamily member cd02510: Pssm-ID: 472172 [Multi-domain] Cd Length: 299 Bit Score: 95.35 E-value: 1.06e-23
|
||||||
Name | Accession | Description | Interval | E-value | ||
pp-GalNAc-T | cd02510 | pp-GalNAc-T initiates the formation of mucin-type O-linked glycans; UDP-GalNAc: polypeptide ... |
154-195 | 1.06e-23 | ||
pp-GalNAc-T initiates the formation of mucin-type O-linked glycans; UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferases (pp-GalNAc-T) initiate the formation of mucin-type, O-linked glycans by catalyzing the transfer of alpha-N-acetylgalactosamine (GalNAc) from UDP-GalNAc to hydroxyl groups of Ser or Thr residues of core proteins to form the Tn antigen (GalNAc-a-1-O-Ser/Thr). These enzymes are type II membrane proteins with a GT-A type catalytic domain and a lectin domain located on the lumen side of the Golgi apparatus. In human, there are 15 isozymes of pp-GalNAc-Ts, representing the largest of all glycosyltransferase families. Each isozyme has unique but partially redundant substrate specificity for glycosylation sites on acceptor proteins. Pssm-ID: 133004 [Multi-domain] Cd Length: 299 Bit Score: 95.35 E-value: 1.06e-23
|
||||||
Glycos_transf_2 | pfam00535 | Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, ... |
154-193 | 3.22e-08 | ||
Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. Pssm-ID: 425738 [Multi-domain] Cd Length: 166 Bit Score: 50.86 E-value: 3.22e-08
|
||||||
BcsA | COG1215 | Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1, ... |
147-194 | 2.46e-05 | ||
Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1,6-N-acetylglucosamine synthase [Cell motility]; Pssm-ID: 440828 [Multi-domain] Cd Length: 303 Bit Score: 43.96 E-value: 2.46e-05
|
||||||
Name | Accession | Description | Interval | E-value | ||
pp-GalNAc-T | cd02510 | pp-GalNAc-T initiates the formation of mucin-type O-linked glycans; UDP-GalNAc: polypeptide ... |
154-195 | 1.06e-23 | ||
pp-GalNAc-T initiates the formation of mucin-type O-linked glycans; UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferases (pp-GalNAc-T) initiate the formation of mucin-type, O-linked glycans by catalyzing the transfer of alpha-N-acetylgalactosamine (GalNAc) from UDP-GalNAc to hydroxyl groups of Ser or Thr residues of core proteins to form the Tn antigen (GalNAc-a-1-O-Ser/Thr). These enzymes are type II membrane proteins with a GT-A type catalytic domain and a lectin domain located on the lumen side of the Golgi apparatus. In human, there are 15 isozymes of pp-GalNAc-Ts, representing the largest of all glycosyltransferase families. Each isozyme has unique but partially redundant substrate specificity for glycosylation sites on acceptor proteins. Pssm-ID: 133004 [Multi-domain] Cd Length: 299 Bit Score: 95.35 E-value: 1.06e-23
|
||||||
Glycos_transf_2 | pfam00535 | Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, ... |
154-193 | 3.22e-08 | ||
Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. Pssm-ID: 425738 [Multi-domain] Cd Length: 166 Bit Score: 50.86 E-value: 3.22e-08
|
||||||
BcsA | COG1215 | Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1, ... |
147-194 | 2.46e-05 | ||
Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1,6-N-acetylglucosamine synthase [Cell motility]; Pssm-ID: 440828 [Multi-domain] Cd Length: 303 Bit Score: 43.96 E-value: 2.46e-05
|
||||||
WcaA | COG0463 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; ... |
154-194 | 1.73e-04 | ||
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440231 [Multi-domain] Cd Length: 208 Bit Score: 40.84 E-value: 1.73e-04
|
||||||
WcaE | COG1216 | Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism]; |
151-194 | 2.50e-03 | ||
Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism]; Pssm-ID: 440829 [Multi-domain] Cd Length: 202 Bit Score: 37.28 E-value: 2.50e-03
|
||||||
DPM_DPG-synthase_like | cd04179 | DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily; DPM1 is the ... |
155-193 | 4.82e-03 | ||
DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily; DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi, and animals, have no transmembrane region, suggesting the existence of adapter molecules for membrane anchoring. This family also includes bacteria and archaea DPM1_like enzymes. However, the enzyme structure and mechanism of function are not well understood. The UDP-glucose:dolichyl-phosphate glucosyltransferase (DPG_synthase) is a transmembrane-bound enzyme of the endoplasmic reticulum involved in protein N-linked glycosylation. This enzyme catalyzes the transfer of glucose from UDP-glucose to dolichyl phosphate. This protein family belongs to Glycosyltransferase 2 superfamily. Pssm-ID: 133022 [Multi-domain] Cd Length: 185 Bit Score: 36.40 E-value: 4.82e-03
|
||||||
Glyco_tranf_GTA_type | cd00761 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a ... |
155-194 | 8.38e-03 | ||
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold; Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. Pssm-ID: 132997 [Multi-domain] Cd Length: 156 Bit Score: 35.56 E-value: 8.38e-03
|
||||||
Blast search parameters | ||||
|