NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1191017736|ref|NP_001338451|]
View 

cytotoxic granule associated RNA binding protein TIA1 isoform 17 [Homo sapiens]

Protein Classification

RNA-binding protein( domain architecture ID 13965283)

RNA-binding protein containing an RNA recognition motif (RRM) similar to Homo sapiens cytotoxic granule associated RNA binding protein TIA1 which is involved in the regulation of alternative pre-RNA splicing and mRNA translation by binding to uridine-rich (U-rich) RNA sequences

CATH:  3.30.70.330
Gene Ontology:  GO:0003723

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM1_TIA1 cd12615
RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
8-81 2.84e-54

RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM1 of TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and functions as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


:

Pssm-ID: 410027 [Multi-domain]  Cd Length: 74  Bit Score: 165.21  E-value: 2.84e-54
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12615     1 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 74
RRM_SF super family cl17169
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
104-133 9.83e-17

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


The actual alignment was detected with superfamily member cd12618:

Pssm-ID: 473069 [Multi-domain]  Cd Length: 78  Bit Score: 70.03  E-value: 9.83e-17
                          10        20        30
                  ....*....|....*....|....*....|
gi 1191017736 104 DHFHVFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:cd12618     1 NHFHVFVGDLSPEITTEDIKAAFAPFGRIS 30
 
Name Accession Description Interval E-value
RRM1_TIA1 cd12615
RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
8-81 2.84e-54

RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM1 of TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and functions as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410027 [Multi-domain]  Cd Length: 74  Bit Score: 165.21  E-value: 2.84e-54
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12615     1 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 74
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
9-77 2.39e-18

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 73.81  E-value: 2.39e-18
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD-TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVK 77
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDeTGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM smart00360
RNA recognition motif;
8-78 3.80e-18

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 73.40  E-value: 3.80e-18
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736    8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDkeTGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM2_TIA1 cd12618
RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
104-133 9.83e-17

RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410030 [Multi-domain]  Cd Length: 78  Bit Score: 70.03  E-value: 9.83e-17
                          10        20        30
                  ....*....|....*....|....*....|
gi 1191017736 104 DHFHVFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:cd12618     1 NHFHVFVGDLSPEITTEDIKAAFAPFGRIS 30
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
7-81 9.46e-14

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 62.42  E-value: 9.46e-14
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:COG0724     2 MKIYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDRETGRSrgFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEA 78
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
9-132 1.28e-10

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 58.16  E-value: 1.28e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNwatTPSS 86
Cdd:TIGR01645 110 VYVGSISFELREDTIRRAFDPFGPIKSINMSWDpaTGKHKGFAFVEYEVPEAAQLALEQMNGQMLGGRNIKVG---RPSN 186
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 1191017736  87 QKKDTSSSTVVStQRSQDHFHVFVGDLSPEITTEDIKAAFAPFGRI 132
Cdd:TIGR01645 187 MPQAQPIIDMVQ-EEAKKFNRIYVASVHPDLSETDIKSVFEAFGEI 231
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
5-89 3.53e-05

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 41.18  E-value: 3.53e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   5 MPKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:PLN03134   33 MSTKLFIGGLSWGTDDASLRDAFAHFGDVVDAKVIVDreTGRSRGFGFVNFNDEGAATAAISEMDGKELNGRHIRVNPAN 112

                  ....*..
gi 1191017736  83 TPSSQKK 89
Cdd:PLN03134  113 DRPSAPR 119
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
108-141 4.45e-05

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 39.14  E-value: 4.45e-05
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI-SVSLKNGQN 141
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIkSIRLVRDET 35
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
109-136 1.85e-04

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 37.77  E-value: 1.85e-04
                          10        20
                  ....*....|....*....|....*....
gi 1191017736 109 FVGDLSPEITTEDIKAAFAPFGRI-SVSL 136
Cdd:COG0724     5 YVGNLPYSVTEEDLRELFSEYGEVtSVKL 33
RRM smart00360
RNA recognition motif;
108-133 2.20e-04

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 37.57  E-value: 2.20e-04
                           10        20
                   ....*....|....*....|....*.
gi 1191017736  108 VFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFGKVE 27
 
Name Accession Description Interval E-value
RRM1_TIA1 cd12615
RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
8-81 2.84e-54

RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM1 of TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and functions as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410027 [Multi-domain]  Cd Length: 74  Bit Score: 165.21  E-value: 2.84e-54
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12615     1 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 74
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
9-81 1.27e-47

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 147.94  E-value: 1.27e-47
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12352     1 LYVGNLDRQVTEDLILQLFSQIGPCKSCKMITEHGGNDPYCFVEFYEHNHAAAALQAMNGRKILGKEVKVNWA 73
RRM1_TIAR cd12616
RNA recognition motif 1 (RRM1) found in nucleolysin TIAR and similar proteins; This subgroup ...
8-88 2.20e-44

RNA recognition motif 1 (RRM1) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM1 of nucleolysin TIAR, also termed TIA-1-related protein, and a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410028 [Multi-domain]  Cd Length: 81  Bit Score: 140.22  E-value: 2.20e-44
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATTPSSQ 87
Cdd:cd12616     1 TLYVGNLSRDVTEVLILQLFSQIGPCKSCKMITEHTSNDPYCFVEFYEHRDAAAALAAMNGRKILGKEVKVNWATTPSSQ 80

                  .
gi 1191017736  88 K 88
Cdd:cd12616    81 K 81
RRM1_PUB1 cd12614
RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated ...
9-81 6.81e-21

RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM1 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410026 [Multi-domain]  Cd Length: 74  Bit Score: 80.17  E-value: 6.81e-21
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD-TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12614     1 LYVGNLDPRVTEDLLQEIFAVTGPVENCKIIPDkNSKGVNYGFVEYYDRRSAEIAIQTLNGRQIFGQEIKVNWA 74
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
9-77 2.39e-18

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 73.81  E-value: 2.39e-18
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD-TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVK 77
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDeTGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM smart00360
RNA recognition motif;
8-78 3.80e-18

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 73.40  E-value: 3.80e-18
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736    8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDkeTGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM2_TIA1 cd12618
RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
104-133 9.83e-17

RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410030 [Multi-domain]  Cd Length: 78  Bit Score: 70.03  E-value: 9.83e-17
                          10        20        30
                  ....*....|....*....|....*....|
gi 1191017736 104 DHFHVFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:cd12618     1 NHFHVFVGDLSPEITTEDIKAAFAPFGRIS 30
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
9-79 3.24e-16

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 68.46  E-value: 3.24e-16
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGND-PYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVRDRDGKSkGFAFVEFESPEDAEKALEALNGTELGGRPLKVS 72
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
105-133 3.53e-15

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 65.78  E-value: 3.53e-15
                          10        20
                  ....*....|....*....|....*....
gi 1191017736 105 HFHVFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:cd12617     1 HFHVFVGDLSPEITTEDIKSAFAPFGKIS 29
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
7-81 9.46e-14

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 62.42  E-value: 9.46e-14
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:COG0724     2 MKIYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDRETGRSrgFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEA 78
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
107-133 1.65e-13

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 61.25  E-value: 1.65e-13
                          10        20
                  ....*....|....*....|....*..
gi 1191017736 107 HVFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:cd12353     1 HIFVGDLSPEIETEDLKEAFAPFGEIS 27
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
9-81 8.98e-13

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 59.62  E-value: 8.98e-13
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGND-----PYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12355     2 LWIGNLDPRLTEYHLLKLLSKYGKIKKFDFLFHKTGPLkgqprGYCFVTFETKEEAEKAIECLNGKLALGKKLVVRWA 79
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
7-78 8.63e-12

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 57.25  E-value: 8.63e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12236     2 KTLFVARLSYDTTESKLRREFEKYGPIKRVRLVRDKKTGKSrgYAFIEFEHERDMKAAYKHADGKKIDGRRVLV 75
RRM1_SF3B4 cd12334
RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
9-79 3.42e-11

RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM1 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409771 [Multi-domain]  Cd Length: 74  Bit Score: 55.30  E-value: 3.42e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd12334     1 VYVGNLDEKVTEELLWELFIQAGPVVNVHMPKDRVTQQHqgYGFVEFLSEEDADYAIKIMNMIKLYGKPIRVN 73
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
8-80 8.89e-11

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 54.21  E-value: 8.89e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAgndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNW 80
Cdd:cd12354     2 TVYVGNITKGLTEALLQQTFSPFGQILEVRVFPDKG----YAFIRFDSHEAATHAIVSVNGTIINGQAVKCSW 70
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
9-132 1.28e-10

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 58.16  E-value: 1.28e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNwatTPSS 86
Cdd:TIGR01645 110 VYVGSISFELREDTIRRAFDPFGPIKSINMSWDpaTGKHKGFAFVEYEVPEAAQLALEQMNGQMLGGRNIKVG---RPSN 186
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 1191017736  87 QKKDTSSSTVVStQRSQDHFHVFVGDLSPEITTEDIKAAFAPFGRI 132
Cdd:TIGR01645 187 MPQAQPIIDMVQ-EEAKKFNRIYVASVHPDLSETDIKSVFEAFGEI 231
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
7-81 1.50e-10

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 53.67  E-value: 1.50e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12398     1 RSVFVGNIPYDATEEQLKEIFSEVGPVVSFRLVTDRETGKPkgYGFCEFRDAETALSAVRNLNGYELNGRPLRVDFA 77
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
7-78 2.61e-10

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 53.07  E-value: 2.61e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12336     2 RTLFVGNLDPRVTEEILYELFLQAGPLEGVKIPKDPNGKPKnFAFVTFKHEVSVPYAIQLLNGIRLFGREIRI 74
RRM2_SREK1 cd12260
RNA recognition motif 2 (RRM2) found in splicing regulatory glutamine/lysine-rich protein 1 ...
3-84 3.22e-10

RNA recognition motif 2 (RRM2) found in splicing regulatory glutamine/lysine-rich protein 1 (SREK1) and similar proteins; This subfamily corresponds to the RRM2 of SREK1, also termed serine/arginine-rich-splicing regulatory protein 86-kDa (SRrp86), or splicing factor arginine/serine-rich 12 (SFRS12), or splicing regulatory protein 508 amino acid (SRrp508). SREK1 belongs to a family of proteins containing regions rich in serine-arginine dipeptides (SR proteins family), which is involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. It is a unique SR family member and it may play a crucial role in determining tissue specific patterns of alternative splicing. SREK1 can alter splice site selection by both positively and negatively modulating the activity of other SR proteins. For instance, SREK1 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. In addition, SREK1 contains two (some contain only one) RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and two serine-arginine (SR)-rich domains (SR domains) separated by an unusual glutamic acid-lysine (EK) rich region. The RRM and SR domains are highly conserved among other members of the SR superfamily. However, the EK domain is unique to SREK1. It plays a modulatory role controlling SR domain function by involvement in the inhibition of both constitutive and alternative splicing and in the selection of splice-site.


Pssm-ID: 409705 [Multi-domain]  Cd Length: 85  Bit Score: 53.08  E-value: 3.22e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   3 DEMPKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHaAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12260     1 EEIRRTVYVGNLDPSTTADQLLEFFSQAGEVKYVRMAGDETQPTRYAFVEFAEQTS-VINALKLNGKMFGGRPLKVNHSN 79

                  ..
gi 1191017736  83 TP 84
Cdd:cd12260    80 NA 81
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
9-80 9.58e-10

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 51.80  E-value: 9.58e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNW 80
Cdd:cd12240     1 LYVGNLSFYTTEEQIYELFSKCGDIKRIIMGLDKFKKTPcgFCFVEYYSREDAENAVKYLNGTKLDDRIIRVDW 74
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
9-132 1.16e-09

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 55.20  E-value: 1.16e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGN-DPYCFVEFHEHRHAAAALAAMNGRKI----MGKEVKVNWAtt 83
Cdd:TIGR01628 181 LYVKNLDPSVNEDKLRELFAKFGEITSAAVMKDGSGRsRGFAFVNFEKHEDAAKAVEEMNGKKIglakEGKKLYVGRA-- 258
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017736  84 pssQKKDTSSSTVVStQRSQDHFH---------VFVGDLSPEITTEDIKAAFAPFGRI 132
Cdd:TIGR01628 259 ---QKRAEREAELRR-KFEELQQErkmkaqgvnLYVKNLDDTVTDEKLRELFSECGEI 312
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
6-104 1.55e-09

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 54.93  E-value: 1.55e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   6 PKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVnwatt 83
Cdd:TIGR01622 214 FHRLYVGNLHFNITEQDLRQIFEPFGEIEFVQLQKDpeTGRSKGYGFIQFRDAEQAKEALEKMNGFELAGRPIKV----- 288
                          90       100
                  ....*....|....*....|.
gi 1191017736  84 pSSQKKDTSSSTVVSTQRSQD 104
Cdd:TIGR01622 289 -GLGNDFTPESDANLAQRFQD 308
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
7-81 1.55e-09

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 51.09  E-value: 1.55e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDtagndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12251     2 KVLYVRNLMLSTTEEKLRELFSEYGKVERVKKIKD------YAFVHFEERDDAVKAMEEMNGKELEGSEIEVSLA 70
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
9-82 1.75e-09

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 51.34  E-value: 1.75e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12619     4 IFVGDLSPEVTDAALFNAFSDFPSCSDARVMWDqkTGRSRGYGFVSFRSQQDAQNAINSMNGKWLGSRPIRCNWAT 79
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
8-81 1.85e-09

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 51.02  E-value: 1.85e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd21608     1 KLYVGNLSWDTTEDDLRDLFSEFGEVESAKVITDreTGRSRGFGFVTFSTAEAAEAAIDALNGKELDGRSIVVNEA 76
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
6-135 2.00e-09

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 54.56  E-value: 2.00e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   6 PKT-LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:TIGR01661   2 SKTnLIVNYLPQTMTQEEIRSLFTSIGEIESCKLVRDkvTGQSLGYGFVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYAR 81
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1191017736  83 TPSSQKKDTSsstvvstqrsqdhfhVFVGDLSPEITTEDIKAAFAPFGRISVS 135
Cdd:TIGR01661  82 PSSDSIKGAN---------------LYVSGLPKTMTQHELESIFSPFGQIITS 119
RRM1_I_PABPs cd12378
RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily ...
9-81 2.31e-09

RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM1 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammals, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409812 [Multi-domain]  Cd Length: 80  Bit Score: 50.71  E-value: 2.31e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12378     2 LYVGDLHPDVTEAMLYEKFSPAGPVLSIRVCRDavTRRSLGYAYVNFQQPADAERALDTLNFDVIKGKPIRIMWS 76
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
8-141 2.51e-09

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 54.04  E-value: 2.51e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT-TP 84
Cdd:TIGR01628   2 SLYVGDLDPDVTEAKLYDLFKPFGPVLSVRVCRDsvTRRSLGYGYVNFQNPADAERALETMNFKRLGGKPIRIMWSQrDP 81
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736  85 SSQKKDTSSstvvstqrsqdhfhVFVGDLSPEITTEDIKAAFAPFGRIsVSLKNGQN 141
Cdd:TIGR01628  82 SLRRSGVGN--------------IFVKNLDKSVDNKALFDTFSKFGNI-LSCKVATD 123
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
9-78 2.53e-09

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 50.63  E-value: 2.53e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12365     1 LHVGKLTRNVTKDHLKEIFSVYGTVKNVDLPIDREPNLPrgYAYVEFESPEDAEKAIKHMDGGQIDGQEVTV 72
RRM_RBM25 cd12446
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 25 and similar proteins; ...
7-79 6.49e-09

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 25 and similar proteins; This subfamily corresponds to the RRM of RBM25, also termed Arg/Glu/Asp-rich protein of 120 kDa (RED120), or protein S164, or RNA-binding region-containing protein 7, an evolutionary-conserved splicing coactivator SRm160 (SR-related nuclear matrix protein of 160 kDa, )-interacting protein. RBM25 belongs to a family of RNA-binding proteins containing a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminus, a RE/RD-rich (ER) central region, and a C-terminal proline-tryptophan-isoleucine (PWI) motif. It localizes to the nuclear speckles and associates with multiple splicing components, including splicing cofactors SRm160/300, U snRNAs, assembled splicing complexes, and spliced mRNAs. It may play an important role in pre-mRNA processing by coupling splicing with mRNA 3'-end formation. Additional research indicates that RBM25 is one of the RNA-binding regulators that direct the alternative splicing of apoptotic factors. It can activate proapoptotic Bcl-xS 5'ss by binding to the exonic splicing enhancer, CGGGCA, and stabilize the pre-mRNA-U1 snRNP through interaction with hLuc7A, a U1 snRNP-associated factor.


Pssm-ID: 409880 [Multi-domain]  Cd Length: 83  Bit Score: 49.83  E-value: 6.49e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGN-DPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd12446     1 TTVFVGNIPDDVSDDFIRQLLEKCGKVLSWKRVQDPSGKlKAFGFCEFEDPEGALRALRLLNGLELGGKKLLVK 74
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
9-79 9.72e-09

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 48.95  E-value: 9.72e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGN--DPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd12370     3 VYVGSIYFELGEDTIRQAFAPFGPIKSIDMSWDPVTMkhKGFAFVEYEVPEAAQLALEQMNGVMLGGRNIKVG 75
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
9-132 1.20e-08

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 52.33  E-value: 1.20e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATTPSS 86
Cdd:TIGR01659 110 LIVNYLPQDMTDRELYALFRTIGPINTCRIMRDykTGYSFGYAFVDFGSEADSQRAIKNLNGITVRNKRLKVSYARPGGE 189
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 1191017736  87 QKKDTSsstvvstqrsqdhfhVFVGDLSPEITTEDIKAAFAPFGRI 132
Cdd:TIGR01659 190 SIKDTN---------------LYVTNLPRTITDDQLDTIFGKYGQI 220
RRM_scw1_like cd12245
RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar ...
8-55 1.49e-08

RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar proteins; This subfamily corresponds to the RRM of the family including yeast cell wall integrity protein scw1, yeast Whi3 protein, yeast Whi4 protein and similar proteins. The strong cell wall protein 1, scw1, is a nonessential cytoplasmic RNA-binding protein that regulates septation and cell-wall structure in fission yeast. It may function as an inhibitor of septum formation, such that its loss of function allows weak SIN signaling to promote septum formation. It's RRM domain shows high homology to two budding yeast proteins, Whi3 and Whi4. Whi3 is a dose-dependent modulator of cell size and has been implicated in cell cycle control in the yeast Saccharomyces cerevisiae. It functions as a negative regulator of ceroid-lipofuscinosis, neuronal 3 (Cln3), a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. It specifically binds the CLN3 mRNA and localizes it into discrete cytoplasmic loci that may locally restrict Cln3 synthesis to modulate cell cycle progression. Moreover, Whi3 plays a key role in cell fate determination in budding yeast. The RRM domain is essential for Whi3 function. Whi4 is a partially redundant homolog of Whi3, also containing one RRM. Some uncharacterized family members of this subfamily contain two RRMs; their RRM1 shows high sequence homology to the RRM of RNA-binding protein with multiple splicing (RBP-MS)-like proteins.


Pssm-ID: 409691 [Multi-domain]  Cd Length: 79  Bit Score: 48.77  E-value: 1.49e-08
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1191017736   8 TLYVGNLSRDVTEALILQLFS-QIGPCKNCkmiMDTAGNDPYCFVEFHE 55
Cdd:cd12245     4 TLFVANLGPNVSEQELRQLFSrQPGFRRLR---MHNKGGGPVCFVEFED 49
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
9-80 1.59e-08

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 48.54  E-value: 1.59e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNW 80
Cdd:cd12353     2 IFVGDLSPEIETEDLKEAFAPFGEISDARVVKDTQTGKSkgYGFVSFVKKEDAENAIQGMNGQWLGGRNIRTNW 75
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
7-82 1.77e-08

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 48.61  E-value: 1.77e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12674     1 TTLFVRNLPFDVTLESLTDFFSDIGPVKHAVVVTDpeTKKSRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKLDFAK 78
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
9-81 1.84e-08

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 48.44  E-value: 1.84e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKmIM-----DTAGNDPYC-FVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12223     4 LYVGNLPPSVTEEVLLREFGRFGPLASVK-IMwprteEERRRNRNCgFVAFMSRADAERAMRELNGKDVMGYELKLGWG 81
RRM_RBM7 cd12592
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily ...
7-78 2.47e-08

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily corresponds to the RRM of RBM7, a ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. RBM7 interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20. It may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM7 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus.


Pssm-ID: 410005 [Multi-domain]  Cd Length: 75  Bit Score: 47.90  E-value: 2.47e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12592     2 RTLFVGNLDTKVTEELLFELFLQAGPVIKVKIPKDKDGKPKqFAFVNFKHEVSVPYAMNLLNGIKLYGRPLKI 74
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
9-82 2.65e-08

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 48.01  E-value: 2.65e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12284     1 LYVGSLHFNITEDMLRGIFEPFGKIEFVQLQKDPETGRSkgYGFIQFRDAEDAKKALEQLNGFELAGRPMKVGHVT 76
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
9-81 3.05e-08

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 47.90  E-value: 3.05e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12399     1 LYVGNLPYSASEEQLKSLFGQFGAVFDVKLPMDRETKRPrgFGFVELQEEESAEKAIAKLDGTDFMGRTIRVNEA 75
RRM3_hnRNPR cd12494
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
7-78 3.23e-08

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM3 of hnRNP R. a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP R is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, as well as in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP R binds RNA through its RRM domains.


Pssm-ID: 409917 [Multi-domain]  Cd Length: 72  Bit Score: 47.72  E-value: 3.23e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDtagndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12494     2 KVLFVRNLATTVTEEILEKTFSQFGKLERVKKLKD------YAFVHFEDRDAAVKAMDEMNGKEVEGEEIEI 67
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
3-83 3.28e-08

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 47.89  E-value: 3.28e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   3 DEMPKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNW 80
Cdd:cd12671     3 DRSLRSVFVGNIPYEATEEQLKDIFSEVGPVVSFRLVYDRETGKPkgYGFCEYQDQETALSAMRNLNGYELNGRALRVDN 82

                  ...
gi 1191017736  81 ATT 83
Cdd:cd12671    83 AAS 85
RRM1_SECp43_like cd12344
RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
8-84 3.55e-08

RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM1 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409780 [Multi-domain]  Cd Length: 82  Bit Score: 47.69  E-value: 3.55e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCK-NCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKE--VKVNWAT 82
Cdd:cd12344     1 TLWMGDLEPWMDEAYISSCFAKTGEEVvSVKIIRNkqTGKSAGYCFVEFATQEAAEQALEHLNGKPIPNTQqrFRLNWAS 80

                  ..
gi 1191017736  83 TP 84
Cdd:cd12344    81 FS 82
RRM1_NGR1_NAM8_like cd12611
RNA recognition motif 1 (RRM1) found in yeast negative growth regulatory protein NGR1, yeast ...
8-82 6.01e-08

RNA recognition motif 1 (RRM1) found in yeast negative growth regulatory protein NGR1, yeast protein NAM8 and similar proteins; This subgroup corresponds to the RRM1 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both, RNA and single-stranded DNA (ssDNA), in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The subgroup also includes NAM8, a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 410023 [Multi-domain]  Cd Length: 84  Bit Score: 47.09  E-value: 6.01e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCK-NCKMIMDTAG----NDPYCFVEFhEHRHAAAALAAMNGRKI---MGKEVKVN 79
Cdd:cd12611     1 TLWMGDLEPWMDENFIKQIWASLGLKPvNVKVIRSKSGglngNAGYCFVEF-PSPHAAQNALSLNGTPIpgsESRTFKLN 79

                  ...
gi 1191017736  80 WAT 82
Cdd:cd12611    80 WAS 82
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
6-78 7.14e-08

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 47.23  E-value: 7.14e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   6 PKTLYVGNLSRDVTEALIL-QLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12390     2 SKCLFVDRLPKDFRDGSELrKLFSQVGKPTFCQLAMGNGVPRGFAFVEFASAEDAEEAQQLLNGHDLQGSPIRV 75
RRM2_SECp43_like cd12345
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
8-82 7.22e-08

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM2 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409781 [Multi-domain]  Cd Length: 80  Bit Score: 46.88  E-value: 7.22e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGP-CKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12345     3 SLFVGDLAPDVTDYQLYETFSARYPsVRGAKVVMDpvTGRSKGYGFVRFGDESEQDRALTEMQGVYLGSRPIRVSPAT 80
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
5-53 7.28e-08

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 46.84  E-value: 7.28e-08
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1191017736   5 MPKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEF 53
Cdd:cd12412     1 IPNRIFVGGIDWDTTEEELREFFSKFGKVKDVKIIKDRAGVSKgYGFVTF 50
RRM1_SECp43 cd12610
RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43); ...
8-82 1.00e-07

RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43); This subgroup corresponds to the RRM1 of SECp43, an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region.


Pssm-ID: 410022 [Multi-domain]  Cd Length: 84  Bit Score: 46.55  E-value: 1.00e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIG-PCKNCKMIM--DTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMG----KEVKVNW 80
Cdd:cd12610     1 SLWMGDLEPYMDENFIKRAFATMGeTVLSVKIIRnrVTGGPAGYCFVEFADEATAERCLHKLNGKPIPGsnppKRFKLNH 80

                  ..
gi 1191017736  81 AT 82
Cdd:cd12610    81 AT 82
RRM3_PUB1 cd12622
RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated ...
8-84 1.11e-07

RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subfamily corresponds to the RRM3 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410033 [Multi-domain]  Cd Length: 74  Bit Score: 46.29  E-value: 1.11e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAgndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATTP 84
Cdd:cd12622     2 TVYVGNLPPEVTQADLIPLFQNFGVIEEVRVQRDKG----FGFVKYDTHEEAALAIQQLNGQPFLGRPIKCSWGKKR 74
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
8-82 1.51e-07

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 45.90  E-value: 1.51e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   8 TLYVGNLSRDVT-EALILQLFSQIGPCKNCKMimdtagNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12233     1 TLFVVGFDPGTTrEEDIEKLFEPFGPLVRCDI------RKTFAFVEFEDSEDATKALEALHGSRIDGSVLTVEFVK 70
RRM_RBM11 cd12593
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 11 (RBM11); This subfamily ...
7-78 1.98e-07

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 11 (RBM11); This subfamily corresponds to the RRM or RBM11, a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. RBM11 is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. RBM11 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM of RBM11 is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 410006 [Multi-domain]  Cd Length: 75  Bit Score: 45.56  E-value: 1.98e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGND-PYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12593     2 RTVFVGNLHSNVNEEILYELFLQAGPLTKVTIAKDKEGKPkSFGFVCFKHAESVPYAIALLNGIRLYGRPIKL 74
RRM2_MEI2_EAR1_like cd12276
RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; ...
8-78 2.13e-07

RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM2 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 409718 [Multi-domain]  Cd Length: 71  Bit Score: 45.32  E-value: 2.13e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNckmIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12276     3 TLLVFNLDAPVSNDELKSLFSKFGEIKE---IRPTPDKPSQKFVEFYDVRDAEAALDGLNGRELLGGKLKV 70
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
7-132 2.23e-07

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 48.76  E-value: 2.23e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEhRHAAAALAAMNGRKIMGKEVKVNwattP 84
Cdd:TIGR01622 115 RTVFVQQLAARARERDLYEFFSKVGKVRDVQIIKDRNSRRSkgVGYVEFYD-VDSVQAALALTGQKLLGIPVIVQ----L 189
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1191017736  85 SSQKKDTSSSTVVSTQ----RSQDHFHVFVGDLSPEITTEDIKAAFAPFGRI 132
Cdd:TIGR01622 190 SEAEKNRAARAATETSghhpNSIPFHRLYVGNLHFNITEQDLRQIFEPFGEI 241
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
9-82 2.63e-07

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 45.31  E-value: 2.63e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMimdtAGNDP-YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12373     2 VYVGNLGPRVTKRELEDAFEKYGPLRNVWV----ARNPPgFAFVEFEDPRDAEDAVRALDGRRICGSRVRVELSR 72
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
9-133 3.45e-07

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 47.88  E-value: 3.45e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNwattPSSQ 87
Cdd:TIGR01628  91 IFVKNLDKSVDNKALFDTFSKFGNILSCKVATDENGKSRgYGFVHFEKEESAKAAIQKVNGMLLNDKEVYVG----RFIK 166
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 1191017736  88 KKDTSSSTVvstqrsQDHFHVFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:TIGR01628 167 KHEREAAPL------KKFTNLYVKNLDPSVNEDKLRELFAKFGEIT 206
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
9-89 3.56e-07

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 45.24  E-value: 3.56e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAttpssQ 87
Cdd:cd12380     4 VYVKNFGEDVDDDELKELFEKYGKITSAKVMKDDSGKSKgFGFVNFENHEAAQKAVEELNGKELNGKKLYVGRA-----Q 78

                  ..
gi 1191017736  88 KK 89
Cdd:cd12380    79 KK 80
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
9-90 3.79e-07

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 47.88  E-value: 3.79e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAG-NDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAttpssQ 87
Cdd:TIGR01628 288 LYVKNLDDTVTDEKLRELFSECGEITSAKVMLDEKGvSRGFGFVCFSNPEEANRAVTEMHGRMLGGKPLYVALA-----Q 362

                  ...
gi 1191017736  88 KKD 90
Cdd:TIGR01628 363 RKE 365
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
9-81 3.80e-07

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 45.30  E-value: 3.80e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12324     9 IFVTGVHEEAQEEDIHDKFAEFGEIKNLHLNLDrrTGFVKGYALVEYETKKEAQAAIEGLNGKELLGQTISVDWA 83
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
9-81 4.16e-07

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 44.78  E-value: 4.16e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12449     3 LFVGGLSFDTNEQSLEEVFSKYGQISEVVVVKDreTQRSRGFGFVTFENPDDAKDAMMAMNGKSLDGRQIRVDQA 77
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
9-81 4.22e-07

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 44.91  E-value: 4.22e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12347     1 LYVGGLAEEVDEKVLHAAFIPFGDIVDIQIPLDyeTEKHRGFAFVEFEEAEDAAAAIDNMNESELFGRTIRVNLA 75
RRM3_hnRNPQ cd12495
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
7-81 5.95e-07

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409918 [Multi-domain]  Cd Length: 72  Bit Score: 44.21  E-value: 5.95e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDtagndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12495     2 KVLFVRNLANTVTEEILEKAFSQFGKLERVKKLKD------YAFIHFDERDGAVKAMDEMNGKDLEGENIEIVFA 70
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
8-79 7.38e-07

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 44.11  E-value: 7.38e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYC-FVEFHEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd12418     2 RVRVSNLHPDVTEEDLRELFGRVGPVKSVKINYDRSGRSTGTaYVVFERPEDAEKAIKQFDGVLLDGQPMKVE 74
RRM2_TIA1 cd12618
RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
9-80 9.02e-07

RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410030 [Multi-domain]  Cd Length: 78  Bit Score: 44.23  E-value: 9.02e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNW 80
Cdd:cd12618     5 VFVGDLSPEITTEDIKAAFAPFGRISDARVVKDmaTGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 78
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
108-142 9.93e-07

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 43.85  E-value: 9.93e-07
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI-SVSLKNGQNC 142
Cdd:cd12346     4 VFVGGLDPNVTEEDLRVLFGPFGEIvYVKIPPGKGC 39
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
105-133 1.03e-06

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 44.02  E-value: 1.03e-06
                          10        20
                  ....*....|....*....|....*....
gi 1191017736 105 HFHVFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:cd12619     1 HFNIFVGDLSPEVTDAALFNAFSDFPSCS 29
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
8-81 1.36e-06

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 43.58  E-value: 1.36e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12447     1 TLFVGGLSWNVDDPWLKKEFEKYGGVISARVITDrgSGRSKGYGYVDFATPEAAQKALAAMSGKEIDGRQINVDFS 76
RRM1_SRSF1_like cd12338
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and ...
8-57 1.55e-06

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins; This subgroup corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C), and plant pre-mRNA-splicing factor SF2 (SR1). SRSF1 is a shuttling SR protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF9 has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. It can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. Both, SRSF1 and SRSF9, contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RS domains rich in serine-arginine dipeptides. In contrast, SF2 contains two N-terminal RRMs and a C-terminal PSK domain rich in proline, serine and lysine residues.


Pssm-ID: 409775 [Multi-domain]  Cd Length: 72  Bit Score: 43.12  E-value: 1.55e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKmIMDTAGNDPYCFVEFHEHR 57
Cdd:cd12338     1 RIYVGNLPGDIRERDIEDLFYKYGPILAID-LKNRRRGPPFAFVEFEDPR 49
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
7-57 1.70e-06

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 43.47  E-value: 1.70e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHR 57
Cdd:cd12237     5 LTLFVGRLSLQTTEEKLKEVFSRYGDIRRLRLVRDivTGFSKRYAFIEYKEER 57
RRM_ist3_like cd12411
RNA recognition motif (RRM) found in ist3 family; This subfamily corresponds to the RRM of the ...
9-78 2.11e-06

RNA recognition motif (RRM) found in ist3 family; This subfamily corresponds to the RRM of the ist3 family that includes fungal U2 small nuclear ribonucleoprotein (snRNP) component increased sodium tolerance protein 3 (ist3), X-linked 2 RNA-binding motif proteins (RBMX2) found in Metazoa and plants, and similar proteins. Gene IST3 encoding ist3, also termed U2 snRNP protein SNU17 (Snu17p), is a novel yeast Saccharomyces cerevisiae protein required for the first catalytic step of splicing and for progression of spliceosome assembly. It binds specifically to the U2 snRNP and is an intrinsic component of prespliceosomes and spliceosomes. Yeast ist3 contains an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In the yeast pre-mRNA retention and splicing complex, the atypical RRM of ist3 functions as a scaffold that organizes the other two constituents, Bud13p (bud site selection 13) and Pml1p (pre-mRNA leakage 1). Fission yeast Schizosaccharomyces pombe gene cwf29 encoding ist3, also termed cell cycle control protein cwf29, is an RNA-binding protein complexed with cdc5 protein 29. It also contains one RRM. The biological function of RBMX2 remains unclear. It shows high sequence similarity to yeast ist3 protein and harbors one RRM as well.


Pssm-ID: 409845 [Multi-domain]  Cd Length: 89  Bit Score: 43.35  E-value: 2.11e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12411    12 IYIGGLPYELTEGDILCVFSQYGEIVDINLVRDKKTGKSkgFAFLAYEDQRSTILAVDNLNGIKLLGRTIRV 83
RRM1_hnRNPR_like cd12249
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
9-79 5.24e-06

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM1 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs); DND1 harbors only two RRMs.


Pssm-ID: 409695 [Multi-domain]  Cd Length: 78  Bit Score: 41.81  E-value: 5.24e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAG-NDPYCFVEFHEHRHAAAALAAMNGRKI-MGKEVKVN 79
Cdd:cd12249     4 VFVGKIPRDVFEDELVPLFEKCGKIYELRLMMDFSGlNRGYAFVTYTNKEAAQRAVKTLNNYEIrPGKLLGVC 76
RRM2_SECp43 cd12612
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43); ...
8-82 5.40e-06

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43); This subgroup corresponds to the RRM2 of SECp43, an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region.


Pssm-ID: 410024 [Multi-domain]  Cd Length: 82  Bit Score: 41.97  E-value: 5.40e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGP-CKNCKMIMDTAGNDP-YCFVEFHEHRHAAAALAAMNG-RKIMGKEVKVNWAT 82
Cdd:cd12612     3 SLFVGDLTPEVDDGMLYEFFLKRYPsCKGAKVVLDQLGNSRgYGFVRFSDENEQKRALTECQGaSGLGGKPIRLSVAI 80
RRM1_VICKZ cd12358
RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds ...
9-78 6.10e-06

RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds to the RRM1 of IGF2BPs (or IMPs) found in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 240804 [Multi-domain]  Cd Length: 73  Bit Score: 41.59  E-value: 6.10e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017736   9 LYVGNLSRDVTEALILQLFS-QIGPCKNckMIMDTAGndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12358     1 LYIGNLSSDVNESDLRQLFEeHKIPVSS--VLVKKGG---YAFVDCPDQSWADKAIEKLNGKILQGKVIEV 66
RRM_YRA1_MLO3 cd12267
RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA ...
11-79 7.60e-06

RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA export protein mlo3 and similar proteins; This subfamily corresponds to the RRM of Yra1p and mlo3. Yra1p is an essential nuclear RNA-binding protein encoded by Saccharomyces cerevisiae YRA1 gene. It belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p possesses potent RNA annealing activity and interacts with a number of proteins involved in nuclear transport and RNA processing. It binds to the mRNA export factor Mex67p/TAP and couples transcription to export in yeast. Yra1p is associated with Pse1p and Kap123p, two members of the beta-importin family, further mediating transport of Yra1p into the nucleus. In addition, the co-transcriptional loading of Yra1p is required for autoregulation. Yra1p consists of two highly conserved N- and C-terminal boxes and a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This subfamily includes RNA-annealing protein mlo3, also termed mRNA export protein mlo3, which has been identified in fission yeast as a protein that causes defects in chromosome segregation when overexpressed. It shows high sequence similarity with Yra1p.


Pssm-ID: 409711 [Multi-domain]  Cd Length: 78  Bit Score: 41.64  E-value: 7.60e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736  11 VGNLSRDVTEALILQLF-SQIGPCKNCKMIMDTAGNDP-YCFVEFHEHRHAAAALAAMNGRKIMGKE-VKVN 79
Cdd:cd12267     5 VSNLPKDVTEAQIREYFvSQIGPIKRVLLSYNEGGKSTgIANITFKRAGDATKAYDKFNGRLDDGNRkMKVE 76
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
6-82 7.94e-06

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 41.62  E-value: 7.94e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017736   6 PKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12382     1 PGKLFIGGLNTETNEKALEAVFGKYGRIVEVLLMKDreTNKSRGFAFVTFESPADAKDAARDMNGKELDGKAIKVEQAT 79
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
2-84 9.99e-06

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 43.84  E-value: 9.99e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   2 EDEMP--KTLYVGNLSRDVTEALILQLFSQIGPCK--NCKMIMDtagndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVK 77
Cdd:TIGR01648 227 EDVMAkvKILYVRNLMTTTTEEIIEKSFSEFKPGKveRVKKIRD------YAFVHFEDREDAVKAMDELNGKELEGSEIE 300

                  ....*..
gi 1191017736  78 VNWATTP 84
Cdd:TIGR01648 301 VTLAKPV 307
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
9-81 1.35e-05

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 40.85  E-value: 1.35e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYC--FVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12375     2 LIVNYLPQSMTQEELRSLFGAIGPIESCKLVRDKITGQSLGygFVNYRDPNDARKAINTLNGLDLENKRLKVSYA 76
RRM2_NGR1_NAM8_like cd12613
RNA recognition motif 2 (RRM2) found in yeast negative growth regulatory protein NGR1, yeast ...
8-82 1.83e-05

RNA recognition motif 2 (RRM2) found in yeast negative growth regulatory protein NGR1, yeast protein NAM8 and similar proteins; This subgroup corresponds to the RRM2 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both, RNA and single-stranded DNA (ssDNA), in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 410025 [Multi-domain]  Cd Length: 80  Bit Score: 40.57  E-value: 1.83e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGP-CKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12613     3 SIFVGDLSPTTNESDLVSLFQSRFPsCKSAKIMTDpvTGVSRGYGFVRFSDENDQQRALIEMQGKYCQGRPLRISYAT 80
U2AF_lg TIGR01642
U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of ...
4-100 1.83e-05

U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of an N-terminal arginine-rich low complexity domain followed by three tandem RNA recognition motifs (pfam00076). The well-characterized members of this family are auxilliary components of the U2 small nuclear ribonuclearprotein splicing factor (U2AF). These proteins are closely related to the CC1-like subfamily of splicing factors (TIGR01622). Members of this subfamily are found in plants, metazoa and fungi.


Pssm-ID: 273727 [Multi-domain]  Cd Length: 509  Bit Score: 42.96  E-value: 1.83e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   4 EMPKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:TIGR01642 293 DSKDRIYIGNLPLYLGEDQIKELLESFGDLKAFNLIKDiaTGLSKGYAFCEYKDPSVTDVAIAALNGKDTGDNKLHVQRA 372
                          90       100
                  ....*....|....*....|
gi 1191017736  82 TTPSSQKK-DTSSSTVVSTQ 100
Cdd:TIGR01642 373 CVGANQATiDTSNGMAPVTL 392
RRM_DAZL cd12672
RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; ...
5-55 1.92e-05

RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; This subgroup corresponds to the RRM of DAZL, also termed SPGY-like-autosomal, encoded by the autosomal homolog of DAZ gene, DAZL. It is ancestral to the deleted in azoospermia (DAZ) protein. DAZL is germ-cell-specific RNA-binding protein that contains a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a DAZ motif, a protein-protein interaction domain. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410073 [Multi-domain]  Cd Length: 82  Bit Score: 40.54  E-value: 1.92e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   5 MPKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAG-NDPYCFVEFHE 55
Cdd:cd12672     4 MPNTVFVGGIDIRMDENEIRSFFARYGSVKEVKIITDRTGvSKGYGFVSFYD 55
RRM1_RBM39_like cd12283
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar ...
8-78 2.17e-05

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar proteins; This subfamily corresponds to the RRM1 of RNA-binding protein 39 (RBM39), RNA-binding protein 23 (RBM23) and similar proteins. RBM39 (also termed HCC1) is a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409725 [Multi-domain]  Cd Length: 73  Bit Score: 40.29  E-value: 2.17e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFhEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12283     1 TVFVMQLSLKARERDLYEFFSKAGKVRDVRLIMDrnSRRSKGVAYVEF-YDVESVPLALALTGQRLLGQPIMV 72
RRM_SRSF7 cd12646
RNA recognition motif (RRM) found in vertebrate serine/arginine-rich splicing factor 7 (SRSF7); ...
9-82 2.24e-05

RNA recognition motif (RRM) found in vertebrate serine/arginine-rich splicing factor 7 (SRSF7); This subgroup corresponds to the RRM of SRSF7, also termed splicing factor 9G8, is a splicing regulatory serine/arginine (SR) protein that plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. SRSF7 contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a CCHC-type zinc knuckle motif in its median region, and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 410050 [Multi-domain]  Cd Length: 77  Bit Score: 40.33  E-value: 2.24e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12646     2 VYVGNLGTGAGKGELERAFSYYGPLRTVWIARNPPG---FAFVEFEDPRDAEDAVRGLDGKVICGSRVRVELST 72
RRM2_hnRNPD_like cd12329
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, ...
9-55 3.13e-05

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins; This subfamily corresponds to the RRM2 of hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0, a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. It has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All memembers in this family contain two putative RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 240775 [Multi-domain]  Cd Length: 75  Bit Score: 39.66  E-value: 3.13e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGND--PYCFVEFHE 55
Cdd:cd12329     2 IFVGGLSPETTEEKIREYFGKFGNIVEIELPMDKKTNKrrGFCFITFDS 50
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
9-81 3.35e-05

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 39.96  E-value: 3.35e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12371     3 IYVASVHPDLSEDDIKSVFEAFGKIKSCSLAPDpeTGKHKGYGFIEYENPQSAQDAIASMNLFDLGGQYLRVGRA 77
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
5-89 3.53e-05

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 41.18  E-value: 3.53e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   5 MPKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:PLN03134   33 MSTKLFIGGLSWGTDDASLRDAFAHFGDVVDAKVIVDreTGRSRGFGFVNFNDEGAATAAISEMDGKELNGRHIRVNPAN 112

                  ....*..
gi 1191017736  83 TPSSQKK 89
Cdd:PLN03134  113 DRPSAPR 119
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
9-82 4.19e-05

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 39.59  E-value: 4.19e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12617     4 VFVGDLSPEITTEDIKSAFAPFGKISDARVVKDmaTGKSKGYGFVSFYNKLDAENAIVHMGGQWLGGRQIRTNWAT 79
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
108-141 4.45e-05

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 39.14  E-value: 4.45e-05
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI-SVSLKNGQN 141
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIkSIRLVRDET 35
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
6-83 4.84e-05

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 39.51  E-value: 4.84e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   6 PKTLYVGNLSRDVTEALILQLFSQIGpCKNCKMIMDTAGNDP--YCFVEFhEHRHAAAALAAMNGRKIMGKEVKVNWATT 83
Cdd:cd12402     2 PYTAYLGNLPYDVTEDDIEDFFRGLN-ISSVRLPRENGPGRLrgFGYVEF-EDRESLIQALSLNEESLKNRRIRVDVAGQ 79
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
7-82 5.27e-05

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 39.30  E-value: 5.27e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12407     1 KRLHVSNIPFRFRDPDLRQMFGQFGTILDVEIIFNERGSKGFGFVTFANSADADRAREKLNGTVVEGRKIEVNNAT 76
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
9-71 5.31e-05

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 39.13  E-value: 5.31e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAA----LAAMNGRKI 71
Cdd:cd12400     3 LFVGNLPYDTTAEDLKEHFKKAGEPPSVRLLTDKKTGKSkgCAFVEFDNQKALQKAlklhHTSLGGRKI 71
RRM1_HuR cd12769
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup ...
9-81 6.09e-05

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM1 of HuR, also termed ELAV-like protein 1 (ELAV-1), a ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response; it binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. Meanwhile, HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410162 [Multi-domain]  Cd Length: 82  Bit Score: 39.25  E-value: 6.09e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD-TAGND-PYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12769     5 LIVNYLPQNMTQDELRSLFSSIGEVESAKLIRDkVAGHSlGYGFVNYVTAKDAERAINTLNGLRLQSKTIKVSYA 79
RRM1_SF2_plant_like cd12599
RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar ...
8-78 6.50e-05

RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar proteins; This subgroup corresponds to the RRM1 of SF2, also termed SR1 protein, a plant serine/arginine (SR)-rich phosphoprotein similar to the mammalian splicing factor SF2/ASF. It promotes splice site switching in mammalian nuclear extracts. SF2 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal domain rich in proline, serine and lysine residues (PSK domain), a composition reminiscent of histones. This PSK domain harbors a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2.


Pssm-ID: 410011 [Multi-domain]  Cd Length: 72  Bit Score: 38.96  E-value: 6.50e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMimdTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12599     1 RVYVGNLPMDIREREVEDLFSKYGPVVSIDL---KIPPRPpaYAFVEFEDARDAEDAIRGRDGYDFDGHRLRV 70
RRM2_MEI2_like cd12529
RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to ...
8-78 8.38e-05

RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to the RRM2 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is highly conserved between plants and fungi. To date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409948 [Multi-domain]  Cd Length: 71  Bit Score: 38.64  E-value: 8.38e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNckmIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12529     3 TLVVFNLDPSISNDDLHQIFGAYGEIKE---IRETPNKRHHKFIEFYDVRSAEAALKALNKSEIAGKRIKL 70
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
8-36 9.22e-05

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 38.73  E-value: 9.22e-05
                          10        20
                  ....*....|....*....|....*....
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNC 36
Cdd:cd12413     1 TLFVRNLPYDTTDEQLEELFSDVGPVKRC 29
RRM1_HuC cd12772
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup ...
9-86 9.44e-05

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM1 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410165 [Multi-domain]  Cd Length: 85  Bit Score: 38.95  E-value: 9.44e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAtTPSS 86
Cdd:cd12772     7 LIVNYLPQNMTQEEFKSLFGSIGDIESCKLVRDkiTGQSLGYGFVNYVDPNDADKAINTLNGLKLQTKTIKVSYA-RPSS 85
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
9-72 9.91e-05

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 38.37  E-value: 9.91e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPY--CFVEFHEHRHAAAALAAMNGRKIM 72
Cdd:cd12361     2 LFVGMIPKTASEEDVRPLFEQFGNIEEVQILRDKQTGQSKgcAFVTFSTREEALRAIEALHNKKTM 67
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
108-141 1.06e-04

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 38.42  E-value: 1.06e-04
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI-SVSLKNGQN 141
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFGEVvSVRIVRDRD 35
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
9-55 1.08e-04

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 38.58  E-value: 1.08e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIM--DTAGNDPYCFVEFHE 55
Cdd:cd12397     1 LFVGNLSFETTEEDLRKHFAPAGKIRKVRMATfeDSGKCKGFAFVDFKE 49
RRM1_HuB cd12771
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup ...
9-81 1.09e-04

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM1 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads and is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410164 [Multi-domain]  Cd Length: 83  Bit Score: 38.55  E-value: 1.09e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12771     7 LIVNYLPQNMTQEELKSLFGSIGEIESCKLVRDkiTGQSLGYGFVNYIEPKDAEKAINTLNGLRLQTKTIKVSYA 81
RRM1_CPEBs cd12444
RNA recognition motif 1 (RRM1) found in cytoplasmic polyadenylation element-binding protein ...
108-134 1.09e-04

RNA recognition motif 1 (RRM1) found in cytoplasmic polyadenylation element-binding protein CPEB-1, CPEB-2, CPEB-3, CPEB-4 and similar protiens; This subfamily corresponds to the RRM1 of the CPEB family of proteins that bind to defined groups of mRNAs and act as either translational repressors or activators to regulate their translation. CPEB proteins are well conserved in both, vertebrates and invertebrates. Based on sequence similarity, RNA-binding specificity, and functional regulation of translation, the CPEB proteins have been classified into two subfamilies. The first subfamily includes CPEB-1 and related proteins. CPEB-1 is an RNA-binding protein that interacts with the cytoplasmic polyadenylation element (CPE), a short U-rich motif in the 3' untranslated regions (UTRs) of certain mRNAs. It functions as a translational regulator that plays a major role in the control of maternal CPE-containing mRNA in oocytes, as well as of subsynaptic CPE-containing mRNA in neurons. Once phosphorylated and recruiting the polyadenylation complex, CPEB-1 may function as a translational activator stimulating polyadenylation and translation. Otherwise, it may function as a translational inhibitor when dephosphorylated and bind to a protein such as maskin or neuroguidin, which blocks translation initiation through interfering with the assembly of eIF-4E and eIF-4G. Although CPEB-1 is mainly located in cytoplasm, it can shuttle between nucleus and cytoplasm. The second subfamily includes CPEB-2, CPEB-3, CPEB-4, and related protiens. Due to high sequence similarity, members in this subfamily may share similar expression patterns and functions. CPEB-2 is an RNA-binding protein that is abundantly expressed in testis and localized in cytoplasm in transfected HeLa cells. It preferentially binds to poly(U) RNA oligomers and may regulate the translation of stored mRNAs during spermiogenesis. CPEB-2 impedes target RNA translation at elongation; it directly interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-activated GTP hydrolysis in vitro and inhibit peptide elongation of CPEB2-bound RNA in vivo. CPEB-3 is a sequence-specific translational regulatory protein that regulates translation in a polyadenylation-independent manner. It functions as a translational repressor that governs the synthesis of the AMPA receptor GluR2 through binding GluR2 mRNA. It also represses translation of a reporter RNA in transfected neurons and stimulates translation in response to NMDA. CPEB-4 is an RNA-binding protein that mediates meiotic mRNA cytoplasmic polyadenylation and translation. It is essential for neuron survival and present on the endoplasmic reticulum (ER). It is accumulated in the nucleus upon ischemia or the depletion of ER calcium. CPEB-4 is overexpressed in a large variety of tumors and is associated with many mRNAs in cancer cells. All CPEB proteins are nucleus-cytoplasm shuttling proteins. They contain an N-terminal unstructured region, followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Zn-finger motif. CPEB-2, -3, and -4 have conserved nuclear export signals that are not present in CPEB-1.


Pssm-ID: 409878 [Multi-domain]  Cd Length: 95  Bit Score: 38.74  E-value: 1.09e-04
                          10        20
                  ....*....|....*....|....*..
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRISV 134
Cdd:cd12444     3 VFLGGVPWDITEAELTASFRRFGSLSV 29
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
7-53 1.16e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 38.35  E-value: 1.16e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEF 53
Cdd:cd12415     1 KTVFIRNLSFDTTEEDLKEFFSKFGEVKYARIVLDKDTGHSkgTAFVQF 49
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
8-78 1.18e-04

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 38.46  E-value: 1.18e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGND--PYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12377     1 CIFVYNLAPDADESLLWQLFGPFGAVQNVKIIRDFTTNKckGYGFVTMTNYDEAAVAIASLNGYRLGGRVLQV 73
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
9-81 1.28e-04

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 38.15  E-value: 1.28e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12650     3 LIVNYLPQNMTQDEIRSLFSSIGEIESCKLIRDkvTGQSLGYGFVNYVDPSDAEKAINTLNGLRLQNKTIKVSYA 77
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
9-81 1.54e-04

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 38.02  E-value: 1.54e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12381     4 LYVKNLDDTIDDEKLREEFSPFGTITSAKVMTDEGGRSKgFGFVCFSSPEEATKAVTEMNGRIIGGKPLYVALA 77
RRM1_HuD cd12770
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup ...
9-81 1.57e-04

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM1 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells, as well as the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410163 [Multi-domain]  Cd Length: 81  Bit Score: 38.17  E-value: 1.57e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12770     4 LIVNYLPQNMTQEEFRSLFGSIGEIESCKLVRDkiTGQSLGYGFVNYIDPKDAEKAINTLNGLRLQTKTIKVSYA 78
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
9-81 1.61e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 37.92  E-value: 1.61e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12414     2 LIVRNLPFKCTEDDLKKLFSKFGKVLEVTIPKKPDGKLRgFAFVQFTNVADAAKAIKGMNGKKIKGRPVAVDWA 75
RRM3_TIA1 cd12621
RNA recognition motif 3 (RRM3) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
8-81 1.67e-04

RNA recognition motif 3 (RRM3) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM3 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410032 [Multi-domain]  Cd Length: 72  Bit Score: 37.73  E-value: 1.67e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAgndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12621     2 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKG----YSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWG 71
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
8-55 1.71e-04

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 37.59  E-value: 1.71e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEFHE 55
Cdd:cd12391     1 TVFVSNLDYSVPEDKIREIFSGCGEITDVRLVKNYKGKSKgYCYVEFKD 49
RRM1_SRSF6 cd12596
RNA recognition motif 1 (RRM1) found in vertebrate serine/arginine-rich splicing factor 6 ...
5-81 1.84e-04

RNA recognition motif 1 (RRM1) found in vertebrate serine/arginine-rich splicing factor 6 (SRSF6); This subfamily corresponds to the RRM1 of SRSF6, also termed pre-mRNA-splicing factor SRp55, which is an essential splicing regulatory serine/arginine (SR) protein that preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. For instance, it does not bind to the purine-rich sequence in the calcitonin-specific ESE, but binds to a region adjacent to the purine tract. Moreover, cellular levels of SRSF6 may control tissue-specific alternative splicing of the calcitonin/ calcitonin gene-related peptide (CGRP) pre-mRNA. SRSF6 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal SR domains rich in serine-arginine dipeptides.


Pssm-ID: 410009 [Multi-domain]  Cd Length: 72  Bit Score: 37.63  E-value: 1.84e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   5 MPKtLYVGNLSRDVTEALILQLFSQIGPcknckmIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12596     1 MPR-VYIGRLSYHVREKDIQRFFSGYGK------LLEVDLKNGYGFVEFEDSRDADDAVYELNGKELCGERVIVEHA 70
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
109-136 1.85e-04

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 37.77  E-value: 1.85e-04
                          10        20
                  ....*....|....*....|....*....
gi 1191017736 109 FVGDLSPEITTEDIKAAFAPFGRI-SVSL 136
Cdd:COG0724     5 YVGNLPYSVTEEDLRELFSEYGEVtSVKL 33
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
9-84 1.86e-04

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 37.79  E-value: 1.86e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATTP 84
Cdd:cd21609     2 LYVGNIPRNVTSEELAKIFEEAGTVEIAEVMYDryTGRSRGFGFVTMGSVEDAKAAIEKLNGTEVGGREIKVNITEKP 79
RRM2_PHIP1 cd12272
RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting ...
8-79 2.09e-04

RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; The CD corresponds to the RRM2 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409715 [Multi-domain]  Cd Length: 73  Bit Score: 37.77  E-value: 2.09e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD-TAGN-DPYCFVEFhEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd12272     1 TVYIGNLAWDIDEDDLRELFAECCEITNVRLHTDkETGEfKGYGHVEF-ADEESLDAALKLAGTKLCGRPIRVD 73
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
7-54 2.13e-04

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 38.18  E-value: 2.13e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFH 54
Cdd:cd12676     2 RTLFVRNLPFDATEDELYSHFSQFGPLKYARVVKDPATGRSkgTAFVKFK 51
RRM smart00360
RNA recognition motif;
108-133 2.20e-04

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 37.57  E-value: 2.20e-04
                           10        20
                   ....*....|....*....|....*.
gi 1191017736  108 VFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFGKVE 27
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
8-81 2.32e-04

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 37.76  E-value: 2.32e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12649     2 NLIVNYLPQDLTDREFRALFRAIGPVNTCKIVRDkkTGYSYGFGFVDFTSEEDAQRAIKTLNGLQLQNKRLKVAYA 77
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
9-55 2.50e-04

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 37.38  E-value: 2.50e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDtagnDPYCFVEFHE 55
Cdd:cd12340     2 LFVRPFPPDTSESAIREIFSPYGPVKEVKMLSD----SNFAFVEFEE 44
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
108-132 2.55e-04

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 37.42  E-value: 2.55e-04
                          10        20
                  ....*....|....*....|....*
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI 132
Cdd:cd12397     1 LFVGNLSFETTEEDLRKHFAPAGKI 25
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
9-78 2.67e-04

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 37.21  E-value: 2.67e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDtagndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12343     2 IFVGNLPDAATSEELRALFEKYGKVTECDIVKN------YAFVHMEKEEDAEDAIKALNGYEFMGSRINV 65
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
9-82 2.81e-04

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 39.54  E-value: 2.81e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGND--PYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:TIGR01661 272 IFVYNLSPDTDETVLWQLFGPFGAVQNVKIIRDLTTNQckGYGFVSMTNYDEAAMAILSLNGYTLGNRVLQVSFKT 347
RRM1_RRM2_RBM5_like cd12313
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar ...
7-81 2.84e-04

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar proteins; This subfamily includes the RRM1 and RRM2 of RNA-binding protein 5 (RBM5 or LUCA15 or H37) and RNA-binding protein 10 (RBM10 or S1-1), and the RRM2 of RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). These RBMs share high sequence homology and may play an important role in regulating apoptosis. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM6 has been predicted to be a nuclear factor based on its nuclear localization signal. Both, RBM6 and RBM5, specifically bind poly(G) RNA. RBM10 is a paralog of RBM5. It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. All family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409752 [Multi-domain]  Cd Length: 85  Bit Score: 37.63  E-value: 2.84e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIG--PCKNCKMIMDTAGNDP--YCFVEFHEH----RHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12313     3 NVLILRGLDVLTTEEDILSALQAHAdlPIKDVRLIRDKLTGTSrgFAFVEFSSLedatQVMDALQNLLPPFKIDGRVVSV 82

                  ...
gi 1191017736  79 NWA 81
Cdd:cd12313    83 SYA 85
RRM2_hnRPDL cd12585
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP ...
9-55 3.02e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP DL) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP DL (or hnRNP D-like), also termed AU-rich element RNA-binding factor, or JKT41-binding protein (protein laAUF1 or JKTBP), is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. hnRNP DL binds single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) in a non-sequencespecific manner, and interacts with poly(G) and poly(A) tenaciously. It contains two putative two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 409998 [Multi-domain]  Cd Length: 75  Bit Score: 37.29  E-value: 3.02e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHE 55
Cdd:cd12585     2 VFVGGLSPDTSEEQIKEYFGAFGEIENIELPMDTKTNERrgFCFITYTD 50
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
8-81 3.10e-04

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 37.38  E-value: 3.10e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIM--DTAGNDPYCFVEFhEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12450     1 TLFVGNLSWSATQDDLENFFSDCGEVVDVRIAMdrDDGRSKGFGHVEF-ASAESAQKALEKSGQDLGGREIRLDLA 75
RRM3_RBM47 cd12497
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This ...
7-81 3.33e-04

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM3 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409920 [Multi-domain]  Cd Length: 74  Bit Score: 37.25  E-value: 3.33e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGP-C-KNCKMIMDtagndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12497     2 KILYVRNLMIETTEDTIKKIFGQFNPgCvERVKKIRD------YAFVHFASRDDAVVAMNNLNGTELEGSCIEVTLA 72
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
108-136 3.37e-04

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 37.20  E-value: 3.37e-04
                          10        20        30
                  ....*....|....*....|....*....|
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI-SVSL 136
Cdd:cd12347     1 LYVGGLAEEVDEKVLHAAFIPFGDIvDIQI 30
RRM3_ACF cd12498
RNA recognition motif 3 (RRM3) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
2-81 3.71e-04

RNA recognition motif 3 (RRM3) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM3 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. ACF contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409921 [Multi-domain]  Cd Length: 83  Bit Score: 37.21  E-value: 3.71e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   2 EDEMP--KTLYVGNLSRDVTEALILQLFSQIGP--CKNCKMIMDtagndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVK 77
Cdd:cd12498     2 EDTMSsvKILYVRNLMLSTTEETIEKEFSNIKPgaVERVKKIRD------YAFVHFYNREDAVNAMNALNGKVIDGSPIE 75

                  ....
gi 1191017736  78 VNWA 81
Cdd:cd12498    76 VTLA 79
RRM1_SRSF4_like cd12337
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
9-81 3.76e-04

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 409774 [Multi-domain]  Cd Length: 70  Bit Score: 36.91  E-value: 3.76e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMimdtagNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12337     2 VYIGRLPYRARERDVERFFRGYGRIRDINL------KNGFGFVEFEDPRDADDAVYELNGKELCGERVIVEHA 68
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
108-133 4.15e-04

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 36.79  E-value: 4.15e-04
                          10        20
                  ....*....|....*....|....*.
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:cd12226     2 LFVGGLSPSITEDDLERRFSRFGTVS 27
RRM3_SHARP cd12350
RNA recognition motif 3 (RRM3) found in SMART/HDAC1-associated repressor protein (SHARP) and ...
7-78 4.17e-04

RNA recognition motif 3 (RRM3) found in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins; This subfamily corresponds to the RRM3 of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins.


Pssm-ID: 409786 [Multi-domain]  Cd Length: 74  Bit Score: 37.00  E-value: 4.17e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKmIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12350     3 RTLFIGNLEKTTTYGDLRNIFERFGEIIDID-IKKQNGNPQYAFLQYCDIASVVKAIKKMDGEYLGNNRLKL 73
RRM4_RBM28_like cd12416
RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
9-58 4.19e-04

RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM4 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409850 [Multi-domain]  Cd Length: 98  Bit Score: 37.19  E-value: 4.19e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQI---------GPCKNCKMIMDTAGNDP--------YCFVEFHEHRH 58
Cdd:cd12416     3 LCVRNLPKSVDDKKLKKLFLKAvkerakkkgVKIKEVKVMRDKKRLNSdgkgrskgYGFVEFTEHEH 69
RRM2_PSRP2 cd21610
RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
6-81 4.32e-04

RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). PSRP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410189 [Multi-domain]  Cd Length: 79  Bit Score: 36.83  E-value: 4.32e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017736   6 PKTLYVGNLSRDVTEALILQLFSQIGPCKNCKM--IMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd21610     2 PYKVYVGNLAKTVTNELLKDFFSEKGKVLGAKVqrTPGTSKSNGFGFVSFSSEEDVEAAIQALNNSVLEGQKIRVNKA 79
RRM3_PES4_MIP6 cd21603
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
7-78 5.09e-04

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410182 [Multi-domain]  Cd Length: 73  Bit Score: 36.49  E-value: 5.09e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd21603     1 NAIFVKNLPLDTNNDEILDFFSKVGPIKSVFTSPKYKYNSLWAFVTYKKGSDTEKAIKLLNGTLFKGRTIEV 72
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
9-56 5.44e-04

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 38.83  E-value: 5.44e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEF-HEH 56
Cdd:TIGR01648  61 VFVGKIPRDLYEDELVPLFEKAGPIYELRLMMDFSGQNRgYAFVTFcGKE 110
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
9-78 5.83e-04

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 36.48  E-value: 5.83e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12311     1 LKVDNLTYRTTPDDLRRVFEKYGEVGDVYIPRDRYTRESrgFAFVRFYDKRDAEDAIDAMDGAELDGRELRV 72
RRM1_SRSF4_like cd12337
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
108-139 5.87e-04

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 409774 [Multi-domain]  Cd Length: 70  Bit Score: 36.14  E-value: 5.87e-04
                          10        20        30
                  ....*....|....*....|....*....|...
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRIS-VSLKNG 139
Cdd:cd12337     2 VYIGRLPYRARERDVERFFRGYGRIRdINLKNG 34
RRM3_RBM46 cd12496
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 46 (RBM46); This ...
7-81 6.20e-04

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 46 (RBM46); This subgroup corresponds to the RRM3 of RBM46, also termed cancer/testis antigen 68 (CT68), is a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409919 [Multi-domain]  Cd Length: 74  Bit Score: 36.52  E-value: 6.20e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGP--CKNCKMIMDtagndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12496     2 KVLYVRNLMISTTEETIKAEFNKFKPgvVERVKKLRD------YAFVHFFNREDAVAAMSVMNGKCIDGASIEVTLA 72
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
7-78 6.22e-04

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 36.49  E-value: 6.22e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPcknCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12524     2 RTLFVRNINSSVEDEELRALFEQFGE---IRTLYTACKHRGFIMVSYYDIRAAQSAKRALQGTELGGRKLDI 70
RRM_FET cd12280
RNA recognition motif (RRM) found in the FET family of RNA-binding proteins; This subfamily ...
9-78 6.87e-04

RNA recognition motif (RRM) found in the FET family of RNA-binding proteins; This subfamily corresponds to the RRM of FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA-binding proteins. This ubiquitously expressed family of similarly structured proteins predominantly localizing to the nuclear, includes FUS (also known as TLS or Pigpen or hnRNP P2), EWS (also known as EWSR1), TAF15 (also known as hTAFII68 or TAF2N or RPB56), and Drosophila Cabeza (also known as SARFH). The corresponding coding genes of these proteins are involved in deleterious genomic rearrangements with transcription factor genes in a variety of human sarcomas and acute leukemias. All FET proteins interact with each other and are therefore likely to be part of the very same protein complexes, which suggests a general bridging role for FET proteins coupling RNA transcription, processing, transport, and DNA repair. The FET proteins contain multiple copies of a degenerate hexapeptide repeat motif at the N-terminus. The C-terminal region consists of a conserved nuclear import and retention signal (C-NLS), a putative zinc-finger domain, and a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is flanked by 3 arginine-glycine-glycine (RGG) boxes. FUS and EWS might have similar sequence specificity; both bind preferentially to GGUG-containing RNAs. FUS has also been shown to bind strongly to human telomeric RNA and to small low-copy-number RNAs tethered to the promoter of cyclin D1. To date, nothing is known about the RNA binding specificity of TAF15.


Pssm-ID: 409722 [Multi-domain]  Cd Length: 82  Bit Score: 36.23  E-value: 6.87e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCK--------NCKMIMDTAGNDPY--CFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12280     1 IFVSGLPPDVTIDELADLFGQIGIIKrykdtwppKIKIYTDKETGKPKgeATLTYEDPSAAKAAIEWFNGKEFRGNKIKV 80
RRM2_hnRNPA_like cd12328
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
9-56 7.78e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM2 of hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409766 [Multi-domain]  Cd Length: 73  Bit Score: 36.09  E-value: 7.78e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEH 56
Cdd:cd12328     2 LFVGGLKEDVEEEDLREYFSQFGKVESVEIVTDKETGKKrgFAFVTFDDH 51
RRM2_Spen cd12309
RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily ...
7-80 8.88e-04

RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily corresponds to the RRM2 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 240755 [Multi-domain]  Cd Length: 79  Bit Score: 36.22  E-value: 8.88e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNC--KMIMDTAGNDpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNW 80
Cdd:cd12309     3 RTLFVGNLEITITEEELRRAFERYGVVEDVdiKRPPRGQGNA-YAFVKFLNLDMAHRAKVAMSGQYIGRNQIKIGY 77
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
108-133 8.97e-04

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 35.67  E-value: 8.97e-04
                          10        20
                  ....*....|....*....|....*.
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:cd12343     2 IFVGNLPDAATSEELRALFEKYGKVT 27
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
9-129 9.80e-04

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 38.06  E-value: 9.80e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPcKNCKMIM-----DTAGNDPYCFVEFHEHRHAAAALAA-MNGR-KIMGKEVKVNWA 81
Cdd:TIGR01648 141 LFVGGIPKNKKREEILEEFSKVTE-GVVDVIVyhsaaDKKKNRGFAFVEYESHRAAAMARRKlMPGRiQLWGHVIAVDWA 219
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*...
gi 1191017736  82 TTPSSQKKDTSSSTVVstqrsqdhfhVFVGDLSPEITTEDIKAAFAPF 129
Cdd:TIGR01648 220 EPEEEVDEDVMAKVKI----------LYVRNLMTTTTEEIIEKSFSEF 257
RRM2_SF3B4 cd12335
RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
9-90 1.22e-03

RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM2 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 is a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409772 [Multi-domain]  Cd Length: 83  Bit Score: 35.80  E-value: 1.22e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIM---DTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATtps 85
Cdd:cd12335     4 LFIGNLDPEVDEKLLYDTFSAFGVILQTPKIMrdpDTGNSKGFGFVSFDSFEASDAAIEAMNGQYLCNRPITVSYAF--- 80

                  ....*
gi 1191017736  86 sqKKD 90
Cdd:cd12335    81 --KKD 83
RRM2_hnRPDL cd12585
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP ...
108-132 1.22e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP DL) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP DL (or hnRNP D-like), also termed AU-rich element RNA-binding factor, or JKT41-binding protein (protein laAUF1 or JKTBP), is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. hnRNP DL binds single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) in a non-sequencespecific manner, and interacts with poly(G) and poly(A) tenaciously. It contains two putative two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 409998 [Multi-domain]  Cd Length: 75  Bit Score: 35.75  E-value: 1.22e-03
                          10        20
                  ....*....|....*....|....*
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI 132
Cdd:cd12585     2 VFVGGLSPDTSEEQIKEYFGAFGEI 26
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
9-81 1.23e-03

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 35.63  E-value: 1.23e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEFH-EHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12226     2 LFVGGLSPSITEDDLERRFSRFGTVSDVEIIRKKDAPDRgFAYIDLRtSEAALQKCLSTLNGVKWKGSRLKIQLA 76
RRM_RBM44 cd12248
RNA recognition motif (RRM) found in RNA-binding protein 44 (RBM44) and similar proteins; ...
9-78 1.35e-03

RNA recognition motif (RRM) found in RNA-binding protein 44 (RBM44) and similar proteins; This subgroup corresponds to the RRM of RBM44, a novel germ cell intercellular bridge protein that is localized in the cytoplasm and intercellular bridges from pachytene to secondary spermatocyte stages. RBM44 interacts with itself and testis-expressed gene 14 (TEX14). Unlike TEX14, RBM44 does not function in the formation of stable intercellular bridges. It carries an RNA recognition motif (RRM) that could potentially bind a multitude of RNA sequences in the cytoplasm and help to shuttle them through the intercellular bridge, facilitating their dispersion into the interconnected neighboring cells.


Pssm-ID: 409694 [Multi-domain]  Cd Length: 77  Bit Score: 35.66  E-value: 1.35e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKncKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12248     4 VHVGNLAPSVSEEDLLMHFEKYHVSK--ISIQKLSMNYRYASLTFDDASDAQAAVKEMNGKDISGRKVKV 71
RRM2_CoAA cd12609
RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator ...
9-78 1.57e-03

RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410021 [Multi-domain]  Cd Length: 68  Bit Score: 35.21  E-value: 1.57e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDtagndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12609     3 IFVGNVSATCTSDELRGLFEEFGRVVECDKVKD------YAFVHMEREEEALAAIEALNGKEVKGRRINV 66
RRM1_ACF cd12486
RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
9-71 1.74e-03

RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM1 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. It contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409912 [Multi-domain]  Cd Length: 78  Bit Score: 35.34  E-value: 1.74e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEFHEHRHAAAALAAMNGRKI 71
Cdd:cd12486     4 IFIGKLPRDLFEDELVPLCEKIGKIYEMRMMMDFNGNNRgYAFVTFSNKQEARNAIKQLNNYEI 67
RRM_TDRD10 cd21617
RNA recognition motif (RRM) found in Tudor domain-containing protein 10 (TDRD10) and similar ...
9-79 1.74e-03

RNA recognition motif (RRM) found in Tudor domain-containing protein 10 (TDRD10) and similar proteins; TDRD10 is widely expressed and localized both to the nucleus and cytoplasm and may play general roles like regulation of RNA metabolism. It contains a Tudor domain and a RNA recognition motif (RRM).


Pssm-ID: 410196 [Multi-domain]  Cd Length: 69  Bit Score: 35.09  E-value: 1.74e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMImdtAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd21617     2 VYVGNLPLDISEEEILQLFKAFNPVLVKKIR---SGFKCFAFVDLGSDENVKLAIQQLNGTLFGGRRLVVN 69
RRM1_SRSF1 cd12597
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and ...
108-143 1.80e-03

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins; This subgroup corresponds to the RRM1 of SRSF1, also termed alternative-splicing factor 1 (ASF-1), or pre-mRNA-splicing factor SF2, P33 subunit. SRSF1 is a splicing regulatory serine/arginine (SR) protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF1 is a shuttling SR protein and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a long glycine-rich spacer, and a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 410010 [Multi-domain]  Cd Length: 79  Bit Score: 35.21  E-value: 1.80e-03
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRIS-VSLKNGQNCP 143
Cdd:cd12597     7 IYVGNLPPDIRTKDIEDVFYKYGAIRdIDLKNRRGGP 43
RRM3_TIAR cd12620
RNA recognition motif 3 (RRM3) found in nucleolysin TIAR and similar proteins; This subgroup ...
8-81 1.85e-03

RNA recognition motif 3 (RRM3) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM3 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 241064 [Multi-domain]  Cd Length: 73  Bit Score: 35.00  E-value: 1.85e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAgndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12620     2 TVYCGGIASGLTEQLMRQTFSPFGQIMEIRVFPEKG----YSFVRFSTHESAAHAIVSVNGTTIEGHVVKCYWG 71
RRM1_CPEB2_like cd12724
RNA recognition motif 1 (RRM1) found in cytoplasmic polyadenylation element-binding protein ...
108-134 1.87e-03

RNA recognition motif 1 (RRM1) found in cytoplasmic polyadenylation element-binding protein CPEB-2, CPEB-3, CPEB-4 and similar protiens; This subgroup corresponds to the RRM1 of the paralog proteins CPEB-2, CPEB-3 and CPEB-4, all well-conserved in both, vertebrates and invertebrates. Due to the high sequence similarity, members in this family may share similar expression patterns and functions. CPEB-2 is an RNA-binding protein that is abundantly expressed in testis and localized in cytoplasm in transfected HeLa cells. It preferentially binds to poly(U) RNA oligomers and may regulate the translation of stored mRNAs during spermiogenesis. Moreover, CPEB-2 impedes target RNA translation at elongation; it directly interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-activated GTP hydrolysis in vitro and inhibit peptide elongation of CPEB2-bound RNA in vivo. CPEB-3 is a sequence-specific translational regulatory protein that regulates translation in a polyadenylation-independent manner. It functions as a translational repressor that governs the synthesis of the AMPA receptor GluR2 through binding GluR2 mRNA. It also represses translation of a reporter RNA in transfected neurons and stimulates translation in response to NMDA. CPEB-4 is an RNA-binding protein that mediates meiotic mRNA cytoplasmic polyadenylation and translation. It is essential for neuron survival and present on the endoplasmic reticulum (ER). It is accumulated in the nucleus upon ischemia or the depletion of ER calcium. CPEB-4 is overexpressed in a large variety of tumors and is associated with many mRNAs in cancer cells. All family members contain an N-terminal unstructured region, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Zn-finger motif. In addition, they do have conserved nuclear export signals that are not present in CPEB-1.


Pssm-ID: 410123 [Multi-domain]  Cd Length: 92  Bit Score: 35.44  E-value: 1.87e-03
                          10        20
                  ....*....|....*....|....*..
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRISV 134
Cdd:cd12724     3 VFVGGLPPDIDEDEITASFRRFGPLVV 29
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
7-53 2.00e-03

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 35.75  E-value: 2.00e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEF 53
Cdd:cd21615    19 KTLFVGRLDYSLTELELQKKFSKFGEIEKIRIVRDKETGKSrgYAFIVF 67
RRM2_hnRNPD_like cd12329
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, ...
108-132 2.17e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins; This subfamily corresponds to the RRM2 of hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0, a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. It has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All memembers in this family contain two putative RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 240775 [Multi-domain]  Cd Length: 75  Bit Score: 35.03  E-value: 2.17e-03
                          10        20
                  ....*....|....*....|....*
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI 132
Cdd:cd12329     2 IFVGGLSPETTEEKIREYFGKFGNI 26
RRM1_RIM4_like cd12453
RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; ...
9-79 2.20e-03

RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409887 [Multi-domain]  Cd Length: 86  Bit Score: 35.08  E-value: 2.20e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNL----SRDVTEALILQLFSQIGPCKNCKMIMDTAgNDPYCFVEF----HEHRHAAAALAAM-NGRKIMGKEVKVN 79
Cdd:cd12453     5 LFVASLssarSDEELCAAVTNHFSKWGELLNVKVLKDWS-NRPYAFVQYtnteDAKNALVNGHNTLlDGRHLRVEKAKVN 83
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
9-83 2.42e-03

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 34.90  E-value: 2.42e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATT 83
Cdd:cd12363     4 LGVFGLSLYTTERDLREVFSRYGPIEKVQVVYDqqTGRSRGFGFVYFESVEDAKEAKERLNGQEIDGRRIRVDYSIT 80
RRM3_HuR cd12653
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen R (HuR); This subgroup ...
9-87 2.42e-03

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM3 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410056 [Multi-domain]  Cd Length: 85  Bit Score: 35.03  E-value: 2.42e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGN--DPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATTPSS 86
Cdd:cd12653     5 IFIYNLGQDADEGILWQMFGPFGAVTNVKVIRDFNTNkcKGFGFVTMTNYEEAAMAIASLNGYRLGDKILQVSFKTNKSH 84

                  .
gi 1191017736  87 Q 87
Cdd:cd12653    85 K 85
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
8-45 2.67e-03

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 34.51  E-value: 2.67e-03
                          10        20        30
                  ....*....|....*....|....*....|....*...
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGN 45
Cdd:cd12680     2 KLLVSNLDFGVSDADIKELFAEFGTLKKAAVHYDRSGR 39
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
9-79 2.78e-03

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 34.69  E-value: 2.78e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd12448     1 LFVGNLPFSATQDALYEAFSQHGSIVSVRLPTDRETGQPkgFGYVDFSTIDSAEAAIDALGGEYIDGRPIRLD 73
RRM_RBM42 cd12383
RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This ...
9-78 3.01e-03

RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This subfamily corresponds to the RRM of RBM42 which has been identified as a heterogeneous nuclear ribonucleoprotein K (hnRNP K)-binding protein. It also directly binds the 3' untranslated region of p21 mRNA that is one of the target mRNAs for hnRNP K. Both, hnRNP K and RBM42, are components of stress granules (SGs). Under nonstress conditions, RBM42 predominantly localizes within the nucleus and co-localizes with hnRNP K. Under stress conditions, hnRNP K and RBM42 form cytoplasmic foci where the SG marker TIAR localizes, and may play a role in the maintenance of cellular ATP level by protecting their target mRNAs. RBM42 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409817 [Multi-domain]  Cd Length: 83  Bit Score: 34.56  E-value: 3.01e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12383     9 IFCGDLGNEVTDEVLARAFSKYPSFQKAKVIRDKRTGKSkgYGFVSFKDPNDYLKALREMNGKYVGNRPIKL 80
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
9-84 3.23e-03

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 36.59  E-value: 3.23e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTA--GNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATTP 84
Cdd:TIGR01645 207 IYVASVHPDLSETDIKSVFEAFGEIVKCQLARAPTgrGHKGYGFIEYNNLQSQSEAIASMNLFDLGGQYLRVGKCVTP 284
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
7-53 3.33e-03

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 34.51  E-value: 3.33e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-----YCFVEF 53
Cdd:cd12318     1 TTLFVKNLNFKTTEEALKKHFEKCGPIRSVTIAKKKDPKGPllsmgYGFVEF 52
RRM2_CELF3_4_5_6 cd12635
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
7-72 3.34e-03

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM2 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, being highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, being strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in a muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410043 [Multi-domain]  Cd Length: 81  Bit Score: 34.70  E-value: 3.34e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYC-FVEFHEHRHAAAALAAMNGRKIM 72
Cdd:cd12635     2 RKLFVGMLGKQQSEDDVRRLFEPFGSIEECTILRGPDGNSKGCaFVKFSSHAEAQAAINALHGSQTM 68
RRM_RDM1 cd12364
RNA recognition motif (RRM) found in RAD52 motif-containing protein 1 (RDM1) and similar ...
7-79 3.45e-03

RNA recognition motif (RRM) found in RAD52 motif-containing protein 1 (RDM1) and similar proteins; This subfamily corresponds to the RRM of RDM1, also termed RAD52 homolog B, a novel factor involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. RDM1 contains a small RD motif that shares with the recombination and repair protein RAD52, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The RD motif is responsible for the acidic pH-dependent DNA-binding properties of RDM1. It interacts with ss- and dsDNA, and may act as a DNA-damage recognition factor by recognizing the distortions of the double helix caused by cisplatin-DNA adducts in vitro. In addition, due to the presence of RRM, RDM1 can bind to RNA as well as DNA.


Pssm-ID: 409799 [Multi-domain]  Cd Length: 81  Bit Score: 34.65  E-value: 3.45e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   7 KTLYVGNLSRDVTEA----LILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKE-VKVN 79
Cdd:cd12364     1 KTLFVWNISPKLTEEeiyeSLCKAFSAFGLLYSVRVFPNAAVATPgfYAFVKFYSARDASRAQKALNGKWLFQGSpLKVR 80
RRM_SKAR cd12681
RNA recognition motif (RRM) found in S6K1 Aly/REF-like target (SKAR) and similar proteins; ...
8-79 3.76e-03

RNA recognition motif (RRM) found in S6K1 Aly/REF-like target (SKAR) and similar proteins; This subgroup corresponds to the RRM of SKAR, also termed polymerase delta-interacting protein 3 (PDIP3), 46 kDa DNA polymerase delta interaction protein (PDIP46), belonging to the Aly/REF family of RNA binding proteins that have been implicated in coupling transcription with pre-mRNA splicing and nucleo-cytoplasmic mRNA transport. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion. SKAR contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410082 [Multi-domain]  Cd Length: 69  Bit Score: 34.17  E-value: 3.76e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMImdTAGNdpyCFVEFHEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd12681     2 RLTVSNLHPSVTEDDIVELFSVIGALKRARLV--RPGV---AEVVYVRREDAITAIKKYNNRELDGQPMKCK 68
RRM_SCAF4_SCAF8 cd12227
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ...
8-82 3.82e-03

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409674 [Multi-domain]  Cd Length: 77  Bit Score: 34.33  E-value: 3.82e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAgndpyC-FVEFHEHRHAAAALAAMNGRKIMGKEVKVNWAT 82
Cdd:cd12227     4 TLWVGHLSKKVTQEELKNLFEEYGEIQSIDMIPPRG-----CaYVCMKTRQDAHRALQKLKNHKLRGKSIKIAWAP 74
RRM_RALY cd12604
RNA recognition motif (RRM) found in vertebrate RNA-binding protein Raly; This subgroup ...
9-84 4.05e-03

RNA recognition motif (RRM) found in vertebrate RNA-binding protein Raly; This subgroup corresponds to the RRM of Raly, also termed autoantigen p542, or heterogeneous nuclear ribonucleoprotein C-like 2, or hnRNP core protein C-like 2, or hnRNP associated with lethal yellow protein homolog, an RNA-binding protein that may play a critical role in embryonic development. It is encoded by Raly, a ubiquitously expressed gene of unknown function. Raly shows a high degree of identity with the 5' sequences of p542 gene encoding autoantigen, which can cross-react with EBNA-1 of the Epstein Barr virus. Raly contains two distinct domains, an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain that includes a unique glycine/serine-rich stretch.


Pssm-ID: 410016 [Multi-domain]  Cd Length: 76  Bit Score: 34.23  E-value: 4.05e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   9 LYVGNLSRD-VTEALILQLFSQIGPCKNCKMimdtagNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATTP 84
Cdd:cd12604     4 VFIGNLNTAvVKKSDVETIFSKYGRVVGCSV------HKGYAFVQYTNERHARAAVIGENGRVLAGQTLDINMAGEP 74
RRM2_hnRNPA0 cd12579
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) ...
9-56 4.16e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A0, a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409993 [Multi-domain]  Cd Length: 80  Bit Score: 34.42  E-value: 4.16e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEFHEH 56
Cdd:cd12579     2 LFVGGLKGDVGEGDLVEHFSQFGTVEKVEVIADkdTGKKRGFGFVYFEDH 51
RRM_BOULE cd12673
RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of ...
5-53 4.19e-03

RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of BOULE, the founder member of the human DAZ gene family. Invertebrates contain a single BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. BOULE encodes an RNA-binding protein containing an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a single copy of the DAZ motif. Although its specific biochemical functions remains to be investigated, BOULE protein may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410074 [Multi-domain]  Cd Length: 81  Bit Score: 34.47  E-value: 4.19e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1191017736   5 MPKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAG-NDPYCFVEF 53
Cdd:cd12673     1 IPNRIFVGGIDFKTNENDLRKFFAQYGSVKEVKIVNDRAGvSKGYGFITF 50
RRM3_HuD cd12656
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen D (HuD); This subgroup ...
9-87 4.27e-03

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM3 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells. And it also regulates the neurite elongation and morphological differentiation. HuD specifically bound poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241100 [Multi-domain]  Cd Length: 86  Bit Score: 34.29  E-value: 4.27e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGN--DPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATTPSS 86
Cdd:cd12656     6 IFVYNLSPDSDESVLWQLFGPFGAVNNVKVIRDFNTNkcKGFGFVTMTNYDEAAMAIASLNGYRLGDRVLQVSFKTNKTH 85

                  .
gi 1191017736  87 Q 87
Cdd:cd12656    86 K 86
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
108-132 4.50e-03

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 34.07  E-value: 4.50e-03
                          10        20
                  ....*....|....*....|....*
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI 132
Cdd:cd21608     2 LYVGNLSWDTTEDDLRDLFSEFGEV 26
RRM2_RIM4_like cd12454
RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; ...
6-78 4.94e-03

RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM2 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409888 [Multi-domain]  Cd Length: 80  Bit Score: 33.98  E-value: 4.94e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017736   6 PKTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12454     3 KLSIFVGQLDPKTTDSELFRRFSKYGKIVDCKLIKRPEPVNAFAFLRFESEEAAEAAVEEENHSEFLNKQIRV 75
RRM_hnRNPC_like cd12341
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein C (hnRNP C) ...
9-79 5.43e-03

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein C (hnRNP C)-related proteins; This subfamily corresponds to the RRM in the hnRNP C-related protein family, including hnRNP C proteins, Raly, and Raly-like protein (RALYL). hnRNP C proteins, C1 and C2, are produced by a single coding sequence. They are the major constituents of the heterogeneous nuclear RNA (hnRNA) ribonucleoprotein (hnRNP) complex in vertebrates. They bind hnRNA tightly, suggesting a central role in the formation of the ubiquitous hnRNP complex; they are involved in the packaging of the hnRNA in the nucleus and in processing of pre-mRNA such as splicing and 3'-end formation. Raly, also termed autoantigen p542, is an RNA-binding protein that may play a critical role in embryonic development. The biological role of RALYL remains unclear. It shows high sequence homology with hnRNP C proteins and Raly. Members of this family are characterized by an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain. The Raly proteins contain a glycine/serine-rich stretch within the C-terminal regions, which is absent in the hnRNP C proteins. Thus, the Raly proteins represent a newly identified class of evolutionarily conserved autoepitopes.


Pssm-ID: 409778 [Multi-domain]  Cd Length: 68  Bit Score: 33.76  E-value: 5.43e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   9 LYVGNLSRD-VTEALILQLFSQIGPCKNCKMimdtagNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd12341     3 IFVGNLPTDqMTKEDLEEIFSKYGKILGISL------HKGYGFVQFDNEEDARAAVAGENGRTIKGQRLDIN 68
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
109-133 5.58e-03

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 33.81  E-value: 5.58e-03
                          10        20
                  ....*....|....*....|....*
gi 1191017736 109 FVGDLSPEITTEDIKAAFAPFGRIS 133
Cdd:cd12332     5 FVGNLPNDITEEEFKELFQKYGEVS 29
RRM1_hnRNPR cd12482
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
9-53 5.64e-03

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM1 of hnRNP R, which is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. It is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, and in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; it binds RNA through its RRM domains.


Pssm-ID: 409909 [Multi-domain]  Cd Length: 79  Bit Score: 33.79  E-value: 5.64e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEF 53
Cdd:cd12482     4 VFVGKIPRDLYEDELVPLFEKAGPIWDLRLMMDplSGQNRGYAFITF 50
RRM1_CID8_like cd12459
RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana CTC-interacting domain protein ...
7-53 5.81e-03

RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins; This subgroup corresponds to the RRM1 domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear.


Pssm-ID: 409892 [Multi-domain]  Cd Length: 80  Bit Score: 33.93  E-value: 5.81e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCFVEF 53
Cdd:cd12459     3 RTVYVSDIDQQVTEEQLAALFSNCGQVVDCRICGDPNSVLRFAFIEF 49
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
7-81 5.87e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 33.89  E-value: 5.87e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017736   7 KTLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYCF--VEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 81
Cdd:cd12312     1 TSLFVRNVADDTRPDDLRREFGRYGPIVDVYIPLDFYTRRPRGFayIQFEDVRDAEDALYYLDRTRFLGREIEIQFA 77
RRM1_RBM34 cd12394
RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
108-138 6.01e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM1 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409828 [Multi-domain]  Cd Length: 91  Bit Score: 34.11  E-value: 6.01e-03
                          10        20        30
                  ....*....|....*....|....*....|..
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI-SVSLKN 138
Cdd:cd12394     3 VFVGNLPVTVKKKALKKLFKEFGKIeSVRFRS 34
RRM_eIF4H cd12401
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and ...
2-81 6.18e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and similar proteins; This subfamily corresponds to the RRM of eIF-4H, also termed Williams-Beuren syndrome chromosomal region 1 protein, which, together with elf-4B/eIF-4G, serves as the accessory protein of RNA helicase eIF-4A. eIF-4H contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It stimulates protein synthesis by enhancing the helicase activity of eIF-4A in the initiation step of mRNA translation.


Pssm-ID: 409835 [Multi-domain]  Cd Length: 84  Bit Score: 33.80  E-value: 6.18e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   2 EDEMPKTLYVGNLSRDVTEALILQLFSQIgPCKNCKMIMD--TAGNDPYCFVEFhEHRHAAAALAAMNGRKIMGKEVKVN 79
Cdd:cd12401     1 PTEPPFTAYVGNLPFNTVQGDLDAIFKDL-KVRSVRLVRDreTDKFKGFCYVEF-EDLESLKEALEYDGALFEDRPLRVD 78

                  ..
gi 1191017736  80 WA 81
Cdd:cd12401    79 IA 80
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
108-132 6.60e-03

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 33.84  E-value: 6.60e-03
                          10        20
                  ....*....|....*....|....*
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI 132
Cdd:cd12330     2 IFVGGLAPDVTEEEFKEYFEQFGTV 26
RRM1_SRSF1_like cd12338
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and ...
108-144 7.01e-03

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins; This subgroup corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C), and plant pre-mRNA-splicing factor SF2 (SR1). SRSF1 is a shuttling SR protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF9 has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. It can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. Both, SRSF1 and SRSF9, contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RS domains rich in serine-arginine dipeptides. In contrast, SF2 contains two N-terminal RRMs and a C-terminal PSK domain rich in proline, serine and lysine residues.


Pssm-ID: 409775 [Multi-domain]  Cd Length: 72  Bit Score: 33.49  E-value: 7.01e-03
                          10        20        30
                  ....*....|....*....|....*....|....*...
gi 1191017736 108 VFVGDLSPEITTEDIKAAFAPFGRI-SVSLKNGQNCPG 144
Cdd:cd12338     2 IYVGNLPGDIRERDIEDLFYKYGPIlAIDLKNRRRGPP 39
RRM3_HuB cd12654
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen B (HuB); This subgroup ...
9-87 7.07e-03

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM3 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241098 [Multi-domain]  Cd Length: 86  Bit Score: 33.92  E-value: 7.07e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGN--DPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWATTPSS 86
Cdd:cd12654     6 IFVYNLAPDADESILWQMFGPFGAVTNVKVIRDFNTNkcKGFGFVTMTNYDEAAMAIASLNGYRLGDRVLQVSFKTNKTH 85

                  .
gi 1191017736  87 Q 87
Cdd:cd12654    86 K 86
RRM3_CELF3_4_5_6 cd12639
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
9-78 7.51e-03

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM3 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contains three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. Both, RRM1 and RRM2 of CELF-4, can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 241083 [Multi-domain]  Cd Length: 79  Bit Score: 33.68  E-value: 7.51e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDPYC--FVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12639     7 LFIYHLPQEFGDAELMQMFLPFGNVISAKVFVDRATNQSKCfgFVSFDNPASAQAAIQAMNGFQIGMKRLKV 78
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
9-78 7.95e-03

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 33.24  E-value: 7.95e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMImdtagnDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12608     3 IFVGNVDEDTSQEELSALFEPYGAVLSCAVM------KQFAFVHMRGEAAADRAIRELNGRELHGRALVV 66
RRM2_EAR1_like cd12527
RNA recognition motif 2 (RRM2) found in terminal EAR1-like proteins; This subgroup corresponds ...
8-78 8.20e-03

RNA recognition motif 2 (RRM2) found in terminal EAR1-like proteins; This subgroup corresponds to the RRM2 of terminal EAR1-like proteins, including terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) found in land plants. They may play a role in the regulation of leaf initiation. The terminal EAR1-like proteins are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and TEL characteristic motifs that allow sequence and putative functional discrimination between the terminal EAR1-like proteins and Mei2-like proteins.


Pssm-ID: 409947 [Multi-domain]  Cd Length: 71  Bit Score: 33.28  E-value: 8.20e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKmimDTAGNDPYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12527     3 SLVILNLLPAVSSFTLREIFQVYGDVKDVR---ETPLKPSQRFVEFFDVRDAARALHEMNGKEIFGKRLVI 70
RRM_SRSF3 cd12645
RNA recognition motif (RRM) found in vertebrate serine/arginine-rich splicing factor 3 (SRSF3); ...
9-78 8.23e-03

RNA recognition motif (RRM) found in vertebrate serine/arginine-rich splicing factor 3 (SRSF3); This subgroup corresponds to the RRM of SRSF3, also termed pre-mRNA-splicing factor SRp20, a splicing regulatory serine/arginine (SR) protein that modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation and tumor induction and maintenance. SRSF3 can shuttle between the nucleus and cytoplasm. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 241089 [Multi-domain]  Cd Length: 81  Bit Score: 33.48  E-value: 8.23e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12645     7 VYVGNLGNNGNKTELERAFGYYGPLRSVWVARNPPG---FAFVEFEDPRDAADAVRELDGRTLCGCRVRV 73
RRM2_U2AF65 cd12231
RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
9-78 9.35e-03

RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; This subfamily corresponds to the RRM2 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409678 [Multi-domain]  Cd Length: 77  Bit Score: 33.39  E-value: 9.35e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP--YCFVEFHEHRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12231     3 LFIGGLPNYLNEDQVKELLQSFGKLKAFNLVKDSATGLSkgYAFCEYVDDNVTDQAIAGLNGMQLGDKKLLV 74
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
8-78 9.43e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 33.24  E-value: 9.43e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017736   8 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTA-----GndpYCFVEFHEhRHAAAALAAMNGRKIMGKEVKV 78
Cdd:cd12395     1 SVFVGNLPFDIEEEELRKHFEDCGDVEAVRIVRDREtgigkG---FGYVLFKD-KDSVDLALKLNGSKLRGRKLRV 72
RRM1_hnRNPQ cd12483
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
9-53 9.45e-03

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM1 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP, a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409910 [Multi-domain]  Cd Length: 84  Bit Score: 33.40  E-value: 9.45e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1191017736   9 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMD--TAGNDPYCFVEF 53
Cdd:cd12483     8 IFVGKIPRDLFEDELVPLFEKAGPIWDLRLMMDplTGLNRGYAFVTF 54
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH