NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1191017726|ref|NP_001338446|]
View 

cytotoxic granule associated RNA binding protein TIA1 isoform 12 [Homo sapiens]

Protein Classification

RNA-binding protein( domain architecture ID 13116157)

RNA-binding protein containing an RNA recognition motif (RRM)

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM3_TIAR cd12620
RNA recognition motif 3 (RRM3) found in nucleolysin TIAR and similar proteins; This subgroup ...
74-146 9.44e-47

RNA recognition motif 3 (RRM3) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM3 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


:

Pssm-ID: 241064 [Multi-domain]  Cd Length: 73  Bit Score: 149.79  E-value: 9.44e-47
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGKE 146
Cdd:cd12620     1 CTVYCGGIASGLTEQLMRQTFSPFGQIMEIRVFPEKGYSFVRFSTHESAAHAIVSVNGTTIEGHVVKCYWGKE 73
RRM_SF super family cl17169
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
1-41 5.59e-26

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


The actual alignment was detected with superfamily member cd12353:

Pssm-ID: 473069 [Multi-domain]  Cd Length: 75  Bit Score: 96.69  E-value: 5.59e-26
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 41
Cdd:cd12353    35 TQTGKSKGYGFVSFVKKEDAENAIQGMNGQWLGGRNIRTNW 75
PABP-1234 super family cl31127
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
4-238 3.69e-14

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


The actual alignment was detected with superfamily member TIGR01628:

Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 71.38  E-value: 3.69e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQiRTNWATRKPPAPKSTYESNTKQLSYDEVVNQSSPSN-CTVYCGGVT 82
Cdd:TIGR01628 216 GRSRGFAFVNFEKHEDAAKAVEEMNGKKIGLAK-EGKKLYVGRAQKRAEREAELRRKFEELQQERKMKAQgVNLYVKNLD 294
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  83 SGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVkcywgketldMINPVQQN 157
Cdd:TIGR01628 295 DTVTDEKLRELFSECGEITSAKVMLDekgvsRGFGFVCFSNPEEANRAVTEMHGRMLGGKPL----------YVALAQRK 364
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726 158 QIGYPQPYGQWGQWYGNAQQIGQYMPNGwqvpayGMYGQ-AWNQQGFNQTQSSAPWMGPNYGVQPPQGQNGSmlPNQPSG 236
Cdd:TIGR01628 365 EQRRAHLQDQFMQLQPRMRQLPMGSPMG------GAMGQpPYYGQGPQQQFNGQPLGWPRMSMMPTPMGPGG--PLRPNG 436

                  ..
gi 1191017726 237 YR 238
Cdd:TIGR01628 437 LA 438
 
Name Accession Description Interval E-value
RRM3_TIAR cd12620
RNA recognition motif 3 (RRM3) found in nucleolysin TIAR and similar proteins; This subgroup ...
74-146 9.44e-47

RNA recognition motif 3 (RRM3) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM3 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 241064 [Multi-domain]  Cd Length: 73  Bit Score: 149.79  E-value: 9.44e-47
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGKE 146
Cdd:cd12620     1 CTVYCGGIASGLTEQLMRQTFSPFGQIMEIRVFPEKGYSFVRFSTHESAAHAIVSVNGTTIEGHVVKCYWGKE 73
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
1-41 5.59e-26

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 96.69  E-value: 5.59e-26
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 41
Cdd:cd12353    35 TQTGKSKGYGFVSFVKKEDAENAIQGMNGQWLGGRNIRTNW 75
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
76-140 5.71e-19

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 78.04  E-value: 5.71e-19
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDetgrsKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
1-134 9.40e-18

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 81.78  E-value: 9.40e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRKPPAPKStyesntkqlsydevvnqsspSNCTVYCGG 80
Cdd:TIGR01628  36 SVTRRSLGYGYVNFQNPADAERALETMNFKRLGGKPIRIMWSQRDPSLRRS--------------------GVGNIFVKN 95
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017726  81 VTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTI 134
Cdd:TIGR01628  96 LDKSVDNKALFDTFSKFGNILSCKVATDengksRGYGFVHFEKEESAKAAIQKVNGMLL 154
RRM smart00360
RNA recognition motif;
75-141 1.85e-16

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 71.47  E-value: 1.85e-16
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726   75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDketgksKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
4-238 3.69e-14

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 71.38  E-value: 3.69e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQiRTNWATRKPPAPKSTYESNTKQLSYDEVVNQSSPSN-CTVYCGGVT 82
Cdd:TIGR01628 216 GRSRGFAFVNFEKHEDAAKAVEEMNGKKIGLAK-EGKKLYVGRAQKRAEREAELRRKFEELQQERKMKAQgVNLYVKNLD 294
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  83 SGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVkcywgketldMINPVQQN 157
Cdd:TIGR01628 295 DTVTDEKLRELFSECGEITSAKVMLDekgvsRGFGFVCFSNPEEANRAVTEMHGRMLGGKPL----------YVALAQRK 364
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726 158 QIGYPQPYGQWGQWYGNAQQIGQYMPNGwqvpayGMYGQ-AWNQQGFNQTQSSAPWMGPNYGVQPPQGQNGSmlPNQPSG 236
Cdd:TIGR01628 365 EQRRAHLQDQFMQLQPRMRQLPMGSPMG------GAMGQpPYYGQGPQQQFNGQPLGWPRMSMMPTPMGPGG--PLRPNG 436

                  ..
gi 1191017726 237 YR 238
Cdd:TIGR01628 437 LA 438
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
3-53 3.51e-10

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 56.58  E-value: 3.51e-10
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRKPPAPKSTY 53
Cdd:PLN03134   72 TGRSRGFGFVNFNDEGAATAAISEMDGKELNGRHIRVNPANDRPSAPRAYG 122
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
2-38 4.12e-10

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 54.55  E-value: 4.12e-10
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:pfam00076  34 ETGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM smart00360
RNA recognition motif;
3-38 4.61e-10

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 54.52  E-value: 4.61e-10
                           10        20        30
                   ....*....|....*....|....*....|....*.
gi 1191017726    3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:smart00360  37 TGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLK 72
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
3-51 1.22e-08

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 50.87  E-value: 1.22e-08
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWAtrKPPAPKS 51
Cdd:COG0724    39 TGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEA--RPREERP 85
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
75-140 5.85e-07

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 46.24  E-value: 5.85e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:COG0724     3 KIYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDretgrsRGFGFVEMPDDEEAQAAIEALNGAELMGRTLK 74
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
2-45 1.44e-06

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 48.65  E-value: 1.44e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:TIGR01628 321 EKGVSRGFGFVCFSNPEEANRAVTEMHGRMLGGKPLYVALAQRK 364
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
76-140 2.52e-05

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 43.10  E-value: 2.52e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:PLN03134   37 LFIGGLSWGTDDASLRDAFAHFGDVVDAKVIVDretgrsRGFGFVNFNDEGAATAAISEMDGKELNGRHIR 107
 
Name Accession Description Interval E-value
RRM3_TIAR cd12620
RNA recognition motif 3 (RRM3) found in nucleolysin TIAR and similar proteins; This subgroup ...
74-146 9.44e-47

RNA recognition motif 3 (RRM3) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM3 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 241064 [Multi-domain]  Cd Length: 73  Bit Score: 149.79  E-value: 9.44e-47
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGKE 146
Cdd:cd12620     1 CTVYCGGIASGLTEQLMRQTFSPFGQIMEIRVFPEKGYSFVRFSTHESAAHAIVSVNGTTIEGHVVKCYWGKE 73
RRM3_TIA1 cd12621
RNA recognition motif 3 (RRM3) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
74-145 2.02e-46

RNA recognition motif 3 (RRM3) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM3 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410032 [Multi-domain]  Cd Length: 72  Bit Score: 149.06  E-value: 2.02e-46
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12621     1 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 72
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
74-144 3.70e-44

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 143.19  E-value: 3.70e-44
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWG 144
Cdd:cd12354     1 TTVYVGNITKGLTEALLQQTFSPFGQILEVRVFPDKGYAFIRFDSHEAATHAIVSVNGTIINGQAVKCSWG 71
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
1-41 5.59e-26

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 96.69  E-value: 5.59e-26
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 41
Cdd:cd12353    35 TQTGKSKGYGFVSFVKKEDAENAIQGMNGQWLGGRNIRTNW 75
RRM2_TIA1 cd12618
RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
1-41 7.82e-25

RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410030 [Multi-domain]  Cd Length: 78  Bit Score: 93.53  E-value: 7.82e-25
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 41
Cdd:cd12618    38 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 78
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
1-44 5.68e-23

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 88.90  E-value: 5.68e-23
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATR 44
Cdd:cd12617    37 MATGKSKGYGFVSFYNKLDAENAIVHMGGQWLGGRQIRTNWATR 80
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
76-140 5.71e-19

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 78.04  E-value: 5.71e-19
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDetgrsKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
1-44 1.82e-18

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 77.15  E-value: 1.82e-18
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATR 44
Cdd:cd12619    37 QKTGRSRGYGFVSFRSQQDAQNAINSMNGKWLGSRPIRCNWATK 80
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
1-134 9.40e-18

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 81.78  E-value: 9.40e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRKPPAPKStyesntkqlsydevvnqsspSNCTVYCGG 80
Cdd:TIGR01628  36 SVTRRSLGYGYVNFQNPADAERALETMNFKRLGGKPIRIMWSQRDPSLRRS--------------------GVGNIFVKN 95
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017726  81 VTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTI 134
Cdd:TIGR01628  96 LDKSVDNKALFDTFSKFGNILSCKVATDengksRGYGFVHFEKEESAKAAIQKVNGMLL 154
RRM3_PUB1 cd12622
RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated ...
75-146 2.43e-17

RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subfamily corresponds to the RRM3 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410033 [Multi-domain]  Cd Length: 74  Bit Score: 74.02  E-value: 2.43e-17
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGKE 146
Cdd:cd12622     2 TVYVGNLPPEVTQADLIPLFQNFGVIEEVRVQRDKGFGFVKYDTHEEAALAIQQLNGQPFLGRPIKCSWGKK 73
RRM smart00360
RNA recognition motif;
75-141 1.85e-16

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 71.47  E-value: 1.85e-16
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726   75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDketgksKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
3-136 4.40e-15

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 74.07  E-value: 4.40e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRtnwatrkppapKSTYESNTKQlsydEVVNQSSPSNctVYCGGVT 82
Cdd:TIGR01628 125 NGKSRGYGFVHFEKEESAKAAIQKVNGMLLNDKEVY-----------VGRFIKKHER----EAAPLKKFTN--LYVKNLD 187
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017726  83 SGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:TIGR01628 188 PSVNEDKLRELFAKFGEITSAAVMKDgsgrsRGFAFVNFEKHEDAAKAVEEMNGKKIGL 246
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
76-141 1.98e-14

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 66.15  E-value: 1.98e-14
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVRDrdgksKGFAFVEFESPEDAEKALEALNGTELGGRPLKV 71
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
3-136 2.88e-14

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 71.12  E-value: 2.88e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATrkpPAPKSTYESNtkqlsydevvnqsspsnctVYCGGVT 82
Cdd:TIGR01661  41 TGQSLGYGFVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYAR---PSSDSIKGAN-------------------LYVSGLP 98
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  83 SGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:TIGR01661  99 KTMTQHELESIFSPFGQIITSRILSDnvtglsKGVGFIRFDKRDEADRAIKTLNGTTPSG 158
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
4-238 3.69e-14

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 71.38  E-value: 3.69e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQiRTNWATRKPPAPKSTYESNTKQLSYDEVVNQSSPSN-CTVYCGGVT 82
Cdd:TIGR01628 216 GRSRGFAFVNFEKHEDAAKAVEEMNGKKIGLAK-EGKKLYVGRAQKRAEREAELRRKFEELQQERKMKAQgVNLYVKNLD 294
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  83 SGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVkcywgketldMINPVQQN 157
Cdd:TIGR01628 295 DTVTDEKLRELFSECGEITSAKVMLDekgvsRGFGFVCFSNPEEANRAVTEMHGRMLGGKPL----------YVALAQRK 364
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726 158 QIGYPQPYGQWGQWYGNAQQIGQYMPNGwqvpayGMYGQ-AWNQQGFNQTQSSAPWMGPNYGVQPPQGQNGSmlPNQPSG 236
Cdd:TIGR01628 365 EQRRAHLQDQFMQLQPRMRQLPMGSPMG------GAMGQpPYYGQGPQQQFNGQPLGWPRMSMMPTPMGPGG--PLRPNG 436

                  ..
gi 1191017726 237 YR 238
Cdd:TIGR01628 437 LA 438
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
3-205 4.55e-14

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 71.10  E-value: 4.55e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQqMGGQWLGGRQIRTnwatRKPPAPKSTYESNTKQLSYDevvNQSSPSNCTVYCGGVT 82
Cdd:TIGR01622 152 SRRSKGVGYVEFYDVDSVQAALA-LTGQKLLGIPVIV----QLSEAEKNRAARAATETSGH---HPNSIPFHRLYVGNLH 223
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  83 SGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWG---KETLD-MIN 152
Cdd:TIGR01622 224 FNITEQDLRQIFEPFGEIEFVQLQKDpetgrsKGYGFIQFRDAEQAKEALEKMNGFELAGRPIKVGLGndfTPESDaNLA 303
                         170       180       190       200       210       220
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726 153 PVQQNQIGypqpyGQWGQWYGNAQQIGQYM----------PNGWQVPayGMYGQAWNQQGFNQ 205
Cdd:TIGR01622 304 QRFQDQDG-----SAFSGAGLNTPARSQLMrklardnekgTGGLAIP--GTDVGGVNMNNYSR 359
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
73-144 1.26e-13

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 63.88  E-value: 1.26e-13
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  73 NCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWG 144
Cdd:cd12346     1 NTTVFVGGLDPNVTEEDLRVLFGPFGEIVYVKIPPGKGCGFVQFVNRASAEAAIQKLQGTPIGGSRIRLSWG 72
RRM_NELFE cd12305
RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This ...
75-136 4.22e-12

RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This subfamily corresponds to the RRM of NELF-E, also termed RNA-binding protein RD. NELF-E is the RNA-binding subunit of cellular negative transcription elongation factor NELF (negative elongation factor) involved in transcriptional regulation of HIV-1 by binding to the stem of the viral transactivation-response element (TAR) RNA which is synthesized by cellular RNA polymerase II at the viral long terminal repeat. NELF is a heterotetrameric protein consisting of NELF A, B, C or the splice variant D, and E. NELF-E contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It plays a role in the control of HIV transcription by binding to TAR RNA. In addition, NELF-E is associated with the NELF-B subunit, probably via a leucine zipper motif.


Pssm-ID: 409746 [Multi-domain]  Cd Length: 75  Bit Score: 60.03  E-value: 4.22e-12
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  75 TVYCGGVtsGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12305     6 TVYVSGY--GITEDVLKKAFSPFGNIINISMEIEKNCAFVTFEKMESADQAIAELNGTTVEG 65
RRM_RBM22 cd12224
RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This ...
74-145 1.83e-11

RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This subgroup corresponds to the RRM of RBM22 (also known as RNA-binding motif protein 22, or Zinc finger CCCH domain-containing protein 16), a newly discovered RNA-binding motif protein which belongs to the SLT11 gene family. SLT11 gene encoding protein (Slt11p) is a splicing factor in yeast, which is required for spliceosome assembly. Slt11p has two distinct biochemical properties: RNA-annealing and RNA-binding activities. RBM22 is the homolog of SLT11 in vertebrate. It has been reported to be involved in pre-splicesome assembly and to interact with the Ca2+-signaling protein ALG-2. It also plays an important role in embryogenesis. RBM22 contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a zinc finger of the unusual type C-x8-C-x5-C-x3-H, and a C-terminus that is unusually rich in the amino acids Gly and Pro, including sequences of tetraprolines.


Pssm-ID: 409671 [Multi-domain]  Cd Length: 74  Bit Score: 58.06  E-value: 1.83e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAI-VSVNGTTIEGHVVKCYWGK 145
Cdd:cd12224     2 TTLYVGGLGDKITEKDLRDHFYQFGEIRSITVVARQQCAFVQFTTRQAAERAAeRTFNKLIIKGRRLKVKWGR 74
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
76-143 2.14e-11

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 58.17  E-value: 2.14e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12353     2 IFVGDLSPEIETEDLKEAFAPFGEISDARVVKDtqtgksKGYGFVSFVKKEDAENAIQGMNGQWLGGRNIRTNW 75
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
2-130 4.23e-11

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 62.40  E-value: 4.23e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRKPPApkstyesntkQLSYDEVVNQSSPSNcTVYCGGV 81
Cdd:TIGR01645 144 ATGKHKGFAFVEYEVPEAAQLALEQMNGQMLGGRNIKVGRPSNMPQA----------QPIIDMVQEEAKKFN-RIYVASV 212
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  82 TSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVN 130
Cdd:TIGR01645 213 HPDLSETDIKSVFEAFGEIVKCQLARAptgrghKGYGFIEYNNLQSQSEAIASMN 267
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
3-53 3.51e-10

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 56.58  E-value: 3.51e-10
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRKPPAPKSTY 53
Cdd:PLN03134   72 TGRSRGFGFVNFNDEGAATAAISEMDGKELNGRHIRVNPANDRPSAPRAYG 122
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
76-141 3.71e-10

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 54.54  E-value: 3.71e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12347     1 LYVGGLAEEVDEKVLHAAFIPFGDIVDIQIPLDyetekhRGFAFVEFEEAEDAAAAIDNMNESELFGRTIRV 72
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
2-38 4.12e-10

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 54.55  E-value: 4.12e-10
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:pfam00076  34 ETGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM smart00360
RNA recognition motif;
3-38 4.61e-10

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 54.52  E-value: 4.61e-10
                           10        20        30
                   ....*....|....*....|....*....|....*.
gi 1191017726    3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:smart00360  37 TGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLK 72
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
86-140 4.77e-10

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 54.16  E-value: 4.77e-10
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12362    11 TDQDLYQLFAPFGNVVSAKVFVDkntgrsKGFGFVSYDNPLSAQAAIKAMNGFQVGGKRLK 71
RRM2_SECp43_like cd12345
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
2-43 5.86e-10

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM2 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409781 [Multi-domain]  Cd Length: 80  Bit Score: 54.20  E-value: 5.86e-10
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWAT 43
Cdd:cd12345    39 VTGRSKGYGFVRFGDESEQDRALTEMQGVYLGSRPIRVSPAT 80
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
3-42 8.38e-10

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 53.71  E-value: 8.38e-10
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd21608    37 TGRSRGFGFVTFSTAEAAEAAIDALNGKELDGRSIVVNEA 76
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
3-45 9.08e-10

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 53.78  E-value: 9.08e-10
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd12284    36 TGRSKGYGFIQFRDAEDAKKALEQLNGFELAGRPMKVGHVTER 78
RRM_ALKBH8 cd12431
RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and ...
79-131 1.06e-09

RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins; This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain.


Pssm-ID: 409865 [Multi-domain]  Cd Length: 80  Bit Score: 53.74  E-value: 1.06e-09
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  79 GGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12431     9 GGLGNGVSREQLLEVFEKYGTVEDIVMLPGKPYSFVSFKSVEEAAKAYNALNG 61
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
75-136 1.13e-09

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 53.33  E-value: 1.13e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd21608     1 KLYVGNLSWDTTEDDLRDLFSEFGEVESAKVITDretgrsRGFGFVTFSTAEAAEAAIDALNGKELDG 68
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
1-42 1.22e-09

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 53.32  E-value: 1.22e-09
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12414    34 KPDGKLRGFAFVQFTNVADAAKAIKGMNGKKIKGRPVAVDWA 75
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
74-140 1.24e-09

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 53.19  E-value: 1.24e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12370     1 CRVYVGSIYFELGEDTIRQAFAPFGPIKSIDMSWDpvtmkhKGFAFVEYEVPEAAQLALEQMNGVMLGGRNIK 73
RRM1_Mug28 cd21620
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated ...
73-143 1.87e-09

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410199 [Multi-domain]  Cd Length: 84  Bit Score: 53.28  E-value: 1.87e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  73 NCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVF-----------PDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd21620     1 ERSLYVGNLPQTCQSEDLIILFEPYGNVCGAHIAsrkkvkvswvkPSKLFAFVEFETKEAATTAIVLLNGITYMGCQLKV 80

                  ..
gi 1191017726 142 YW 143
Cdd:cd21620    81 EW 82
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
3-45 2.05e-09

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 52.87  E-value: 2.05e-09
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd12449    38 TQRSRGFGFVTFENPDDAKDAMMAMNGKSLDGRQIRVDQAGKS 80
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
75-141 2.22e-09

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 52.82  E-value: 2.22e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12447     1 TLFVGGLSWNVDDPWLKKEFEKYGGVISARVITDrgsgrsKGYGYVDFATPEAAQKALAAMSGKEIDGRQINV 73
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
77-143 3.56e-09

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 52.02  E-value: 3.56e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  77 YCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKG----YSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12352     2 YVGNLDRQVTEDLILQLFSQIGPCKSCKMITEHGgndpYCFVEFYEHNHAAAALQAMNGRKILGKEVKVNW 72
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
3-38 4.23e-09

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 51.90  E-value: 4.23e-09
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:cd00590    35 DGKSKGFAFVEFESPEDAEKALEALNGTELGGRPLK 70
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
3-42 4.50e-09

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 51.67  E-value: 4.50e-09
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12447    37 SGRSKGYGYVDFATPEAAQKALAAMSGKEIDGRQINVDFS 76
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
74-140 5.48e-09

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 51.53  E-value: 5.48e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12332     2 CRLFVGNLPNDITEEEFKELFQKYGEVSEVFLNKGKGFGFIRLDTRANAEAAKAELDGTPRKGRQLR 68
RRM_cwf2 cd12360
RNA recognition motif (RRM) found in yeast pre-mRNA-splicing factor Cwc2 and similar proteins; ...
73-136 5.67e-09

RNA recognition motif (RRM) found in yeast pre-mRNA-splicing factor Cwc2 and similar proteins; This subfamily corresponds to the RRM of yeast protein Cwc2, also termed Complexed with CEF1 protein 2, or PRP19-associated complex protein 40 (Ntc40), or synthetic lethal with CLF1 protein 3, one of the components of the Prp19-associated complex [nineteen complex (NTC)] that can bind to RNA. NTC is composed of the scaffold protein Prp19 and a number of associated splicing factors, and plays a crucial role in intron removal during premature mRNA splicing in eukaryotes. Cwc2 functions as an RNA-binding protein that can bind both small nuclear RNAs (snRNAs) and pre-mRNA in vitro. It interacts directly with the U6 snRNA to link the NTC to the spliceosome during pre-mRNA splicing. In the N-terminal half, Cwc2 contains a CCCH-type zinc finger (ZnF domain), a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and an intervening loop, also termed RNA-binding loop or RB loop, between ZnF and RRM, all of which are necessary and sufficient for RNA binding. The ZnF is also responsible for mediating protein-protein interaction. The C-terminal flexible region of Cwc2 interacts with the WD40 domain of Prp19.


Pssm-ID: 409795 [Multi-domain]  Cd Length: 79  Bit Score: 51.50  E-value: 5.67e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017726  73 NCTVYCGGVTSGL-----TEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12360     1 NRTLYVGGIKAASnklaqIEEILRRHFGEWGEIERIRVLPSKGIAFVRYKNRANAEFAKEAMADQSLDG 69
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
76-140 7.79e-09

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 51.33  E-value: 7.79e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12449     3 LFVGGLSFDTNEQSLEEVFSKYGQISEVVVVKDretqrsRGFGFVTFENPDDAKDAMMAMNGKSLDGRQIR 73
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
3-42 8.69e-09

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 50.98  E-value: 8.69e-09
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12398    38 TGKPKGYGFCEFRDAETALSAVRNLNGYELNGRPLRVDFA 77
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
3-51 1.22e-08

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 50.87  E-value: 1.22e-08
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWAtrKPPAPKS 51
Cdd:COG0724    39 TGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEA--RPREERP 85
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
77-136 1.31e-08

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 50.79  E-value: 1.31e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  77 YCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12652     4 YVSGLPKTMTQKELEQLFSQFGRIITSRILCDnvtglsRGVGFIRFDKRVEAERAIKALNGTIPPG 69
RRM1_PUB1 cd12614
RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated ...
76-143 1.43e-08

RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM1 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410026 [Multi-domain]  Cd Length: 74  Bit Score: 50.51  E-value: 1.43e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK-----GYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12614     1 LYVGNLDPRVTEDLLQEIFAVTGPVENCKIIPDKnskgvNYGFVEYYDRRSAEIAIQTLNGRQIFGQEIKVNW 73
RRM_hnRNPC_like cd12341
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein C (hnRNP C) ...
82-139 1.68e-08

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein C (hnRNP C)-related proteins; This subfamily corresponds to the RRM in the hnRNP C-related protein family, including hnRNP C proteins, Raly, and Raly-like protein (RALYL). hnRNP C proteins, C1 and C2, are produced by a single coding sequence. They are the major constituents of the heterogeneous nuclear RNA (hnRNA) ribonucleoprotein (hnRNP) complex in vertebrates. They bind hnRNA tightly, suggesting a central role in the formation of the ubiquitous hnRNP complex; they are involved in the packaging of the hnRNA in the nucleus and in processing of pre-mRNA such as splicing and 3'-end formation. Raly, also termed autoantigen p542, is an RNA-binding protein that may play a critical role in embryonic development. The biological role of RALYL remains unclear. It shows high sequence homology with hnRNP C proteins and Raly. Members of this family are characterized by an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain. The Raly proteins contain a glycine/serine-rich stretch within the C-terminal regions, which is absent in the hnRNP C proteins. Thus, the Raly proteins represent a newly identified class of evolutionarily conserved autoepitopes.


Pssm-ID: 409778 [Multi-domain]  Cd Length: 68  Bit Score: 49.94  E-value: 1.68e-08
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  82 TSGLTEQLMRQTFSPFGQIMEIRVFpdKGYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12341    10 TDQMTKEDLEEIFSKYGKILGISLH--KGYGFVQFDNEEDARAAVAGENGRTIKGQRL 65
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
93-139 2.36e-08

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 49.88  E-value: 2.36e-08
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  93 TFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12379    22 TFSAFGNILSCKVATDenggsKGYGFVHFETEEAAERAIEKVNGMLLNGKKV 73
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
77-140 3.59e-08

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 49.16  E-value: 3.59e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  77 YCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12284     2 YVGSLHFNITEDMLRGIFEPFGKIEFVQLQKDpetgrsKGYGFIQFRDAEDAKKALEQLNGFELAGRPMK 71
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
74-141 4.07e-08

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 49.20  E-value: 4.07e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12393     2 STVYVSNLPFSLTNNDLHQIFSKYGKVVKVTILKDKetrkskGVAFVLFLDRESAHNAVRAMNNKELFGRTLKC 75
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
76-145 4.86e-08

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 49.11  E-value: 4.86e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRV-----FPDKGYSFVRFNSHESAAH-AIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12226     2 LFVGGLSPSITEDDLERRFSRFGTVSDVEIirkkdAPDRGFAYIDLRTSEAALQkCLSTLNGVKWKGSRLKIQLAK 77
RRM1_RBM45 cd12366
RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
84-137 5.52e-08

RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM1 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409801 [Multi-domain]  Cd Length: 81  Bit Score: 48.85  E-value: 5.52e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  84 GLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGH 137
Cdd:cd12366    13 SVTEDDLREAFSPFGEIQDIWVVKDkqtkesKGIAYVKFAKSSQAARAMEEMHGKCLGDD 72
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
86-138 6.17e-08

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 48.47  E-value: 6.17e-08
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHV 138
Cdd:cd12377    12 DESLLWQLFGPFGAVQNVKIIRDfttnkcKGYGFVTMTNYDEAAVAIASLNGYRLGGRV 70
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
3-38 1.28e-07

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 47.65  E-value: 1.28e-07
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:cd12311    36 TRESRGFAFVRFYDKRDAEDAIDAMDGAELDGRELR 71
RRM2_NGR1_NAM8_like cd12613
RNA recognition motif 2 (RRM2) found in yeast negative growth regulatory protein NGR1, yeast ...
3-43 1.30e-07

RNA recognition motif 2 (RRM2) found in yeast negative growth regulatory protein NGR1, yeast protein NAM8 and similar proteins; This subgroup corresponds to the RRM2 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both, RNA and single-stranded DNA (ssDNA), in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 410025 [Multi-domain]  Cd Length: 80  Bit Score: 47.89  E-value: 1.30e-07
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWAT 43
Cdd:cd12613    40 TGVSRGYGFVRFSDENDQQRALIEMQGKYCQGRPLRISYAT 80
RRM2_SF3B4 cd12335
RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
3-45 1.39e-07

RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM2 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 is a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409772 [Multi-domain]  Cd Length: 83  Bit Score: 47.74  E-value: 1.39e-07
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1191017726   3 TGKSKGYGFVSF--FNKWDAenAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd12335    40 TGNSKGFGFVSFdsFEASDA--AIEAMNGQYLCNRPITVSYAFKK 82
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
3-136 1.40e-07

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 51.56  E-value: 1.40e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATrkpPAPKSTYESNtkqlsydevvnqsspsnctVYCGGVT 82
Cdd:TIGR01659 145 TGYSFGYAFVDFGSEADSQRAIKNLNGITVRNKRLKVSYAR---PGGESIKDTN-------------------LYVTNLP 202
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  83 SGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:TIGR01659 203 RTITDDQLDTIFGKYGQIVQKNILRDKltgtprGVAFVRFNKREEAQEAISALNNVIPEG 262
RRM_RBM42 cd12383
RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This ...
3-38 1.68e-07

RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This subfamily corresponds to the RRM of RBM42 which has been identified as a heterogeneous nuclear ribonucleoprotein K (hnRNP K)-binding protein. It also directly binds the 3' untranslated region of p21 mRNA that is one of the target mRNAs for hnRNP K. Both, hnRNP K and RBM42, are components of stress granules (SGs). Under nonstress conditions, RBM42 predominantly localizes within the nucleus and co-localizes with hnRNP K. Under stress conditions, hnRNP K and RBM42 form cytoplasmic foci where the SG marker TIAR localizes, and may play a role in the maintenance of cellular ATP level by protecting their target mRNAs. RBM42 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409817 [Multi-domain]  Cd Length: 83  Bit Score: 47.66  E-value: 1.68e-07
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:cd12383    44 TGKSKGYGFVSFKDPNDYLKALREMNGKYVGNRPIK 79
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
86-145 1.83e-07

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 47.24  E-value: 1.83e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  86 TEQLMRQTFSPFGQIMeiRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12251    14 TEEKLRELFSEYGKVE--RVKKIKDYAFVHFEERDDAVKAMEEMNGKELEGSEIEVSLAK 71
RRM1_TIA1 cd12615
RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
75-144 1.86e-07

RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM1 of TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and functions as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410027 [Multi-domain]  Cd Length: 74  Bit Score: 47.34  E-value: 1.86e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKG----YSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWG 144
Cdd:cd12615     1 TLYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAgndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 74
RRM3_Crp79_Mug28 cd21622
RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
3-45 1.95e-07

RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the three RRM motif.


Pssm-ID: 410201 [Multi-domain]  Cd Length: 92  Bit Score: 47.75  E-value: 1.95e-07
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd21622    43 TGISKGFGFVAFSKPEDAAKAKETLNGVMVGRKRIFVSYAERK 85
RRM2_4_MRN1 cd12262
RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar ...
76-145 2.42e-07

RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM2 and RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, and is an RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409706 [Multi-domain]  Cd Length: 78  Bit Score: 47.01  E-value: 2.42e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12262     6 VYVGNLDDSLTEEEIRGILEKYGEIESIKILKEKNCAFVNYLNIANAIKAVQELPIKNPKFKKVRINYGK 75
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
6-43 2.93e-07

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 46.62  E-value: 2.93e-07
                          10        20        30
                  ....*....|....*....|....*....|....*...
gi 1191017726   6 SKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWAT 43
Cdd:cd12407    39 SKGFGFVTFANSADADRAREKLNGTVVEGRKIEVNNAT 76
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
76-136 3.14e-07

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 46.78  E-value: 3.14e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12380     4 VYVKNFGEDVDDDELKELFEKYGKITSAKVMKDdsgksKGFGFVNFENHEAAQKAVEELNGKELNG 69
RRM2_FCA cd12637
RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar ...
86-136 4.41e-07

RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM2 of FCA, a gene controlling flowering time in Arabidopsis, which encodes a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. The flowering time control protein FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 410045 [Multi-domain]  Cd Length: 81  Bit Score: 46.60  E-value: 4.41e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGT-TIEG 136
Cdd:cd12637    12 TEQEVRDLFEAYGEVEEVYLMKDpvtqqgTGCAFVKFAYKEEALAAIRSLNGTvTFDG 69
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
85-136 5.22e-07

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 46.11  E-value: 5.22e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  85 LTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12381    13 IDDEKLREEFSPFGTITSAKVMTDeggrsKGFGFVCFSSPEEATKAVTEMNGRIIGG 69
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
86-139 5.79e-07

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 46.01  E-value: 5.79e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12414    12 TEDDLKKLFSKFGKVLEVTIPKKpdgklRGFAFVQFTNVADAAKAIKGMNGKKIKGRPV 70
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
75-140 5.85e-07

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 46.24  E-value: 5.85e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:COG0724     3 KIYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDretgrsRGFGFVEMPDDEEAQAAIEALNGAELMGRTLK 74
RRM3_hnRNPR cd12494
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
81-145 5.91e-07

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM3 of hnRNP R. a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP R is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, as well as in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP R binds RNA through its RRM domains.


Pssm-ID: 409917 [Multi-domain]  Cd Length: 72  Bit Score: 45.79  E-value: 5.91e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  81 VTSGLTEQLMRQTFSPFGQIMEIRVFPDkgYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12494     9 LATTVTEEILEKTFSQFGKLERVKKLKD--YAFVHFEDRDAAVKAMDEMNGKEVEGEEIEIVLAK 71
RRM1_I_PABPs cd12378
RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily ...
1-46 7.26e-07

RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM1 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammals, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409812 [Multi-domain]  Cd Length: 80  Bit Score: 45.70  E-value: 7.26e-07
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*.
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRKP 46
Cdd:cd12378    35 AVTRRSLGYAYVNFQQPADAERALDTLNFDVIKGKPIRIMWSQRDP 80
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
84-141 7.61e-07

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 45.47  E-value: 7.61e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  84 GLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12340    10 DTSESAIREIFSPYGPVKEVKMLSDSNFAFVEFEELEDAIRAKDSVHGRVLNNEPLYV 67
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
75-126 8.00e-07

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 45.68  E-value: 8.00e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAI 126
Cdd:cd12412     4 RIFVGGIDWDTTEEELREFFSKFGKVKDVKIIKDragvsKGYGFVTFETQEDAEKIQ 60
RRM3_hnRNPQ cd12495
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
81-145 8.80e-07

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409918 [Multi-domain]  Cd Length: 72  Bit Score: 45.36  E-value: 8.80e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  81 VTSGLTEQLMRQTFSPFGQIMEIRVFPDkgYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12495     9 LANTVTEEILEKAFSQFGKLERVKKLKD--YAFIHFDERDGAVKAMDEMNGKDLEGENIEIVFAK 71
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
76-143 9.38e-07

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 45.56  E-value: 9.38e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12619     4 IFVGDLSPEVTDAALFNAFSDFPSCSDARVMWDqktgrsRGYGFVSFRSQQDAQNAINSMNGKWLGSRPIRCNW 77
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
79-134 1.25e-06

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 44.92  E-value: 1.25e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  79 GGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTI 134
Cdd:cd12361     5 GMIPKTASEEDVRPLFEQFGNIEEVQILRDkqtgqsKGCAFVTFSTREEALRAIEALHNKKT 66
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
3-45 1.25e-06

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 45.15  E-value: 1.25e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd12674    38 TKKSRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKLDFAKPR 80
RRM_NIFK_like cd12307
RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) ...
75-141 1.27e-06

RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) and similar proteins; This subgroup corresponds to the RRM of NIFK and Nop15p. NIFK, also termed MKI67 FHA domain-interacting nucleolar phosphoprotein, or nucleolar phosphoprotein Nopp34, is a putative RNA-binding protein interacting with the forkhead associated (FHA) domain of pKi-67 antigen in a mitosis-specific and phosphorylation-dependent manner. It is nucleolar in interphase but associates with condensed mitotic chromosomes. This family also includes Saccharomyces cerevisiae YNL110C gene encoding ribosome biogenesis protein 15 (Nop15p), also termed nucleolar protein 15. Both, NIFK and Nop15p, contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409748 [Multi-domain]  Cd Length: 74  Bit Score: 44.87  E-value: 1.27e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRV------FPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12307     1 VVYIGHLPHGFYEPELRKYFSQFGTVTRLRLsrskktGKSKGYAFVEFEDPEVAKIVAETMNNYLLFERLLKC 73
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
76-136 1.31e-06

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 44.93  E-value: 1.31e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12376     3 LYVSGLPKTMTQKELEQLFSQYGRIITSRILRDQltgvsrGVGFIRFDKRIEAEEAIKGLNGQKPEG 69
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
75-143 1.32e-06

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 48.65  E-value: 1.32e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:TIGR01628   2 SLYVGDLDPDVTEAKLYDLFKPFGPVLSVRVCRDSvtrrslGYGYVNFQNPADAERALETMNFKRLGGKPIRIMW 76
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
2-45 1.44e-06

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 48.65  E-value: 1.44e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:TIGR01628 321 EKGVSRGFGFVCFSNPEEANRAVTEMHGRMLGGKPLYVALAQRK 364
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
2-37 1.53e-06

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 44.53  E-value: 1.53e-06
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQI 37
Cdd:cd12362    35 NTGRSKGFGFVSYDNPLSAQAAIKAMNGFQVGGKRL 70
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
87-140 1.64e-06

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 48.01  E-value: 1.64e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  87 EQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:TIGR01661 283 ETVLWQLFGPFGAVQNVKIIRDlttnqcKGYGFVSMTNYDEAAMAILSLNGYTLGNRVLQ 342
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
3-44 1.69e-06

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 44.70  E-value: 1.69e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATR 44
Cdd:cd12382    39 TNKSRGFAFVTFESPADAKDAARDMNGKELDGKAIKVEQATK 80
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
4-45 1.75e-06

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 44.86  E-value: 1.75e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd12380    39 GKSKGFGFVNFENHEAAQKAVEELNGKELNGKKLYVGRAQKK 80
RRM_Nop15p cd12552
RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; ...
75-140 1.82e-06

RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; This subgroup corresponds to the RRM of Nop15p, also termed nucleolar protein 15, which is encoded by YNL110C from Saccharomyces cerevisiae, and localizes to the nucleoplasm and nucleolus. Nop15p has been identified as a component of a pre-60S particle. It interacts with RNA components of the early pre-60S particles. Furthermore, Nop15p binds directly to a pre-rRNA transcript in vitro and is required for pre-rRNA processing. It functions as a ribosome synthesis factor required for the 5' to 3' exonuclease digestion that generates the 5' end of the major, short form of the 5.8S rRNA as well as for processing of 27SB to 7S pre-rRNA. Nop15p also play a specific role in cell cycle progression. Nop15p contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409968 [Multi-domain]  Cd Length: 77  Bit Score: 44.47  E-value: 1.82e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12552     1 IIYVSHLPHGFHEKELKKYFAQFGDLKNVRLARSkktgnsKHYGFLEFVNPEDAMIAQKSMNNYLLMGKLLQ 72
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
7-41 2.22e-06

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 44.24  E-value: 2.22e-06
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1191017726   7 KGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 41
Cdd:cd12346    37 KGCGFVQFVNRASAEAAIQKLQGTPIGGSRIRLSW 71
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
2-42 2.34e-06

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 44.20  E-value: 2.34e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12371    37 ETGKHKGYGFIEYENPQSAQDAIASMNLFDLGGQYLRVGRA 77
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
76-136 2.51e-06

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 44.50  E-value: 2.51e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12651     5 LYVTNLPRTITEDELDTIFGAYGNIVQKNLLRDKltgrprGVAFVRYDKREEAQAAISALNGTIPEG 71
RRM4_SHARP cd12351
RNA recognition motif 4 (RRM4) found in SMART/HDAC1-associated repressor protein (SHARP) and ...
68-140 2.66e-06

RNA recognition motif 4 (RRM4) found in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins; This subfamily corresponds to the RRM of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, is an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins.


Pssm-ID: 409787 [Multi-domain]  Cd Length: 77  Bit Score: 44.29  E-value: 2.66e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  68 QSSPSNCtVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12351     3 KSMPTNC-VWLDGLSENVTEQYLTRHFCRYGPVVKVVIDRQKGMALVLYDEVECAQAAVKETKGRKIGGRKIQ 74
RRM1_SECp43_like cd12344
RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
3-43 2.83e-06

RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM1 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409780 [Multi-domain]  Cd Length: 82  Bit Score: 44.22  E-value: 2.83e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQI--RTNWAT 43
Cdd:cd12344    38 TGKSAGYCFVEFATQEAAEQALEHLNGKPIPNTQQrfRLNWAS 80
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
76-144 3.25e-06

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 44.21  E-value: 3.25e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWG 144
Cdd:cd12617     4 VFVGDLSPEITTEDIKSAFAPFGKISDARVVKDmatgksKGYGFVSFYNKLDAENAIVHMGGQWLGGRQIRTNWA 78
RRM1_MRN1 cd12520
RNA recognition motif 1 (RRM1) found in RNA-binding protein MRN1 and similar proteins; This ...
75-145 3.35e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM1 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa,which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 240964 [Multi-domain]  Cd Length: 74  Bit Score: 43.97  E-value: 3.35e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  75 TVYCGGVTSGLT-EQLMRQTfsPFGQIMEIRVFPDKGYSFVRF--NSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12520     3 TVYLGNLPPNTTvKELLSHV--RSGPIENVRILPEKNCAFISFldPSAATAFHSDAILKRLSIKGVELKIGWGK 74
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
3-47 3.44e-06

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 43.90  E-value: 3.44e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWAT--RKPP 47
Cdd:cd12312    38 TRRPRGFAYIQFEDVRDAEDALYYLDRTRFLGREIEIQFAQgdRKTP 84
RRM2_CELF3_4_5_6 cd12635
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
86-140 3.60e-06

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM2 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, being highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, being strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in a muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410043 [Multi-domain]  Cd Length: 81  Bit Score: 43.94  E-value: 3.60e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVF--PD---KGYSFVRFNSHESAAHAIVSVNGT-TIEGH----VVK 140
Cdd:cd12635    14 SEDDVRRLFEPFGSIEECTILrgPDgnsKGCAFVKFSSHAEAQAAINALHGSqTMPGAssslVVK 78
RRM1_I_PABPs cd12378
RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily ...
77-143 3.71e-06

RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM1 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammals, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409812 [Multi-domain]  Cd Length: 80  Bit Score: 43.78  E-value: 3.71e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  77 YCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12378     3 YVGDLHPDVTEAMLYEKFSPAGPVLSIRVCRDAvtrrslGYAYVNFQQPADAERALDTLNFDVIKGKPIRIMW 75
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
74-140 3.93e-06

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 47.37  E-value: 3.93e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:TIGR01645 108 CRVYVGSISFELREDTIRRAFDPFGPIKSINMSWDpatgkhKGFAFVEYEVPEAAQLALEQMNGQMLGGRNIK 180
RRM2_MSSP cd12244
RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) ...
77-136 3.97e-06

RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM2 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. Moreover, they family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409690 [Multi-domain]  Cd Length: 82  Bit Score: 43.90  E-value: 3.97e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  77 YCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12244     4 YISNLPLDMDEQDLENMLKPFGQVISTRILRDskgqsRGVGFARMESREKCEDVISKFNGKVLKT 68
RRM1_p54nrb cd12588
RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein ...
76-140 4.69e-06

RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb); This subgroup corresponds to the RRM1 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. p54nrb binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. It forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manneras well as with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410001 [Multi-domain]  Cd Length: 71  Bit Score: 43.40  E-value: 4.69e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12588     4 LFVGNLPPDITEEEMRKLFEKYGKAGEVFIHKDKGFGFIRLETRTLAEIAKVELDNMPLRGKQLR 68
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
76-140 4.91e-06

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 43.55  E-value: 4.91e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12382     4 LFIGGLNTETNEKALEAVFGKYGRIVEVLLMKDRetnksrGFAFVTFESPADAKDAARDMNGKELDGKAIK 74
RRM2_PTBP1_hnRNPL_like cd12422
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
85-150 4.93e-06

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins, and RRM3 of PTBPH1 and PTBPH2. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. This family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs.


Pssm-ID: 409856 [Multi-domain]  Cd Length: 85  Bit Score: 43.72  E-value: 4.93e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  85 LTEQLMRQTFSPFGQIMEIRVFP-DKGY-SFVRFNSHESAAHAIVSVNGTTIeghvvkcYWGKETLDM 150
Cdd:cd12422    13 VTVDVLHQVFSPYGAVEKIVIFEkGTGVqALVQFDSVESAEAAKKALNGRNI-------YDGCCTLDI 73
RRM2_MRN1 cd12523
RNA recognition motif 2 (RRM2) found in RNA-binding protein MRN1 and similar proteins; This ...
76-126 5.38e-06

RNA recognition motif 2 (RRM2) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM2 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409943 [Multi-domain]  Cd Length: 78  Bit Score: 43.19  E-value: 5.38e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAI 126
Cdd:cd12523     6 VYLGNLPESITEEELREDLEKFGPIDQIKIVKEKNIAFVHFLSIANAIKVV 56
RRM2_CoAA cd12609
RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator ...
76-136 5.62e-06

RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410021 [Multi-domain]  Cd Length: 68  Bit Score: 42.91  E-value: 5.62e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFpdKGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12609     3 IFVGNVSATCTSDELRGLFEEFGRVVECDKV--KDYAFVHMEREEEALAAIEALNGKEVKG 61
RRM1_TIAR cd12616
RNA recognition motif 1 (RRM1) found in nucleolysin TIAR and similar proteins; This subgroup ...
75-144 5.86e-06

RNA recognition motif 1 (RRM1) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM1 of nucleolysin TIAR, also termed TIA-1-related protein, and a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410028 [Multi-domain]  Cd Length: 81  Bit Score: 43.54  E-value: 5.86e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKG----YSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWG 144
Cdd:cd12616     1 TLYVGNLSRDVTEVLILQLFSQIGPCKSCKMITEHTsndpYCFVEFYEHRDAAAALAAMNGRKILGKEVKVNWA 74
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
3-40 6.15e-06

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 43.17  E-value: 6.15e-06
                          10        20        30
                  ....*....|....*....|....*....|....*...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTN 40
Cdd:cd12448    36 TGQPKGFGYVDFSTIDSAEAAIDALGGEYIDGRPIRLD 73
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
74-139 6.64e-06

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 42.98  E-value: 6.64e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK---------GYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12318     1 TTLFVKNLNFKTTEEALKKHFEKCGPIRSVTIAKKKdpkgpllsmGYGFVEFKSPEAAQKALKQLQGTVLDGHAL 75
RRM2_HuR cd12773
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup ...
76-131 6.96e-06

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM2 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410166 [Multi-domain]  Cd Length: 84  Bit Score: 43.36  E-value: 6.96e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12773     3 LYISGLPRTMTQKDVEDMFSRFGRIINSRVLVDqatglsRGVAFIRFDKRSEAEEAITNFNG 64
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
86-139 6.98e-06

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 42.72  E-value: 6.98e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12316    12 TEDELRELFEAFGKISEVHIPLDkqtkrsKGFAFVLFVIPEDAVKAYQELDGSIFQGRLL 71
RRM1_MSSP cd12243
RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) ...
76-136 7.01e-06

RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM1 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus, they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. Moreover, the family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409689 [Multi-domain]  Cd Length: 71  Bit Score: 42.68  E-value: 7.01e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12243     3 VYIRGLPPNTTDEDLLLLCQSFGKIISTKAIIDkqtnkcKGYGFVDFDSPEAALKAIEGLNGRGVQA 69
RRM3_RBM47 cd12497
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This ...
86-145 7.20e-06

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM3 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409920 [Multi-domain]  Cd Length: 74  Bit Score: 43.03  E-value: 7.20e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12497    14 TEDTIKKIFGQFNPGCVERVKKIRDYAFVHFASRDDAVVAMNNLNGTELEGSCIEVTLAK 73
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
3-42 7.24e-06

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 42.99  E-value: 7.24e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12363    39 TGRSRGFGFVYFESVEDAKEAKERLNGQEIDGRRIRVDYS 78
RRM2_hnRNPA0 cd12579
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) ...
76-135 7.87e-06

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A0, a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409993 [Multi-domain]  Cd Length: 80  Bit Score: 42.90  E-value: 7.87e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIV----SVNGTTIE 135
Cdd:cd12579     2 LFVGGLKGDVGEGDLVEHFSQFGTVEKVEVIADKdtgkkrGFGFVYFEDHDSADKAAVvkfhSINGHRVE 71
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
74-143 8.83e-06

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 42.50  E-value: 8.83e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12398     1 RSVFVGNIPYDATEEQLKEIFSEVGPVVSFRLVTDretgkpKGYGFCEFRDAETALSAVRNLNGYELNGRPLRVDF 76
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
3-45 9.22e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 42.58  E-value: 9.22e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd12413    37 KDKCRGFGYVTFALAEDAQRALEEVKGKKFGGRKIKVELAKKK 79
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
73-140 9.61e-06

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 42.67  E-value: 9.61e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  73 NCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12336     1 DRTLFVGNLDPRVTEEILYELFLQAGPLEGVKIPKDpngkpKNFAFVTFKHEVSVPYAIQLLNGIRLFGREIR 73
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
86-141 9.95e-06

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 42.60  E-value: 9.95e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12363    14 TERDLREVFSRYGPIEKVQVVYDqqtgrsRGFGFVYFESVEDAKEAKERLNGQEIDGRRIRV 75
RRM1_2_CID8_like cd12225
RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting ...
75-140 1.01e-05

RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins; This subgroup corresponds to the RRM domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear.


Pssm-ID: 409672 [Multi-domain]  Cd Length: 76  Bit Score: 42.45  E-value: 1.01e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKG---YSFVRFNSHESAAHAIvSVNGTTIEGHVVK 140
Cdd:cd12225     2 TIHVGGIDGSLSEDELADYFSNCGEVTQVRLCGDRVhtrFAWVEFATDASALSAL-NLDGTTLGGHPLR 69
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
3-47 1.04e-05

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 42.60  E-value: 1.04e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRKPP 47
Cdd:cd12324    44 TGFVKGYALVEYETKKEAQAAIEGLNGKELLGQTISVDWAFVKGP 88
RRM_PPARGC1A_like cd12357
RNA recognition motif (RRM) found in the peroxisome proliferator-activated receptor gamma ...
76-126 1.07e-05

RNA recognition motif (RRM) found in the peroxisome proliferator-activated receptor gamma coactivator 1A (PGC-1alpha) family of regulated coactivators; This subfamily corresponds to the RRM of PGC-1alpha, PGC-1beta, and PGC-1-related coactivator (PRC), which serve as mediators between environmental or endogenous signals and the transcriptional machinery governing mitochondrial biogenesis. They play an important integrative role in the control of respiratory gene expression through interacting with a number of transcription factors, such as NRF-1, NRF-2, ERR, CREB and YY1. All family members are multi-domain proteins containing the N-terminal activation domain, an LXXLL coactivator signature, a tetrapeptide motif (DHDY) responsible for HCF binding, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In contrast to PGC-1alpha and PRC, PGC-1beta possesses two glutamic/aspartic acid-rich acidic domains, but lacks most of the arginine/serine (SR)-rich domain that is responsible for the regulation of RNA processing.


Pssm-ID: 409793 [Multi-domain]  Cd Length: 91  Bit Score: 42.80  E-value: 1.07e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRV-FPDKG--YSFVRFNSHESAAHAI 126
Cdd:cd12357     5 VYVGKLEQDTTRSELRRRFEVFGEIEECTVhFRERGdkYGFVTYRYSEDAFLAL 58
RRM_MCM3A_like cd12443
RNA recognition motif (RRM) found in 80 kDa MCM3-associated protein (Map80) and similar ...
88-125 1.10e-05

RNA recognition motif (RRM) found in 80 kDa MCM3-associated protein (Map80) and similar proteins; This subfamily corresponds to the RRM of Map80, also termed germinal center-associated nuclear protein (GANP), involved in the nuclear localization pathway of MCM3, a protein necessary for the initiation of DNA replication and also involves in controls that ensure DNA replication is initiated once per cell cycle. Map80 contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409877 [Multi-domain]  Cd Length: 75  Bit Score: 42.31  E-value: 1.10e-05
                          10        20        30
                  ....*....|....*....|....*....|....*...
gi 1191017726  88 QLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHA 125
Cdd:cd12443    16 EILRRHFSKFGKVARVFCNPRKNLAIVHFKDHESAALA 53
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
86-131 1.23e-05

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 42.11  E-value: 1.23e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12408    12 TEEDLRELFRPFGPISRVYLAKDketgqsKGFAFVTFETREDAERAIEKLNG 63
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
76-145 1.33e-05

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 42.28  E-value: 1.33e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFG-----QIMEIR----VFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12223     4 LYVGNLPPSVTEEVLLREFGRFGplasvKIMWPRteeeRRRNRNCGFVAFMSRADAERAMRELNGKDVMGYELKLGWGK 82
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
3-37 1.39e-05

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 42.18  E-value: 1.39e-05
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQI 37
Cdd:cd12379    39 NGGSKGYGFVHFETEEAAERAIEKVNGMLLNGKKV 73
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
3-45 1.47e-05

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 43.07  E-value: 1.47e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQ---MGGQWLGGRQI-------RT--NWATRK 45
Cdd:cd21615    56 TGKSRGYAFIVFKSESDAKNAFKEgngLRGLKINDRTCivdiergRTvkNWKPRR 110
RRM1_SF3B4 cd12334
RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
3-40 1.54e-05

RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM1 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409771 [Multi-domain]  Cd Length: 74  Bit Score: 41.82  E-value: 1.54e-05
                          10        20        30
                  ....*....|....*....|....*....|....*...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTN 40
Cdd:cd12334    36 TQQHQGYGFVEFLSEEDADYAIKIMNMIKLYGKPIRVN 73
RRM4_Prp24 cd12299
RNA recognition motif 4 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
85-141 1.55e-05

RNA recognition motif 4 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM4 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409740 [Multi-domain]  Cd Length: 71  Bit Score: 41.85  E-value: 1.55e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  85 LTEQLMRQTFSPFG-QIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12299    12 VNEEQIRAFFEKIGpDIRKILLVPDHEGALVEFEDESDAGKASLSLDGSQFQGKTIRC 69
RRM4_RBM45 cd12369
RNA recognition motif 4 (RRM4) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
85-136 1.55e-05

RNA recognition motif 4 (RRM4) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM4 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409804 [Multi-domain]  Cd Length: 68  Bit Score: 41.89  E-value: 1.55e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  85 LTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12369    11 PPLDILEDVFCRFGNLIDVYLVPGKNVGYAKYADRESAEEAITTLHGKEVNG 62
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
86-136 1.70e-05

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 42.04  E-value: 1.70e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRV--FPD----KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12397    11 TEEDLRKHFAPAGKIRKVRMatFEDsgkcKGFAFVDFKEIESATNAVKGPINHSLNG 67
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
5-41 1.73e-05

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 41.88  E-value: 1.73e-05
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1191017726   5 KSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 41
Cdd:cd12354    34 PDKGYAFIRFDSHEAATHAIVSVNGTIINGQAVKCSW 70
RRM2_NEFsp cd12274
RNA recognition motif 2 (RRM2) found in vertebrate putative RNA exonuclease NEF-sp; This ...
76-131 1.84e-05

RNA recognition motif 2 (RRM2) found in vertebrate putative RNA exonuclease NEF-sp; This subfamily corresponds to the RRM2 of NEF-sp., including uncharacterized putative RNA exonuclease NEF-sp found in vertebrates. Although its cellular functions remains unclear, NEF-sp contains an exonuclease domain and two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), suggesting it may possess both exonuclease and RNA-binding activities.


Pssm-ID: 409717 [Multi-domain]  Cd Length: 71  Bit Score: 41.77  E-value: 1.84e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12274     1 IYVSGFKKSLTEEDLQERFSQLSDLEAVFLPKDlqsgkhKKYCFLKFRSSQSAQAALDIITG 62
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
76-136 1.86e-05

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 41.90  E-value: 1.86e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQI-----MEIRVFPDKG----YSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12355     2 LWIGNLDPRLTEYHLLKLLSKYGKIkkfdfLFHKTGPLKGqprgYCFVTFETKEEAEKAIECLNGKLALG 71
RRM2_TIA1 cd12618
RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
76-143 2.02e-05

RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410030 [Multi-domain]  Cd Length: 78  Bit Score: 41.91  E-value: 2.02e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12618     5 VFVGDLSPEITTEDIKAAFAPFGRISDARVVKDmatgksKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 78
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
76-141 2.09e-05

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 41.54  E-value: 2.09e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNShESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12330     2 IFVGGLAPDVTEEEFKEYFEQFGTVVDAVVMLDHdtgrsrGFGFVTFDS-ESAVEKVLSKGFHELGGKKVEV 72
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
4-38 2.26e-05

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 41.74  E-value: 2.26e-05
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:cd21619    42 DRTTGFGFIKYTDAESAERAMQQADGILLGRRRLV 76
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
4-42 2.31e-05

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 41.52  E-value: 2.31e-05
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12355    41 GQPRGYCFVTFETKEEAEKAIECLNGKLALGKKLVVRWA 79
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
83-140 2.38e-05

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 41.55  E-value: 2.38e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  83 SGL----TEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12392     8 KGLpfscTKEELEELFKQHGTVKDVRLVTYrngkpKGLAYVEYENEADASQAVLKTDGTEIKDHTIS 74
RRM1_PUB1 cd12614
RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated ...
5-42 2.40e-05

RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM1 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410026 [Multi-domain]  Cd Length: 74  Bit Score: 41.27  E-value: 2.40e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   5 KSKG--YGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12614    35 NSKGvnYGFVEYYDRRSAEIAIQTLNGRQIFGQEIKVNWA 74
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
76-140 2.52e-05

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 43.10  E-value: 2.52e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:PLN03134   37 LFIGGLSWGTDDASLRDAFAHFGDVVDAKVIVDretgrsRGFGFVNFNDEGAATAAISEMDGKELNGRHIR 107
RRM2_PSRP2 cd21610
RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
3-42 2.74e-05

RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). PSRP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410189 [Multi-domain]  Cd Length: 79  Bit Score: 41.45  E-value: 2.74e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd21610    40 TSKSNGFGFVSFSSEEDVEAAIQALNNSVLEGQKIRVNKA 79
RRM2_HuD cd12774
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup ...
69-136 2.96e-05

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM2 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells and also regulates the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410167 [Multi-domain]  Cd Length: 84  Bit Score: 41.63  E-value: 2.96e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  69 SSPSNCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12774     1 ASIRDANLYVSGLPKTMTQKELEQLFSQYGRIITSRILVDqvtgvsRGVGFIRFDKRIEAEEAIKGLNGQKPSG 74
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
90-136 2.96e-05

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 41.23  E-value: 2.96e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  90 MRQTFSPFGQIMEIRV-FPD---KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12407    17 LRQMFGQFGTILDVEIiFNErgsKGFGFVTFANSADADRAREKLNGTVVEG 67
RRM2_SF3B4 cd12335
RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
87-131 3.53e-05

RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM2 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 is a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409772 [Multi-domain]  Cd Length: 83  Bit Score: 41.19  E-value: 3.53e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  87 EQLMRQTFSPFGQIME---IRVFPD----KGYSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12335    15 EKLLYDTFSAFGVILQtpkIMRDPDtgnsKGFGFVSFDSFEASDAAIEAMNG 66
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
76-140 3.57e-05

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 40.67  E-value: 3.57e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFpdKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12343     2 IFVGNLPDAATSEELRALFEKYGKVTECDIV--KNYAFVHMEKEEDAEDAIKALNGYEFMGSRIN 64
RRM2_MSI cd12323
RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, ...
76-141 4.06e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, Musashi-2 and similar proteins; This subfamily corresponds to the RRM2.in Musashi-1 (also termed Msi1), a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 240769 [Multi-domain]  Cd Length: 74  Bit Score: 40.88  E-value: 4.06e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNShESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12323     2 IFVGGLSANTTEDDVKKYFSQFGKVEDAMLMFDKqtnrhrGFGFVTFES-EDVVDKVCEIHFHEINNKMVEC 72
RRM3_hnRNPM_like cd12387
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
1-37 4.12e-05

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM3 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409821 [Multi-domain]  Cd Length: 71  Bit Score: 40.65  E-value: 4.12e-05
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQI 37
Cdd:cd12387    32 MENGKSKGCGTVRFDSPEDAENACRMMNGSKQSGREI 68
RRM2_HuB cd12775
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup ...
69-136 4.18e-05

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM2 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410168 [Multi-domain]  Cd Length: 84  Bit Score: 41.24  E-value: 4.18e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  69 SSPSNCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12775     1 ASIRDANLYVSGLPKTMTQKELEQLFSQYGRIITSRILVDqvtgvsRGVGFIRFDKRIEAEEAIKGLNGQKPPG 74
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
3-42 4.28e-05

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 40.58  E-value: 4.28e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12399    36 TKRPRGFGFVELQEEESAEKAIAKLDGTDFMGRTIRVNEA 75
RRM3_Bruno_like cd12640
RNA recognition motif 3 (RRM3) found in Drosophila melanogaster Bruno protein and similar ...
71-134 4.32e-05

RNA recognition motif 3 (RRM3) found in Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM3 of Bruno protein, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 241084 [Multi-domain]  Cd Length: 79  Bit Score: 40.75  E-value: 4.32e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  71 PSNCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKG------YSFVRFNSHESAAHAIVSVNGTTI 134
Cdd:cd12640     2 PEGCNLFIYHLPQEFTDTDLAQTFLPFGNVISAKVFIDKQtnlskcFGFVSYDNPDSAQAAIQAMNGFQI 71
RRM2_CELF1_2 cd12634
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and ...
76-136 4.74e-05

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins; This subgroup corresponds to the RRM2 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it preferentially binds to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3.


Pssm-ID: 410042 [Multi-domain]  Cd Length: 81  Bit Score: 40.81  E-value: 4.74e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVF--PD---KGYSFVRFNSHESAAHAIVSVN-GTTIEG 136
Cdd:cd12634     4 LFIGMVSKKCNENDIRVMFSPFGQIEECRILrgPDglsRGCAFVTFSTRAMAQNAIKAMHqSQTMEG 70
RRM1_RIM4_like cd12453
RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; ...
94-141 4.89e-05

RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409887 [Multi-domain]  Cd Length: 86  Bit Score: 40.85  E-value: 4.89e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  94 FSPFGQIMEIRVFPD---KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12453    27 FSKWGELLNVKVLKDwsnRPYAFVQYTNTEDAKNALVNGHNTLLDGRHLRV 77
RRM2_Bruno_like cd12636
RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar ...
76-136 5.07e-05

RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM2 of Bruno, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 410044 [Multi-domain]  Cd Length: 81  Bit Score: 40.63  E-value: 5.07e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGT-TIEG 136
Cdd:cd12636     4 LFVGMLSKKCNESDVRIMFSPYGSIEECTVLRDqngksRGCAFVTFTSRQCAVNAIKAMHHSqTMEG 70
RRM2_RAVER cd12389
RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
2-42 5.42e-05

RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM2 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409823 [Multi-domain]  Cd Length: 77  Bit Score: 40.38  E-value: 5.42e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12389    36 VTGESKGYGFVEYTSKESAIRAKNQLHGRQIGGRALQVDWL 76
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
94-145 5.43e-05

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 40.53  E-value: 5.43e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  94 FSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12674    21 FSDIGPVKHAVVVTDpetkksRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKLDFAK 78
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
76-143 5.60e-05

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 40.63  E-value: 5.60e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12240     1 LYVGNLSFYTTEEQIYELFSKCGDIKRIIMGLDKfkktpcGFCFVEYYSREDAENAVKYLNGTKLDDRIIRVDW 74
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
3-44 5.69e-05

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 40.57  E-value: 5.69e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATR 44
Cdd:cd12671    44 TGKPKGYGFCEYQDQETALSAMRNLNGYELNGRALRVDNAAS 85
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
5-194 5.86e-05

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 43.84  E-value: 5.86e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   5 KSKGYGFVSFFNKWDAENAIQQM--GGQWLGGRQIRTNWATrkppapkstyesntKQLSYDEVVNQSSPsncTVYCGGVT 82
Cdd:TIGR01648 180 KNRGFAFVEYESHRAAAMARRKLmpGRIQLWGHVIAVDWAE--------------PEEEVDEDVMAKVK---ILYVRNLM 242
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  83 SGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGKetldminPVQQNQIGYP 162
Cdd:TIGR01648 243 TTTTEEIIEKSFSEFKPGKVERVKKIRDYAFVHFEDREDAVKAMDELNGKELEGSEIEVTLAK-------PVDKKSYVRY 315
                         170       180       190
                  ....*....|....*....|....*....|....*
gi 1191017726 163 Q--PYGQWGQWYGNAQQIGQ-YMPNGWQVPAYGMY 194
Cdd:TIGR01648 316 TrgTGGRGKERQAARQSLGQvYDPASRSLAYEDYY 350
RRM2_SECp43 cd12612
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43); ...
2-45 6.17e-05

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43); This subgroup corresponds to the RRM2 of SECp43, an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region.


Pssm-ID: 410024 [Multi-domain]  Cd Length: 82  Bit Score: 40.43  E-value: 6.17e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQM-GGQWLGGRQIRTNWATRK 45
Cdd:cd12612    38 QLGNSRGYGFVRFSDENEQKRALTECqGASGLGGKPIRLSVAIPK 82
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
76-131 7.15e-05

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 39.96  E-value: 7.15e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12371     3 IYVASVHPDLSEDDIKSVFEAFGKIKSCSLAPDpetgkhKGYGFIEYENPQSAQDAIASMNL 64
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
80-136 7.23e-05

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 39.94  E-value: 7.23e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  80 GVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12311     5 NLTYRTTPDDLRRVFEKYGEVGDVYIPRDRytresrGFAFVRFYDKRDAEDAIDAMDGAELDG 67
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
9-42 7.48e-05

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 40.08  E-value: 7.48e-05
                          10        20        30
                  ....*....|....*....|....*....|....
gi 1191017726   9 YGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12352    40 YCFVEFYEHNHAAAALQAMNGRKILGKEVKVNWA 73
RRM_SCAF4_SCAF8 cd12227
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ...
75-143 7.55e-05

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409674 [Multi-domain]  Cd Length: 77  Bit Score: 40.11  E-value: 7.55e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12227     4 TLWVGHLSKKVTQEELKNLFEEYGEIQSIDMIPPRGCAYVCMKTRQDAHRALQKLKNHKLRGKSIKIAW 72
U2AF_lg TIGR01642
U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of ...
2-139 7.61e-05

U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of an N-terminal arginine-rich low complexity domain followed by three tandem RNA recognition motifs (pfam00076). The well-characterized members of this family are auxilliary components of the U2 small nuclear ribonuclearprotein splicing factor (U2AF). These proteins are closely related to the CC1-like subfamily of splicing factors (TIGR01622). Members of this subfamily are found in plants, metazoa and fungi.


Pssm-ID: 273727 [Multi-domain]  Cd Length: 509  Bit Score: 43.34  E-value: 7.61e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRKppAPKSTYESNTKQLSYDEVVNQSSPSncTVYCGGV 81
Cdd:TIGR01642 332 ATGLSKGYAFCEYKDPSVTDVAIAALNGKDTGDNKLHVQRACVG--ANQATIDTSNGMAPVTLLAKALSQS--ILQIGGK 407
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  82 TSG--------LTEQLM------------RQTFSPFGQIMEI---RVFPDKGYS------FVRFNSHESAAHAIVSVNGT 132
Cdd:TIGR01642 408 PTKvvqltnlvTGDDLMddeeyeeiyedvKTEFSKYGPLINIvipRPNGDRNSTpgvgkvFLEYADVRSAEKAMEGMNGR 487

                  ....*..
gi 1191017726 133 TIEGHVV 139
Cdd:TIGR01642 488 KFNDRVV 494
RRM3_Crp79_Mug28 cd21622
RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
86-134 7.75e-05

RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the three RRM motif.


Pssm-ID: 410201 [Multi-domain]  Cd Length: 92  Bit Score: 40.43  E-value: 7.75e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  86 TEQLmRQTFSPFGQIME--IRVFPD----KGYSFVRFNSHESAAHAIVSVNGTTI 134
Cdd:cd21622    19 KEDL-EQLFSPFGQIVSsyLATYPGtgisKGFGFVAFSKPEDAAKAKETLNGVMV 72
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
1-42 8.20e-05

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 39.90  E-value: 8.20e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12347    34 YETEKHRGFAFVEFEEAEDAAAAIDNMNESELFGRTIRVNLA 75
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
83-139 8.67e-05

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 39.93  E-value: 8.67e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  83 SGLT-----EQLmRQTFSPFGQIMEIRVFPDKG------YSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12417     5 SGLSdttkaADL-KKIFSKYGKVVSAKVVTSARtpgsrcYGYVTMASVEEADLCIKSLNKTELHGRVI 71
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
75-139 9.10e-05

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 39.82  E-value: 9.10e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD--------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd21619     3 TIYVGNIDMTINEDALEKIFSRYGQVESVRRPPIhtdkadrtTGFGFIKYTDAESAERAMQQADGILLGRRRL 75
RRM2_RAVER cd12389
RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
85-143 9.51e-05

RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM2 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409823 [Multi-domain]  Cd Length: 77  Bit Score: 39.99  E-value: 9.51e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  85 LTEQLMRQTFSPFGQIMeiRVF--------PDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12389    11 FTEEQFEELVRPYGNVE--RCFlvysevtgESKGYGFVEYTSKESAIRAKNQLHGRQIGGRALQVDW 75
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
3-42 1.00e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 39.89  E-value: 1.00e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQ------MGGQWLGGRQIRTNWA 42
Cdd:cd12415    38 TGHSKGTAFVQFKTKESADKCIEAandeseDGGLVLDGRKLIVSLA 83
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
3-29 1.04e-04

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 39.80  E-value: 1.04e-04
                          10        20
                  ....*....|....*....|....*..
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGG 29
Cdd:cd12408    37 TGQSKGFAFVTFETREDAERAIEKLNG 63
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
3-42 1.26e-04

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 39.71  E-value: 1.26e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd21609    37 TGRSRGFGFVTMGSVEDAKAAIEKLNGTEVGGREIKVNIT 76
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
75-134 1.28e-04

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 40.37  E-value: 1.28e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTI 134
Cdd:cd21615    20 TLFVGRLDYSLTELELQKKFSKFGEIEKIRIVRDKetgksrGYAFIVFKSESDAKNAFKEGNGLRG 85
RRM2_Spen cd12309
RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily ...
75-145 1.32e-04

RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily corresponds to the RRM2 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 240755 [Multi-domain]  Cd Length: 79  Bit Score: 39.31  E-value: 1.32e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRV-FPDKG----YSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12309     4 TLFVGNLEITITEEELRRAFERYGVVEDVDIkRPPRGqgnaYAFVKFLNLDMAHRAKVAMSGQYIGRNQIKIGYGK 79
RRM_occluded pfam16842
Occluded RNA-recognition motif; This family is an unusual, usually C-terminal, RNA-recognition ...
98-141 1.40e-04

Occluded RNA-recognition motif; This family is an unusual, usually C-terminal, RNA-recognition motif found in fungi. In yeast it is the fourth RRM domain on the essential splicing factor Prp24. Structurally, it has a non-canonical RRM fold with the expected beta-aloha-beta-beta-alpha-beta RRM-fold is flanked by N- and C-terminal alpha-helices. These two additional flanking alpha-helices occlude the beta-sheet face. The electropositive surface thereby presented is an alternative RNA-binding surface that allows both binding and unwinding of the U6 small nuclear RNA's internal stem loop, at least in vitro.


Pssm-ID: 465282 [Multi-domain]  Cd Length: 79  Bit Score: 39.41  E-value: 1.40e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 1191017726  98 GQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:pfam16842  27 GPIVKIVLVPDHQGAIVEFKDVADAGKASLALDGSEFEGRKLRC 70
RRM2_HuC cd12776
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup ...
73-131 1.41e-04

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM2 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241220 [Multi-domain]  Cd Length: 81  Bit Score: 39.60  E-value: 1.41e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  73 NCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12776     1 DANLYVSGLPKTMSQKEMEQLFSQYGRIITSRILVDqvtgvsRGVGFIRFDKRIEAEEAIKGLNG 65
RRM2_PSRP2 cd21610
RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
76-140 1.53e-04

RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). PSRP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410189 [Multi-domain]  Cd Length: 79  Bit Score: 39.14  E-value: 1.53e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRV--FPD----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd21610     5 VYVGNLAKTVTNELLKDFFSEKGKVLGAKVqrTPGtsksNGFGFVSFSSEEDVEAAIQALNNSVLEGQKIR 75
RRM2_DAZAP1 cd12327
RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) ...
76-135 1.80e-04

RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins; This subfamily corresponds to the RRM2 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated is predominantly nuclear and the nonacetylated form is in cytoplasm. DAZAP1 also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain.


Pssm-ID: 409765 [Multi-domain]  Cd Length: 80  Bit Score: 39.02  E-value: 1.80e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAI----VSVNGTTIE 135
Cdd:cd12327     5 VFVGGIPHNCGETELRDYFKRYGVVTEVVMMYDaekqrsRGFGFITFEDEQSVDQAVnmhfHDIMGKKVE 74
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
2-42 1.83e-04

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 38.93  E-value: 1.83e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12375    36 ITGQSLGYGFVNYRDPNDARKAINTLNGLDLENKRLKVSYA 76
RRM2_hnRNPA_like cd12328
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
76-135 1.87e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM2 of hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409766 [Multi-domain]  Cd Length: 73  Bit Score: 38.79  E-value: 1.87e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVS----VNGTTIE 135
Cdd:cd12328     2 LFVGGLKEDVEEEDLREYFSQFGKVESVEIVTDKetgkkrGFAFVTFDDHDSVDKIVLQkyhtINGHRCE 71
RRM3_CELF3_4_5_6 cd12639
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
71-134 1.98e-04

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM3 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contains three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. Both, RRM1 and RRM2 of CELF-4, can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 241083 [Multi-domain]  Cd Length: 79  Bit Score: 39.07  E-value: 1.98e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  71 PSNCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTI 134
Cdd:cd12639     2 PEGCNLFIYHLPQEFGDAELMQMFLPFGNVISAKVFVDratnqsKCFGFVSFDNPASAQAAIQAMNGFQI 71
RRM1_RBMS3 cd12472
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding motif, ...
72-140 2.18e-04

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding motif, single-stranded-interacting protein 3 (RBMS3); This subgroup corresponds to the RRM1 of RBMS3, a new member of the c-myc gene single-strand binding proteins (MSSP) family of DNA regulators. Unlike other MSSP proteins, RBMS3 is not a transcriptional regulator. It binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. RBMS3 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and its C-terminal region is acidic and enriched in prolines, glutamines and threonines.


Pssm-ID: 409902 [Multi-domain]  Cd Length: 80  Bit Score: 39.03  E-value: 2.18e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  72 SNCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12472     3 SKTNLYIRGLPPGTTDQDLIKLCQPYGKIVSTKAILDKntnqckGYGFVDFDSPAAAQKAVASLKASGVQAQMAK 77
RRM1_MSSP2 cd12471
RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-2; ...
67-140 2.25e-04

RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-2; This subgroup corresponds to the RRM1 of MSSP-2, also termed RNA-binding motif, single-stranded-interacting protein 2 (RBMS2), or suppressor of CDC2 with RNA-binding motif 3 (SCR3), a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence T(C/A)TT, and stimulates DNA replication in the system using SV40 DNA. MSSP-2 is identical with Scr3, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-2 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. MSSP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis.


Pssm-ID: 409901 [Multi-domain]  Cd Length: 84  Bit Score: 38.95  E-value: 2.25e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  67 NQSSPSNctVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12471     1 DQLSKTN--LYIRGLHPGTTDQDLVKLCQPYGKIVSTKAILDKttnkckGYGFVDFDSPSAAQKAVTALKASGVQAQMAK 78
RRM_TRA2B cd12641
RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and ...
73-140 2.40e-04

RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and similar proteins; This subgroup corresponds to the RRM of TRA2-beta or TRA-2-beta, also termed splicing factor, arginine/serine-rich 10 (SFRS10), or transformer-2 protein homolog B, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. It contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions. TRA2-beta specifically binds to two types of RNA sequences, the CAA and (GAA)2 sequences, through the RRMs in different RNA binding modes.


Pssm-ID: 410046 [Multi-domain]  Cd Length: 87  Bit Score: 38.83  E-value: 2.40e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  73 NCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12641     7 NCCLGVFGLSLYTTERDLREVFSKYGPIADVSIVYDqqsrrsRGFAFVYFENVDDAKEAKERANGMELDGRRIR 80
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
74-139 2.67e-04

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 38.85  E-value: 2.67e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12237     5 LTLFVGRLSLQTTEEKLKEVFSRYGDIRRLRLVRDivtgfsKRYAFIEYKEERDALHAYRDAKKLVIDQYEI 76
RRM3_HuB cd12654
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen B (HuB); This subgroup ...
87-140 2.75e-04

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM3 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241098 [Multi-domain]  Cd Length: 86  Bit Score: 38.92  E-value: 2.75e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  87 EQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12654    17 ESILWQMFGPFGAVTNVKVIRDfntnkcKGFGFVTMTNYDEAAMAIASLNGYRLGDRVLQ 76
RRM1_PSP1 cd12586
RNA recognition motif 1 (RRM1) found in vertebrate paraspeckle protein 1 (PSP1); This subgroup ...
74-134 3.10e-04

RNA recognition motif 1 (RRM1) found in vertebrate paraspeckle protein 1 (PSP1); This subgroup corresponds to the RRM1 of PSPC1, also termed paraspeckle component 1 (PSPC1), a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. It is ubiquitously expressed and highly conserved in vertebrates. Its cellular function remains unknown currently, however, PSPC1 forms a novel heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO), which localizes to paraspeckles in an RNA-dependent manner. PSPC1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 409999 [Multi-domain]  Cd Length: 71  Bit Score: 38.36  E-value: 3.10e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTI 134
Cdd:cd12586     2 CRLFVGNLPTDITEEDFKRLFERYGEPSEVFINRDRGFGFIRLESRTLAEIAKAELDGTIL 62
RRM2_PHIP1 cd12272
RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting ...
75-140 3.24e-04

RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; The CD corresponds to the RRM2 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409715 [Multi-domain]  Cd Length: 73  Bit Score: 38.15  E-value: 3.24e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAiVSVNGTTIEGHVVK 140
Cdd:cd12272     1 TVYIGNLAWDIDEDDLRELFAECCEITNVRLHTDketgefKGYGHVEFADEESLDAA-LKLAGTKLCGRPIR 71
RRM4_MRN1 cd12522
RNA recognition motif 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This ...
76-126 3.30e-04

RNA recognition motif 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409942 [Multi-domain]  Cd Length: 81  Bit Score: 38.28  E-value: 3.30e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  76 VYCGGV--TSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAI 126
Cdd:cd12522     6 VYIGNIddVRVLTEERLRHDFSQYGEIEQVNFLREKNCAFVNFTNIANAIKAI 58
RRM1_SRSF4_like cd12337
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
76-131 3.33e-04

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 409774 [Multi-domain]  Cd Length: 70  Bit Score: 38.07  E-value: 3.33e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVfpDKGYSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12337     2 VYIGRLPYRARERDVERFFRGYGRIRDINL--KNGFGFVEFEDPRDADDAVYELNG 55
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
76-136 3.45e-04

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 38.16  E-value: 3.45e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12448     1 LFVGNLPFSATQDALYEAFSQHGSIVSVRLPTDretgqpKGFGYVDFSTIDSAEAAIDALGGEYIDG 67
RRM_ScJSN1_like cd21616
RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein JSN1 and similar ...
40-136 3.45e-04

RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein JSN1 and similar proteins; JSN1, also called Pumilio homology domain family member 1 (PUF1), is a member of the PUF family of proteins. It facilitates association of Arp2/3 complex to yeast mitochondria. It may play a role in mitosis, perhaps by affecting the stability of microtubules. Members in this family contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410195 [Multi-domain]  Cd Length: 118  Bit Score: 39.36  E-value: 3.45e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  40 NWATRKPPAPKSTYESN---TKQLSYDEV--VNQSSPSNctvycgGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFV 114
Cdd:cd21616     9 NWITTSPYVPPINQVNNllpTNTILVSNIfpIQQTSPQP------PNPINLTSTSLASLCSKFGDIISSRTLRGLNMALI 82
                          90       100
                  ....*....|....*....|..
gi 1191017726 115 RFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd21616    83 EFESVDSAILALESLQGKEISI 104
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
76-140 3.51e-04

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 38.17  E-value: 3.51e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd21609     2 LYVGNIPRNVTSEELAKIFEEAGTVEIAEVMYDRytgrsrGFGFVTMGSVEDAKAAIEKLNGTEVGGREIK 72
RRM1_HuB cd12771
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup ...
3-42 3.57e-04

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM1 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads and is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410164 [Multi-domain]  Cd Length: 83  Bit Score: 38.55  E-value: 3.57e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12771    42 TGQSLGYGFVNYIEPKDAEKAINTLNGLRLQTKTIKVSYA 81
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
76-139 3.73e-04

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 37.92  E-value: 3.73e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12365     1 LHVGKLTRNVTKDHLKEIFSVYGTVKNVDLPIDrepnlpRGYAYVEFESPEDAEKAIKHMDGGQIDGQEV 70
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
2-26 3.95e-04

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 38.95  E-value: 3.95e-04
                          10        20
                  ....*....|....*....|....*
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQ 26
Cdd:cd12676    38 ATGRSKGTAFVKFKNKEDADNCLSA 62
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
3-25 4.25e-04

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 38.12  E-value: 4.25e-04
                          10        20
                  ....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQ 25
Cdd:cd12384    38 TGKSRGYGFVTMADREAAERACK 60
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
85-136 4.35e-04

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 38.01  E-value: 4.35e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  85 LTEQLMRQTFSPFGQIMEIRVFPDK---------GYSFVRFNSHESAAHAIvSVNGTTIEG 136
Cdd:cd12298    12 LDEEALRGIFEKFGEIESINIPKKQknrkgrhnnGFAFVTFEDADSAESAL-QLNGTLLDN 71
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
4-44 4.42e-04

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 38.02  E-value: 4.42e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATR 44
Cdd:cd12381    39 GRSKGFGFVCFSSPEEATKAVTEMNGRIIGGKPLYVALAQR 79
RRM3_HuR cd12653
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen R (HuR); This subgroup ...
87-131 4.70e-04

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM3 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410056 [Multi-domain]  Cd Length: 85  Bit Score: 38.11  E-value: 4.70e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  87 EQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12653    16 EGILWQMFGPFGAVTNVKVIRDfntnkcKGFGFVTMTNYEEAAMAIASLNG 66
RRM2_RAVER1 cd12665
RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 ...
3-41 4.87e-04

RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM2 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410066 [Multi-domain]  Cd Length: 77  Bit Score: 37.99  E-value: 4.87e-04
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 41
Cdd:cd12665    37 TGHSKGYGFVEYMKKDSAARAKSDLLGKQLGTRTLYVHW 75
RRM2_hnRNPA2B1 cd12581
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP ...
76-137 5.16e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A2/B1, an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A2/B1 also functions as a splicing factor that regulates alternative splicing of the tumor suppressors, such as BIN1, WWOX, the antiapoptotic proteins c-FLIP and caspase-9B, the insulin receptor (IR), and the RON proto-oncogene among others. Overexpression of hnRNP A2/B1 has been described in many cancers. It functions as a nuclear matrix protein involving in RNA synthesis and the regulation of cellular migration through alternatively splicing pre-mRNA. It may play a role in tumor cell differentiation. hnRNP A2/B1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409995 [Multi-domain]  Cd Length: 80  Bit Score: 38.04  E-value: 5.16e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHEsAAHAIVSVNGTTIEGH 137
Cdd:cd12581     3 LFVGGIKEDTEEHHLRDYFEEYGKIDTIEIITDRqsgkkrGFGFVTFDDHD-PVDKIVLQKYHTINGH 69
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
75-136 5.22e-04

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 37.88  E-value: 5.22e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12671     8 SVFVGNIPYEATEEQLKDIFSEVGPVVSFRLVYDretgkpKGYGFCEYQDQETALSAMRNLNGYELNG 75
RRM_BOULE cd12673
RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of ...
76-122 5.43e-04

RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of BOULE, the founder member of the human DAZ gene family. Invertebrates contain a single BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. BOULE encodes an RNA-binding protein containing an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a single copy of the DAZ motif. Although its specific biochemical functions remains to be investigated, BOULE protein may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410074 [Multi-domain]  Cd Length: 81  Bit Score: 37.94  E-value: 5.43e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESA 122
Cdd:cd12673     5 IFVGGIDFKTNENDLRKFFAQYGSVKEVKIVNDragvsKGYGFITFETQEDA 56
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
76-139 5.48e-04

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 37.48  E-value: 5.48e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFpdKGYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12608     3 IFVGNVDEDTSQEELSALFEPYGAVLSCAVM--KQFAFVHMRGEAAADRAIRELNGRELHGRAL 64
RRM_RBM11 cd12593
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 11 (RBM11); This subfamily ...
75-140 5.53e-04

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 11 (RBM11); This subfamily corresponds to the RRM or RBM11, a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. RBM11 is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. RBM11 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM of RBM11 is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 410006 [Multi-domain]  Cd Length: 75  Bit Score: 37.47  E-value: 5.53e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12593     3 TVFVGNLHSNVNEEILYELFLQAGPLTKVTIAKDkegkpKSFGFVCFKHAESVPYAIALLNGIRLYGRPIK 73
RRM1_HuR cd12769
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup ...
4-42 5.67e-04

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM1 of HuR, also termed ELAV-like protein 1 (ELAV-1), a ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response; it binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. Meanwhile, HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410162 [Multi-domain]  Cd Length: 82  Bit Score: 37.71  E-value: 5.67e-04
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12769    41 GHSLGYGFVNYVTAKDAERAINTLNGLRLQSKTIKVSYA 79
RRM_RALY cd12604
RNA recognition motif (RRM) found in vertebrate RNA-binding protein Raly; This subgroup ...
73-164 5.86e-04

RNA recognition motif (RRM) found in vertebrate RNA-binding protein Raly; This subgroup corresponds to the RRM of Raly, also termed autoantigen p542, or heterogeneous nuclear ribonucleoprotein C-like 2, or hnRNP core protein C-like 2, or hnRNP associated with lethal yellow protein homolog, an RNA-binding protein that may play a critical role in embryonic development. It is encoded by Raly, a ubiquitously expressed gene of unknown function. Raly shows a high degree of identity with the 5' sequences of p542 gene encoding autoantigen, which can cross-react with EBNA-1 of the Epstein Barr virus. Raly contains two distinct domains, an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain that includes a unique glycine/serine-rich stretch.


Pssm-ID: 410016 [Multi-domain]  Cd Length: 76  Bit Score: 37.70  E-value: 5.86e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  73 NCTVYCGGVTSGLTEQLMRQT-FSPFGQIMEIRVfpDKGYSFVRFNSHESAAHAIVSVNGTTIEGhvvkcywgkETLDMi 151
Cdd:cd12604     1 NSRVFIGNLNTAVVKKSDVETiFSKYGRVVGCSV--HKGYAFVQYTNERHARAAVIGENGRVLAG---------QTLDI- 68
                          90
                  ....*....|...
gi 1191017726 152 npvqqNQIGYPQP 164
Cdd:cd12604    69 -----NMAGEPKP 76
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
80-137 5.88e-04

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 37.54  E-value: 5.88e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  80 GVTSGLTEQLMRQTFSPFGQIMEIRVFPDK-GYS----FVRFNSHESAAHAIVSVNGTTIEGH 137
Cdd:cd12565     7 NLPKYVTEKRLKEHFSKKGEITDVKVMRTKdGKSrrfgFIGFKSEEEAQKAVKYFNKTFIDTS 69
RRM1_HuD cd12770
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup ...
3-42 5.94e-04

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM1 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells, as well as the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410163 [Multi-domain]  Cd Length: 81  Bit Score: 37.78  E-value: 5.94e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12770    39 TGQSLGYGFVNYIDPKDAEKAINTLNGLRLQTKTIKVSYA 78
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
86-122 5.96e-04

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 37.38  E-value: 5.96e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESA 122
Cdd:cd12321    12 TEQDLKEYFSTFGEVLMVQVKKDpktgrsKGFGFVRFASYETQ 54
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
2-38 5.99e-04

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 37.53  E-value: 5.99e-04
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:cd12365    35 EPNLPRGYAYVEFESPEDAEKAIKHMDGGQIDGQEVT 71
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
85-140 6.32e-04

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 37.76  E-value: 6.32e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  85 LTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12649    12 LTDREFRALFRAIGPVNTCKIVRDKktgysyGFGFVDFTSEEDAQRAIKTLNGLQLQNKRLK 73
RRM_SRSF11_SREK1 cd12259
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 11 (SRSF11), ...
80-125 6.37e-04

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 11 (SRSF11), splicing regulatory glutamine/lysine-rich protein 1 (SREK1) and similar proteins; This subfamily corresponds to the RRM domain of SRSF11 (SRp54 or p54), SREK1 ( SFRS12 or SRrp86) and similar proteins, a group of proteins containing regions rich in serine-arginine dipeptides (SR protein family). These are involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. SR proteins have been identified as crucial regulators of alternative splicing. Different SR proteins display different substrate specificity, have distinct functions in alternative splicing of different pre-mRNAs, and can even negatively regulate splicing. All SR family members are characterized by the presence of one or two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and the C-terminal regions rich in serine and arginine dipeptides (SR domains). The RRM domain is responsible for RNA binding and specificity in both alternative and constitutive splicing. In contrast, SR domains are thought to be protein-protein interaction domains that are often interchangeable.


Pssm-ID: 409704 [Multi-domain]  Cd Length: 76  Bit Score: 37.30  E-value: 6.37e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  80 GVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGY--------SFVRFNSHESAAHA 125
Cdd:cd12259     6 NVSPQATEEQMRTLFGFIGKIEELRLYPSEDDlapvlskvCFVKYEDPEDVAVA 59
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
84-145 6.47e-04

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 37.42  E-value: 6.47e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  84 GLTEQLMRQTFSPFGQIMEIRVfpDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12233    11 TTREEDIEKLFEPFGPLVRCDI--RKTFAFVEFEDSEDATKALEALHGSRIDGSVLTVEFVK 70
RRM2_hnRNPA3 cd12582
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) ...
76-137 6.48e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A3, a novel RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE) independently of hnRNP A2 and participates in the trafficking of A2RE-containing RNA. hnRNP A3 can shuttle between the nucleus and the cytoplasm. It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409996 [Multi-domain]  Cd Length: 80  Bit Score: 37.62  E-value: 6.48e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESaAHAIVSVNGTTIEGH 137
Cdd:cd12582     3 IFVGGIKEDTEEYHLRDYFEKYGKIETIEVMEDrqsgkkRGFAFVTFDDHDT-VDKIVVQKYHTINGH 69
RRM2_MEI2_like cd12529
RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to ...
85-140 6.52e-04

RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to the RRM2 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is highly conserved between plants and fungi. To date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409948 [Multi-domain]  Cd Length: 71  Bit Score: 37.49  E-value: 6.52e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  85 LTEQLMRQTFSPFGQIMEIRVFPDKGY-SFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12529    13 ISNDDLHQIFGAYGEIKEIRETPNKRHhKFIEFYDVRSAEAALKALNKSEIAGKRIK 69
RRM_ENOX cd12228
RNA recognition motif (RRM) found in the cell surface Ecto-NOX disulfide-thiol exchanger ...
71-126 7.09e-04

RNA recognition motif (RRM) found in the cell surface Ecto-NOX disulfide-thiol exchanger (ECTO-NOX or ENOX) proteins; This subgroup corresponds to the conserved RNA recognition motif (RRM) in ECTO-NOX proteins (also termed ENOX), comprising a family of plant and animal NAD(P)H oxidases exhibiting both, oxidative and protein disulfide isomerase-like, activities. They are growth-related and drive cell enlargement, and may play roles in aging and neurodegenerative diseases. ENOX proteins function as terminal oxidases of plasma membrane electron transport (PMET) through catalyzing electron transport from plasma membrane quinones to extracellular oxygen, forming water as a product. They are also hydroquinone oxidases that oxidize externally supplied NADH, hence NOX. ENOX proteins harbor a di-copper center that lack flavin. ENOX proteins display protein disulfide interchange activity that is also possessed by protein disulfide isomerase. In contrast to the classic protein disulfide isomerases, ENOX proteins lack the double CXXC motif. This family includes two ENOX proteins, ENOX1 and ENOX2. ENOX1, also termed candidate growth-related and time keeping constitutive hydroquinone [NADH] oxidase (cCNOX), or cell proliferation-inducing gene 38 protein, or Constitutive Ecto-NOX (cNOX), is the constitutively expressed cell surface NADH (ubiquinone) oxidase that is ubiquitous and refractory to drugs. ENOX2, also termed APK1 antigen, or cytosolic ovarian carcinoma antigen 1, or tumor-associated hydroquinone oxidase (tNOX), is a cancer-specific variant of ENOX1 and plays a key role in cell proliferation and tumor progression. In contrast to ENOX1, ENOX2 is drug-responsive and harbors a drug binding site to which the cancer-specific S-peptide tagged pan-ENOX2 recombinant (scFv) is directed. Moreover, ENOX2 is specifically inhibited by a variety of quinone site inhibitors that have anticancer activity and is unique to the surface of cancer cells. ENOX proteins contain many functional motifs.


Pssm-ID: 409675 [Multi-domain]  Cd Length: 84  Bit Score: 37.40  E-value: 7.09e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  71 PSNC-TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVfPDKGYSFVRFNSHESAAHAI 126
Cdd:cd12228     3 PPGCkTVFVGGLPENATEEIIREVFEQCGEIIAIRM-SKKNFCHIRFAEEFAVDKAI 58
RRM3_HuD cd12656
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen D (HuD); This subgroup ...
87-140 7.10e-04

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM3 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells. And it also regulates the neurite elongation and morphological differentiation. HuD specifically bound poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241100 [Multi-domain]  Cd Length: 86  Bit Score: 37.76  E-value: 7.10e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  87 EQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12656    17 ESVLWQLFGPFGAVNNVKVIRDfntnkcKGFGFVTMTNYDEAAMAIASLNGYRLGDRVLQ 76
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
2-42 8.40e-04

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 37.00  E-value: 8.40e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12650    37 VTGQSLGYGFVNYVDPSDAEKAINTLNGLRLQNKTIKVSYA 77
RRM1_MSSP1 cd12470
RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-1; ...
72-140 8.48e-04

RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-1; This subgroup corresponds to the RRM1 of MSSP-1, also termed RNA-binding motif, single-stranded-interacting protein 1 (RBMS1), or suppressor of CDC2 with RNA-binding motif 2 (SCR2), a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence CT(A/T)(A/T)T, and stimulates DNA replication in the system using SV40 DNA. MSSP-1 is identical with Scr2, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-1 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. MSSP-1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis.


Pssm-ID: 409900 [Multi-domain]  Cd Length: 86  Bit Score: 37.46  E-value: 8.48e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  72 SNCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12470     6 SKTNLYIRGLPPNTTDQDLVKLCQPYGKIVSTKAILDKttnkckGYGFVDFDSPAAAQKAVSALKASGVQAQMAK 80
RRM1_HuR cd12769
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup ...
85-147 8.49e-04

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM1 of HuR, also termed ELAV-like protein 1 (ELAV-1), a ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response; it binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. Meanwhile, HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410162 [Multi-domain]  Cd Length: 82  Bit Score: 37.32  E-value: 8.49e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1191017726  85 LTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGKET 147
Cdd:cd12769    14 MTQDELRSLFSSIGEVESAKLIRDKvaghslGYGFVNYVTAKDAERAINTLNGLRLQSKTIKVSYARPS 82
RRM1_PHIP1 cd12271
RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting ...
76-136 8.60e-04

RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; This subfamily corresponds to the RRM1 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409714 [Multi-domain]  Cd Length: 72  Bit Score: 36.92  E-value: 8.60e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRV--FPD----KGYSFVRFNShESAAHAIVSVNGTTIEG 136
Cdd:cd12271     1 VYVGGIPYYSTEAEIRSYFSSCGEVRSVDLmrFPDsgnfRGIAFITFKT-EEAAKRALALDGEMLGN 66
RRM1_PES4_MIP6 cd21601
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
3-38 8.71e-04

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410180 [Multi-domain]  Cd Length: 80  Bit Score: 37.33  E-value: 8.71e-04
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:cd21601    38 TKKSLGYGYLNFSDKEDAEKAIEEFNYTPIFGKEVR 73
RRM3_hnRNPM cd12661
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein M ...
1-37 8.78e-04

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein M (hnRNP M); This subgroup corresponds to the RRM3 of hnRNP M, a pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. Moreover, hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif).


Pssm-ID: 410062 [Multi-domain]  Cd Length: 77  Bit Score: 37.16  E-value: 8.78e-04
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQI 37
Cdd:cd12661    33 MENGKSKGCGVVRFESPEVAERACRMMNGIKLNGREI 69
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
85-142 8.78e-04

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 37.00  E-value: 8.78e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  85 LTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVK-CY 142
Cdd:cd12375    11 MTQEELRSLFGAIGPIESCKLVRDKitgqslGYGFVNYRDPNDARKAINTLNGLDLENKRLKvSY 75
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
76-130 8.91e-04

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 36.97  E-value: 8.91e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVN 130
Cdd:cd12384     3 IFVGGLPYHTTDDSLREYFEQFGEIEEAVVITDrqtgksRGYGFVTMADREAAERACKDPN 63
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
3-38 9.40e-04

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 36.88  E-value: 9.40e-04
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:cd12393    39 TRKSKGVAFVLFLDRESAHNAVRAMNNKELFGRTLK 74
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
83-134 9.76e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 36.91  E-value: 9.76e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  83 SGLTEQLMRQTFSPFGQIMEIRVFPDK-----GYSFVRFNSHESAAHAIVSVNGTTI 134
Cdd:cd12564    10 SSITEDRLRKLFSAFGTITDVQLKYTKdgkfrRFGFVGFKSEEEAQKALKHFNNSFI 66
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
2-35 9.81e-04

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 36.91  E-value: 9.81e-04
                          10        20        30
                  ....*....|....*....|....*....|....
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGR 35
Cdd:cd12377    36 TTNKCKGYGFVTMTNYDEAAVAIASLNGYRLGGR 69
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
3-46 1.02e-03

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 39.54  E-value: 1.02e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRKP 46
Cdd:TIGR01661 307 TNQCKGYGFVSMTNYDEAAMAILSLNGYTLGNRVLQVSFKTNKA 350
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
86-139 1.04e-03

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 36.83  E-value: 1.04e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVfPDK------GYSFVRFNSHESAAHAIVSVNGTTIEG-HVV 139
Cdd:cd12320    13 TRKEIRELFSPFGQLKSVRL-PKKfdgshrGFAFVEFVTKQEAQNAMEALKSTHLYGrHLV 72
RRM2_RBM15 cd12555
RNA recognition motif 2 (RRM2) found in vertebrate RNA binding motif protein 15 (RBM15); This ...
72-147 1.19e-03

RNA recognition motif 2 (RRM2) found in vertebrate RNA binding motif protein 15 (RBM15); This subgroup corresponds to the RRM2 of RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possesses mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RBM15 belongs to the Spen (split end) protein family, which contain three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain. This family also includes a RBM15-MKL1 (OTT-MAL) fusion protein that RBM15 is N-terminally fused to megakaryoblastic leukemia 1 protein (MKL1) at the C-terminus in a translocation involving chromosome 1 and 22, resulting in acute megakaryoblastic leukemia. The fusion protein could interact with the mRNA export machinery. Although it maintains the specific transactivator function of MKL1, the fusion protein cannot activate RTE-mediated mRNA expression and has lost the post-transcriptional activator function of RBM15. However, it has transdominant suppressor function contributing to its oncogenic properties.


Pssm-ID: 409971 [Multi-domain]  Cd Length: 87  Bit Score: 37.14  E-value: 1.19e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  72 SNCTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRV-FPDKG----YSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGKE 146
Cdd:cd12555     6 ANRTLFLGNLDITVTENDLRRAFDRFGVITEVDIkRPGRGqtstYGFLKFENLDMAHRAKLAMSGKVIGRNPIKIGYGKA 85

                  .
gi 1191017726 147 T 147
Cdd:cd12555    86 T 86
RRM_SRSF10 cd12559
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 10 (SRSF10) and ...
5-47 1.20e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 10 (SRSF10) and similar proteins; This subgroup corresponds to the RRM of SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). SRSF10 is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 409975 [Multi-domain]  Cd Length: 95  Bit Score: 37.34  E-value: 1.20e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1191017726   5 KSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWAT--RKPP 47
Cdd:cd12559    45 RPRGFAYVQFEDVRDAEDALHNLDRKWICGRQIEIQFAQgdRKTP 89
RRM2_RBM15B cd12556
RNA recognition motif 2 (RRM2) found in putative RNA binding motif protein 15B (RBM15B) from ...
76-145 1.22e-03

RNA recognition motif 2 (RRM2) found in putative RNA binding motif protein 15B (RBM15B) from vertebrate; This subgroup corresponds to the RRM2 of RBM15B, also termed one twenty-two 3 (OTT3), a paralog of RNA binding motif protein 15 (RBM15), also known as One-twenty two protein 1 (OTT1). Like RBM15, RBM15B has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. RBM15B belongs to the Spen (split end) protein family, which shares a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 409972 [Multi-domain]  Cd Length: 85  Bit Score: 36.82  E-value: 1.22e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRV-FPDKG----YSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGK 145
Cdd:cd12556    11 LFIGNLDHNVSEVELRRAFEKYGIIEEVVIkRPARGqggaYAFLKFQNLDMAHRAKVAMSGRVIGRNPIKIGYGK 85
RRM2_TDP43 cd12322
RNA recognition motif 2 (RRM2) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
74-123 1.23e-03

RNA recognition motif 2 (RRM2) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM2 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409761 [Multi-domain]  Cd Length: 71  Bit Score: 36.53  E-value: 1.23e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEirVF---PDKGYSFVRFNSHESAA 123
Cdd:cd12322     1 RKVFVGRCTEDMTEDDLRQYFSQFGEVTD--VFipkPFRAFAFVTFADDEVAQ 51
RRM_Nab3p cd12342
RNA recognition motif (RRM) found in yeast nuclear polyadenylated RNA-binding protein 3 (Nab3p) ...
87-139 1.28e-03

RNA recognition motif (RRM) found in yeast nuclear polyadenylated RNA-binding protein 3 (Nab3p) and similar proteins; This subfamily corresponds to the RRM of Nab3p, an acidic nuclear polyadenylated RNA-binding protein encoded by Saccharomyces cerevisiae NAB3 gene that is essential for cell viability. Nab3p is predominantly localized within the nucleoplasm and essential for growth in yeast. It may play an important role in packaging pre-mRNAs into ribonucleoprotein structures amenable to efficient nuclear RNA processing. Nab3p contains an N-terminal aspartic/glutamic acid-rich region, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal region rich in glutamine and proline residues.


Pssm-ID: 240788 [Multi-domain]  Cd Length: 71  Bit Score: 36.65  E-value: 1.28e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  87 EQLMRqTFSPFGQIMEIRVfpDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12342    15 EDLFR-IFSPYGHLMQIVI--KNAFGFVQFDSPQSCRNAIECEQGEMNRGKKL 64
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
76-140 1.29e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 36.45  E-value: 1.29e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRV-FPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12373     2 VYVGNLGPRVTKRELEDAFEKYGPLRNVWVaRNPPGFAFVEFEDPRDAEDAVRALDGRRICGSRVR 67
RRM1_SF3B4 cd12334
RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
76-141 1.29e-03

RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM1 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409771 [Multi-domain]  Cd Length: 74  Bit Score: 36.43  E-value: 1.29e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVKC 141
Cdd:cd12334     1 VYVGNLDEKVTEELLWELFIQAGPVVNVHMPKDRvtqqhqGYGFVEFLSEEDADYAIKIMNMIKLYGKPIRV 72
RRM1_SRSF6 cd12596
RNA recognition motif 1 (RRM1) found in vertebrate serine/arginine-rich splicing factor 6 ...
76-139 1.29e-03

RNA recognition motif 1 (RRM1) found in vertebrate serine/arginine-rich splicing factor 6 (SRSF6); This subfamily corresponds to the RRM1 of SRSF6, also termed pre-mRNA-splicing factor SRp55, which is an essential splicing regulatory serine/arginine (SR) protein that preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. For instance, it does not bind to the purine-rich sequence in the calcitonin-specific ESE, but binds to a region adjacent to the purine tract. Moreover, cellular levels of SRSF6 may control tissue-specific alternative splicing of the calcitonin/ calcitonin gene-related peptide (CGRP) pre-mRNA. SRSF6 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal SR domains rich in serine-arginine dipeptides.


Pssm-ID: 410009 [Multi-domain]  Cd Length: 72  Bit Score: 36.47  E-value: 1.29e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVfpDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVV 139
Cdd:cd12596     4 VYIGRLSYHVREKDIQRFFSGYGKLLEVDL--KNGYGFVEFEDSRDADDAVYELNGKELCGERV 65
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
3-45 1.36e-03

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 36.82  E-value: 1.36e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd12412    39 AGVSKGYGFVTFETQEDAEKIQKWGANLVFKGKKLNVGPAIRK 81
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
2-40 1.52e-03

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 36.24  E-value: 1.52e-03
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTN 40
Cdd:cd12370    37 VTMKHKGFAFVEYEVPEAAQLALEQMNGVMLGGRNIKVG 75
RRM3_NCL cd12405
RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to ...
109-140 1.54e-03

RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409839 [Multi-domain]  Cd Length: 72  Bit Score: 36.39  E-value: 1.54e-03
                          10        20        30
                  ....*....|....*....|....*....|..
gi 1191017726 109 KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12405    38 KGYAFVEFESVEDAKEALESCNNTEIEGRSIR 69
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
94-143 1.56e-03

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 36.82  E-value: 1.56e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  94 FSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYW 143
Cdd:cd12324    27 FAEFGEIKNLHLNLDrrtgfvKGYALVEYETKKEAQAAIEGLNGKELLGQTISVDW 82
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
3-35 1.60e-03

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 36.17  E-value: 1.60e-03
                          10        20        30
                  ....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGR 35
Cdd:cd12316    37 TKRSKGFAFVLFVIPEDAVKAYQELDGSIFQGR 69
RRM2_RBM4 cd12607
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
76-136 1.64e-03

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM2 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410019 [Multi-domain]  Cd Length: 67  Bit Score: 36.09  E-value: 1.64e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDkgYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12607     3 LHVGNISSSCTNQELRAKFEEYGPVIECDIVKD--YAFVHMERAEDAMEAIRGLDNTEFQG 61
RRM1_RBM26_like cd12257
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 26 (RBM26) and similar ...
85-128 1.71e-03

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 26 (RBM26) and similar proteins; This subfamily corresponds to the RRM1 of RBM26, and the RRM of RBM27. RBM26, also known as cutaneous T-cell lymphoma (CTCL) tumor antigen se70-2, represents a cutaneous lymphoma (CL)-associated antigen. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The RRMs may play some functional roles in RNA-binding or protein-protein interactions. RBM27 contains only one RRM; its biological function remains unclear.


Pssm-ID: 409702 [Multi-domain]  Cd Length: 72  Bit Score: 36.00  E-value: 1.71e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 1191017726  85 LTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVS 128
Cdd:cd12257    14 NNITKLREHFSKFGTIVNIQVNYNPESALVQFSTSEEANKAYRS 57
RRM1_CELF3_4_5_6 cd12632
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
76-125 1.72e-03

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subfamily corresponds to the RRM1 of CELF-3, CELF-4, CELF-5, CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In additiona to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410041 [Multi-domain]  Cd Length: 87  Bit Score: 36.62  E-value: 1.72e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHA 125
Cdd:cd12632     8 LFIGQIPRNLEEKDLRPLFEQFGKIYELTVLKDkytgmhKGCAFLTYCARESALKA 63
RRM_TRA2A cd12642
RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and ...
3-45 1.75e-03

RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and similar proteins; This subgroup corresponds to the RRM of TRA2-alpha or TRA-2-alpha, also termed transformer-2 protein homolog A, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein (SRp40) that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-alpha contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 410047 [Multi-domain]  Cd Length: 84  Bit Score: 36.51  E-value: 1.75e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd12642    42 TGRSRGFAFVYFERIDDSKEAMERANGMELDGRRIRVDYSITK 84
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
10-42 2.08e-03

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 36.12  E-value: 2.08e-03
                          10        20        30
                  ....*....|....*....|....*....|...
gi 1191017726  10 GFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12223    49 GFVAFMSRADAERAMRELNGKDVMGYELKLGWG 81
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
5-46 2.14e-03

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 35.68  E-value: 2.14e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1191017726   5 KSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWAtrKP 46
Cdd:cd12251    33 KIKDYAFVHFEERDDAVKAMEEMNGKELEGSEIEVSLA--KP 72
RRM3_HuC cd12655
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen C (HuC); This subgroup ...
87-131 2.18e-03

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM3 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410057 [Multi-domain]  Cd Length: 85  Bit Score: 36.19  E-value: 2.18e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  87 EQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12655    15 ESVLWQLFGPFGAVTNVKVIRDfttnkcKGFGFVTMTNYDEAAMAIASLNG 65
RRM3_ACF cd12498
RNA recognition motif 3 (RRM3) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
86-136 2.34e-03

RNA recognition motif 3 (RRM3) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM3 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. ACF contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409921 [Multi-domain]  Cd Length: 83  Bit Score: 36.05  E-value: 2.34e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12498    21 TEETIEKEFSNIKPGAVERVKKIRDYAFVHFYNREDAVNAMNALNGKVIDG 71
RRM4_NCL cd12406
RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to ...
3-45 2.53e-03

RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to the RRM4 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409840 [Multi-domain]  Cd Length: 78  Bit Score: 36.05  E-value: 2.53e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd12406    35 TGSSKGFGFVDFSSEEDAKAAKEAMEDGEIDGNKVTLDFAKPK 77
RRM3_CELF3_4_5_6 cd12639
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
2-38 2.56e-03

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM3 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contains three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. Both, RRM1 and RRM2 of CELF-4, can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 241083 [Multi-domain]  Cd Length: 79  Bit Score: 35.99  E-value: 2.56e-03
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:cd12639    41 ATNQSKCFGFVSFDNPASAQAAIQAMNGFQIGMKRLK 77
RRM_SRSF12 cd12560
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 12 (SRSF12) and ...
3-47 2.76e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 12 (SRSF12) and similar proteins; This subgroup corresponds to the RRM of SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19). SRSF12 is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. SRSF12 contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 409976 [Multi-domain]  Cd Length: 84  Bit Score: 35.75  E-value: 2.76e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWAT--RKPP 47
Cdd:cd12560    38 NRRPRGFAYIQFEDVRDAEDALYNLNRKWVCGRQIEIQFAQgdRKTP 84
RRM_DAZL cd12672
RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; ...
75-116 2.79e-03

RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; This subgroup corresponds to the RRM of DAZL, also termed SPGY-like-autosomal, encoded by the autosomal homolog of DAZ gene, DAZL. It is ancestral to the deleted in azoospermia (DAZ) protein. DAZL is germ-cell-specific RNA-binding protein that contains a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a DAZ motif, a protein-protein interaction domain. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410073 [Multi-domain]  Cd Length: 82  Bit Score: 35.91  E-value: 2.79e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRF 116
Cdd:cd12672     7 TVFVGGIDIRMDENEIRSFFARYGSVKEVKIITDrtgvsKGYGFVSF 53
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
75-125 2.89e-03

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 35.67  E-value: 2.89e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHA 125
Cdd:cd12391     1 TVFVSNLDYSVPEDKIREIFSGCGEITDVRLVKNykgksKGYCYVEFKDEESAQKA 56
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
86-136 3.03e-03

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 35.47  E-value: 3.03e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  86 TEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12566    15 KEDDLQKLFSKFGEVSEVHVPIDkktkksKGFAYVLFLDPEDAVQAYNELDGKVFQG 71
RRM2_hnRNPA1 cd12580
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) ...
76-137 3.18e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A1, also termed helix-destabilizing protein, or single-strand RNA-binding protein, or hnRNP core protein A1, an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A1 has been characterized as a splicing silencer, often acting in opposition to an activating hnRNP H. It silences exons when bound to exonic elements in the alternatively spliced transcripts of c-src, HIV, GRIN1, and beta-tropomyosin. hnRNP A1 can shuttle between the nucleus and the cytoplasm. Thus, it may be involved in transport of cellular RNAs, including the packaging of pre-mRNA into hnRNP particles and transport of poly A+ mRNA from the nucleus to the cytoplasm. The cytoplasmic hnRNP A1 has high affinity with AU-rich elements, whereas the nuclear hnRNP A1 has high affinity with a polypyrimidine stretch bordered by AG at the 3' ends of introns. hnRNP A1 is also involved in the replication of an RNA virus, such as mouse hepatitis virus (MHV), through an interaction with the transcription-regulatory region of viral RNA. Moreover, hnRNP A1, together with the scaffold protein septin 6, serves as host proteins to form a complex with NS5b and viral RNA, and further play important roles in the replication of Hepatitis C virus (HCV). hnRNP A1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The RRMs of hnRNP A1 play an important role in silencing the exon and the glycine-rich domain is responsible for protein-protein interactions.


Pssm-ID: 409994 [Multi-domain]  Cd Length: 77  Bit Score: 35.71  E-value: 3.18e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESaAHAIVSVNGTTIEGH 137
Cdd:cd12580     3 IFVGGIKEDTEEHHLRDYFEQYGKIEVIEIMTDrgsgkkRGFAFVTFDDHDS-VDKIVIQKYHTVNGH 69
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
2-42 3.20e-03

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 35.29  E-value: 3.20e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12320    36 FDGSHRGFAFVEFVTKQEAQNAMEALKSTHLYGRHLVLEYA 76
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
2-38 3.23e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 35.55  E-value: 3.23e-03
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIqQMGGQWLGGRQIR 38
Cdd:cd12395    36 ETGIGKGFGYVLFKDKDSVDLAL-KLNGSKLRGRKLR 71
RRM3_MYEF2 cd12662
RNA recognition motif 3 (RRM3) found in vertebrate myelin expression factor 2 (MEF-2); This ...
85-136 3.26e-03

RNA recognition motif 3 (RRM3) found in vertebrate myelin expression factor 2 (MEF-2); This subgroup corresponds to the RRM3 of MEF-2, also termed MyEF-2 or MST156, a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may be responsible for its ssDNA binding activity.


Pssm-ID: 410063 [Multi-domain]  Cd Length: 77  Bit Score: 35.72  E-value: 3.26e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  85 LTEQLMRQTFSPFGQIM--EIRV--FPDKGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12662    11 LTWQKLKEKFSQCGHVMfaEIKMenGKSKGCGTVRFDSPESAEKACRLMNGIKISG 66
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
76-140 3.29e-03

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 35.57  E-value: 3.29e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12399     1 LYVGNLPYSASEEQLKSLFGQFGAVFDVKLPMDretkrpRGFGFVELQEEESAEKAIAKLDGTDFMGRTIR 71
RRM1_LARP7 cd12290
RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; ...
75-130 3.63e-03

RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; This subfamily corresponds to the RRM1 of LARP7, also termed La ribonucleoprotein domain family member 7, or P-TEFb-interaction protein for 7SK stability (PIP7S), an oligopyrimidine-binding protein that binds to the highly conserved 3'-terminal U-rich stretch (3' -UUU-OH) of 7SK RNA. LARP7 is a stable component of the 7SK small nuclear ribonucleoprotein (7SK snRNP). It intimately associates with all the nuclear 7SK and is required for 7SK stability. LARP7 also acts as a negative transcriptional regulator of cellular and viral polymerase II genes, acting by means of the 7SK snRNP system. It plays an essential role in the inhibition of positive transcription elongation factor b (P-TEFb)-dependent transcription, which has been linked to the global control of cell growth and tumorigenesis. LARP7 contains a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminal region, which mediates binding to the U-rich 3' terminus of 7SK RNA. LARP7 also carries another putative RRM domain at its C-terminus.


Pssm-ID: 409732 [Multi-domain]  Cd Length: 79  Bit Score: 35.38  E-value: 3.63e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRV--FPD----KGYSFVRFNSHESAAHAIVSVN 130
Cdd:cd12290     1 TVYVELLPKNATHEWIEAVFSKYGEVVYVSIprYKStgdpKGFAFIEFETSESAQKAVKHFN 62
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
3-38 3.74e-03

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 35.25  E-value: 3.74e-03
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:cd12418    37 SGRSTGTAYVVFERPEDAEKAIKQFDGVLLDGQPMK 72
RRM1_TIAR cd12616
RNA recognition motif 1 (RRM1) found in nucleolysin TIAR and similar proteins; This subgroup ...
9-43 3.86e-03

RNA recognition motif 1 (RRM1) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM1 of nucleolysin TIAR, also termed TIA-1-related protein, and a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410028 [Multi-domain]  Cd Length: 81  Bit Score: 35.45  E-value: 3.86e-03
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1191017726   9 YGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWAT 43
Cdd:cd12616    41 YCFVEFYEHRDAAAALAAMNGRKILGKEVKVNWAT 75
RRM_ist3_like cd12411
RNA recognition motif (RRM) found in ist3 family; This subfamily corresponds to the RRM of the ...
76-140 3.87e-03

RNA recognition motif (RRM) found in ist3 family; This subfamily corresponds to the RRM of the ist3 family that includes fungal U2 small nuclear ribonucleoprotein (snRNP) component increased sodium tolerance protein 3 (ist3), X-linked 2 RNA-binding motif proteins (RBMX2) found in Metazoa and plants, and similar proteins. Gene IST3 encoding ist3, also termed U2 snRNP protein SNU17 (Snu17p), is a novel yeast Saccharomyces cerevisiae protein required for the first catalytic step of splicing and for progression of spliceosome assembly. It binds specifically to the U2 snRNP and is an intrinsic component of prespliceosomes and spliceosomes. Yeast ist3 contains an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In the yeast pre-mRNA retention and splicing complex, the atypical RRM of ist3 functions as a scaffold that organizes the other two constituents, Bud13p (bud site selection 13) and Pml1p (pre-mRNA leakage 1). Fission yeast Schizosaccharomyces pombe gene cwf29 encoding ist3, also termed cell cycle control protein cwf29, is an RNA-binding protein complexed with cdc5 protein 29. It also contains one RRM. The biological function of RBMX2 remains unclear. It shows high sequence similarity to yeast ist3 protein and harbors one RRM as well.


Pssm-ID: 409845 [Multi-domain]  Cd Length: 89  Bit Score: 35.64  E-value: 3.87e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12411    12 IYIGGLPYELTEGDILCVFSQYGEIVDINLVRDkktgksKGFAFLAYEDQRSTILAVDNLNGIKLLGRTIR 82
RRM_SCAF8 cd12462
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 8 (SCAF8) and ...
75-144 3.89e-03

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subgroup corresponds to the RRM of SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8), a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8, together with SCAF4, represents a new class of SCAFs (SR-like CTD-associated factors). They contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409895 [Multi-domain]  Cd Length: 79  Bit Score: 35.44  E-value: 3.89e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAI--VSVNGTTIEGHVVKCYWG 144
Cdd:cd12462     4 TLWVGQVDKKATQQDLTNLFEEFGQIESINMIPPRGCAYVCMVHRQDAYRALqkLSTGSFKIGSKIIKIAWA 75
RRM2_RAVER2 cd12666
RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); ...
3-41 3.93e-03

RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM2 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410067 [Multi-domain]  Cd Length: 77  Bit Score: 35.25  E-value: 3.93e-03
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 41
Cdd:cd12666    37 TGHSKGYGFVEYMKKDSAAKARLELLGKQLGESSLFAQW 75
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
3-42 4.08e-03

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 35.07  E-value: 4.08e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIqQMGGQWLGGRQIRTNWA 42
Cdd:cd12450    37 DGRSKGFGHVEFASAESAQKAL-EKSGQDLGGREIRLDLA 75
RRM_NRD1_SEB1_like cd12331
RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein Nrd1, ...
75-144 4.24e-03

RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein Nrd1, Schizosaccharomyces pombe Rpb7-binding protein seb1 and similar proteins; This subfamily corresponds to the RRM of Nrd1 and Seb1. Nrd1 is a novel heterogeneous nuclear ribonucleoprotein (hnRNP)-like RNA-binding protein encoded by gene NRD1 (for nuclear pre-mRNA down-regulation) from yeast S. cerevisiae. It is implicated in 3' end formation of small nucleolar and small nuclear RNAs transcribed by polymerase II, and plays a critical role in pre-mRNA metabolism. Nrd1 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a short arginine-, serine-, and glutamate-rich segment similar to the regions rich in RE and RS dipeptides (RE/RS domains) in many metazoan splicing factors, and a proline- and glutamine-rich C-terminal domain (P+Q domain) similar to domains found in several yeast hnRNPs. Disruption of NRD1 gene is lethal to yeast cells. Its N-terminal domain is sufficient for viability, which may facilitate interactions with RNA polymerase II where Nrd1 may function as an auxiliary factor. By contrast, the RRM, RE/RS domains, and P+Q domain are dispensable. Seb1 is an RNA-binding protein encoded by gene seb1 (for seven binding) from fission yeast S. pombe. It is essential for cell viability and bound directly to Rpb7 subunit of RNA polymerase II. Seb1 is involved in processing of polymerase II transcripts. It also contains one RRM motif and a region rich in arginine-serine dipeptides (RS domain).


Pssm-ID: 409768 [Multi-domain]  Cd Length: 79  Bit Score: 35.23  E-value: 4.24e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  75 TVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWG 144
Cdd:cd12331     5 TLFIGGVTLNMKEWDLRSVFKRFGEVQSVILNNSRRHAFVKMYSRHEAENALQAMEKVPDGDLPLRTRWG 74
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
3-45 4.31e-03

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 35.67  E-value: 4.31e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQI-------RT--NWATRK 45
Cdd:cd12236    39 TGKSRGYAFIEFEHERDMKAAYKHADGKKIDGRRVlvdvergRTvkGWKPRR 90
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
2-42 4.39e-03

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 35.07  E-value: 4.39e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12649    37 KTGYSYGFGFVDFTSEEDAQRAIKTLNGLQLQNKRLKVAYA 77
RRM1_HuC cd12772
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup ...
3-42 4.58e-03

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM1 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410165 [Multi-domain]  Cd Length: 85  Bit Score: 35.48  E-value: 4.58e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWA 42
Cdd:cd12772    42 TGQSLGYGFVNYVDPNDADKAINTLNGLKLQTKTIKVSYA 81
RRM_1 smart00361
RNA recognition motif;
6-38 4.59e-03

RNA recognition motif;


Pssm-ID: 214637 [Multi-domain]  Cd Length: 70  Bit Score: 35.07  E-value: 4.59e-03
                           10        20        30
                   ....*....|....*....|....*....|...
gi 1191017726    6 SKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:smart00361  36 KRGNVYITFERSEDAARAIVDLNGRYFDGRLVK 68
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
1-38 4.66e-03

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 34.92  E-value: 4.66e-03
                          10        20        30
                  ....*....|....*....|....*....|....*...
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIR 38
Cdd:cd12417    35 ARTPGSRCYGYVTMASVEEADLCIKSLNKTELHGRVIT 72
RRM1_CID8_like cd12459
RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana CTC-interacting domain protein ...
74-140 4.78e-03

RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins; This subgroup corresponds to the RRM1 domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear.


Pssm-ID: 409892 [Multi-domain]  Cd Length: 80  Bit Score: 35.08  E-value: 4.78e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKG----YSFVRFNSHESAAHAiVSVNGTTIEGHVVK 140
Cdd:cd12459     3 RTVYVSDIDQQVTEEQLAALFSNCGQVVDCRICGDPNsvlrFAFIEFTDEEGARAA-LSLSGTMLGFYPVR 72
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
84-151 5.01e-03

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 37.61  E-value: 5.01e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  84 GLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVKCYWGKETLDMI 151
Cdd:TIGR01661  14 TMTQEEIRSLFTSIGEIESCKLVRDKvtgqslGYGFVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYARPSSDSI 87
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
3-34 5.40e-03

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 34.99  E-value: 5.40e-03
                          10        20        30
                  ....*....|....*....|....*....|..
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMGGQWLGG 34
Cdd:cd12652    38 TGLSRGVGFIRFDKRVEAERAIKALNGTIPPG 69
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
76-140 5.70e-03

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 34.59  E-value: 5.70e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD------KGYSFVRFNSHESAAHAIVsVNGTTIEGHVVK 140
Cdd:cd12306     2 IYVGNVDYGTTPEELQAHFKSCGTINRVTILCDkftgqpKGFAYIEFVDKSSVENALL-LNESEFRGRQIK 71
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
8-41 5.75e-03

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 34.86  E-value: 5.75e-03
                          10        20        30
                  ....*....|....*....|....*....|....
gi 1191017726   8 GYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 41
Cdd:cd12240    41 GFCFVEYYSREDAENAVKYLNGTKLDDRIIRVDW 74
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
3-32 5.93e-03

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 34.69  E-value: 5.93e-03
                          10        20        30
                  ....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQ---MGGQWL 32
Cdd:cd12321    37 TGRSKGFGFVRFASYETQVKVLSQrhmIDGRWC 69
RRM_RDM1 cd12364
RNA recognition motif (RRM) found in RAD52 motif-containing protein 1 (RDM1) and similar ...
75-131 5.97e-03

RNA recognition motif (RRM) found in RAD52 motif-containing protein 1 (RDM1) and similar proteins; This subfamily corresponds to the RRM of RDM1, also termed RAD52 homolog B, a novel factor involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. RDM1 contains a small RD motif that shares with the recombination and repair protein RAD52, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The RD motif is responsible for the acidic pH-dependent DNA-binding properties of RDM1. It interacts with ss- and dsDNA, and may act as a DNA-damage recognition factor by recognizing the distortions of the double helix caused by cisplatin-DNA adducts in vitro. In addition, due to the presence of RRM, RDM1 can bind to RNA as well as DNA.


Pssm-ID: 409799 [Multi-domain]  Cd Length: 81  Bit Score: 35.03  E-value: 5.97e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1191017726  75 TVYCGGVTSGLTEQ----LMRQTFSPFGQIMEIRVFPDKG------YSFVRFNSHESAAHAIVSVNG 131
Cdd:cd12364     2 TLFVWNISPKLTEEeiyeSLCKAFSAFGLLYSVRVFPNAAvatpgfYAFVKFYSARDASRAQKALNG 68
RRM_eIF3B cd12278
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B ...
2-29 6.00e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B (eIF-3B) and similar proteins; This subfamily corresponds to the RRM domain in eukaryotic translation initiation factor 3 (eIF-3), a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3B, also termed eIF-3 subunit 9, or Prt1 homolog, eIF-3-eta, eIF-3 p110, or eIF-3 p116, is the major scaffolding subunit of eIF-3. It interacts with eIF-3 subunits A, G, I, and J. eIF-3B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is involved in the interaction with eIF-3J. The interaction between eIF-3B and eIF-3J is crucial for the eIF-3 recruitment to the 40 S ribosomal subunit. eIF-3B also binds directly to domain III of the internal ribosome-entry site (IRES) element of hepatitis-C virus (HCV) RNA through its N-terminal RRM, which may play a critical role in both cap-dependent and cap-independent translation. Additional research has shown that eIF-3B may function as an oncogene in glioma cells and can be served as a potential therapeutic target for anti-glioma therapy. This family also includes the yeast homolog of eIF-3 subunit B (eIF-3B, also termed PRT1 or eIF-3 p90) that interacts with the yeast homologs of eIF-3 subunits A(TIF32), G(TIF35), I(TIF34), J(HCR1), and E(Pci8). In yeast, eIF-3B (PRT1) contains an N-terminal RRM that is directly involved in the interaction with eIF-3A (TIF32) and eIF-3J (HCR1). In contrast to its human homolog, yeast eIF-3B (PRT1) may have potential to bind its total RNA through its RRM domain.


Pssm-ID: 409720 [Multi-domain]  Cd Length: 84  Bit Score: 34.86  E-value: 6.00e-03
                          10        20
                  ....*....|....*....|....*...
gi 1191017726   2 ATGKSKGYGFVSFFNKWDAENAIQQMGG 29
Cdd:cd12278    45 ETGKTKGFAFVEYATPEEAKKAVKALNG 72
RRM1_hnRNPR_like cd12249
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
4-38 6.09e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM1 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs); DND1 harbors only two RRMs.


Pssm-ID: 409695 [Multi-domain]  Cd Length: 78  Bit Score: 34.87  E-value: 6.09e-03
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQmggqwLGGRQIR 38
Cdd:cd12249    39 GLNRGYAFVTYTNKEAAQRAVKT-----LNNYEIR 68
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
3-43 6.23e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 34.89  E-value: 6.23e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIqQMGGQWLGGRQIRTNWAT 43
Cdd:cd12402    39 PGRLRGFGYVEFEDRESLIQAL-SLNEESLKNRRIRVDVAG 78
RRM2_Prp24 cd12297
RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
74-140 6.38e-03

RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM2 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409738 [Multi-domain]  Cd Length: 78  Bit Score: 34.66  E-value: 6.38e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRvFPDKGYS------FVRFNSHESAAHAIVSVNGTTIEGH--VVK 140
Cdd:cd12297     1 CTLWVTNFPPSYDERSIRDLFGDYGVILSVR-LPSLRYNtsrrfcYIDFTSPESARAAVELLNGLLEEGYtlVVK 74
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
4-37 6.64e-03

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 34.51  E-value: 6.64e-03
                          10        20        30
                  ....*....|....*....|....*....|....
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQI 37
Cdd:cd12318    42 LLSMGYGFVEFKSPEAAQKALKQLQGTVLDGHAL 75
RRM3_PUB1 cd12622
RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated ...
7-41 6.72e-03

RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subfamily corresponds to the RRM3 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410033 [Multi-domain]  Cd Length: 74  Bit Score: 34.73  E-value: 6.72e-03
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1191017726   7 KGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNW 41
Cdd:cd12622    36 KGFGFVKYDTHEEAALAIQQLNGQPFLGRPIKCSW 70
RRM_CNOT4 cd12438
RNA recognition motif (RRM) found in Eukaryotic CCR4-NOT transcription complex subunit 4 (NOT4) ...
94-144 6.98e-03

RNA recognition motif (RRM) found in Eukaryotic CCR4-NOT transcription complex subunit 4 (NOT4) and similar proteins; This subfamily corresponds to the RRM of NOT4, also termed CCR4-associated factor 4, or E3 ubiquitin-protein ligase CNOT4, or potential transcriptional repressor NOT4Hp, a component of the CCR4-NOT complex, a global negative regulator of RNA polymerase II transcription. NOT4 functions as an ubiquitin-protein ligase (E3). It contains an N-terminal C4C4 type RING finger motif, followed by a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The RING fingers may interact with a subset of ubiquitin-conjugating enzymes (E2s), including UbcH5B, and mediate protein-protein interactions. T


Pssm-ID: 409872 [Multi-domain]  Cd Length: 98  Bit Score: 35.20  E-value: 6.98e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1191017726  94 FSPFGQIMEIRVFPDKGYSF---------VRFNSHESAAHAIVSVNGTTIEGHVVKCYWG 144
Cdd:cd12438    29 FGQYGKIKKIVINRSTSYAGsqgpsasayVTYSRKEDALRAIQAVDGFVLDGRTLKASFG 88
RRM1_ACF cd12486
RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
74-134 8.14e-03

RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM1 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. It contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409912 [Multi-domain]  Cd Length: 78  Bit Score: 34.57  E-value: 8.14e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPD-----KGYSFVRFNSHESAAHAIVSVNGTTI 134
Cdd:cd12486     2 CEIFIGKLPRDLFEDELVPLCEKIGKIYEMRMMMDfngnnRGYAFVTFSNKQEARNAIKQLNNYEI 67
RRM1_CPEBs cd12444
RNA recognition motif 1 (RRM1) found in cytoplasmic polyadenylation element-binding protein ...
74-121 8.14e-03

RNA recognition motif 1 (RRM1) found in cytoplasmic polyadenylation element-binding protein CPEB-1, CPEB-2, CPEB-3, CPEB-4 and similar protiens; This subfamily corresponds to the RRM1 of the CPEB family of proteins that bind to defined groups of mRNAs and act as either translational repressors or activators to regulate their translation. CPEB proteins are well conserved in both, vertebrates and invertebrates. Based on sequence similarity, RNA-binding specificity, and functional regulation of translation, the CPEB proteins have been classified into two subfamilies. The first subfamily includes CPEB-1 and related proteins. CPEB-1 is an RNA-binding protein that interacts with the cytoplasmic polyadenylation element (CPE), a short U-rich motif in the 3' untranslated regions (UTRs) of certain mRNAs. It functions as a translational regulator that plays a major role in the control of maternal CPE-containing mRNA in oocytes, as well as of subsynaptic CPE-containing mRNA in neurons. Once phosphorylated and recruiting the polyadenylation complex, CPEB-1 may function as a translational activator stimulating polyadenylation and translation. Otherwise, it may function as a translational inhibitor when dephosphorylated and bind to a protein such as maskin or neuroguidin, which blocks translation initiation through interfering with the assembly of eIF-4E and eIF-4G. Although CPEB-1 is mainly located in cytoplasm, it can shuttle between nucleus and cytoplasm. The second subfamily includes CPEB-2, CPEB-3, CPEB-4, and related protiens. Due to high sequence similarity, members in this subfamily may share similar expression patterns and functions. CPEB-2 is an RNA-binding protein that is abundantly expressed in testis and localized in cytoplasm in transfected HeLa cells. It preferentially binds to poly(U) RNA oligomers and may regulate the translation of stored mRNAs during spermiogenesis. CPEB-2 impedes target RNA translation at elongation; it directly interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-activated GTP hydrolysis in vitro and inhibit peptide elongation of CPEB2-bound RNA in vivo. CPEB-3 is a sequence-specific translational regulatory protein that regulates translation in a polyadenylation-independent manner. It functions as a translational repressor that governs the synthesis of the AMPA receptor GluR2 through binding GluR2 mRNA. It also represses translation of a reporter RNA in transfected neurons and stimulates translation in response to NMDA. CPEB-4 is an RNA-binding protein that mediates meiotic mRNA cytoplasmic polyadenylation and translation. It is essential for neuron survival and present on the endoplasmic reticulum (ER). It is accumulated in the nucleus upon ischemia or the depletion of ER calcium. CPEB-4 is overexpressed in a large variety of tumors and is associated with many mRNAs in cancer cells. All CPEB proteins are nucleus-cytoplasm shuttling proteins. They contain an N-terminal unstructured region, followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Zn-finger motif. CPEB-2, -3, and -4 have conserved nuclear export signals that are not present in CPEB-1.


Pssm-ID: 409878 [Multi-domain]  Cd Length: 95  Bit Score: 34.89  E-value: 8.14e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQI--------MEIRVFPDKGYSFVRFNSHES 121
Cdd:cd12444     1 RKVFLGGVPWDITEAELTASFRRFGSLsvdwpgkdESKSYFPPKGYVYLLFESEKS 56
RRM1_PSF cd12587
RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein (PTB) ...
74-136 8.28e-03

RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF); This subgroup corresponds to the RRM1 of PSF, also termed proline- and glutamine-rich splicing factor, or 100 kDa DNA-pairing protein (POMp100), or 100 kDa subunit of DNA-binding p52/p100 complex, a multifunctional protein that mediates diverse activities in the cell. It is ubiquitously expressed and highly conserved in vertebrates. PSF binds not only RNA but also both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and facilitates the renaturation of complementary ssDNAs. Besides, it promotes the formation of D-loops in superhelical duplex DNA, and is involved in cell proliferation. PSF can also interact with multiple factors. It is an RNA-binding component of spliceosomes and binds to insulin-like growth factor response element (IGFRE). PSF functions as a transcriptional repressor interacting with Sin3A and mediating silencing through the recruitment of histone deacetylases (HDACs) to the DNA binding domain (DBD) of nuclear hormone receptors. Additionally, PSF is an essential pre-mRNA splicing factor and is dissociated from PTB and binds to U1-70K and serine-arginine (SR) proteins during apoptosis. PSF forms a heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO). The PSF/p54nrb complex displays a variety of functions, such as DNA recombination and RNA synthesis, processing, and transport. PSF contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for interactions with RNA and for the localization of the protein in speckles. It also contains an N-terminal region rich in proline, glycine, and glutamine residues, which may play a role in interactions recruiting other molecules.


Pssm-ID: 410000 [Multi-domain]  Cd Length: 71  Bit Score: 34.07  E-value: 8.28e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  74 CTVYCGGVTSGLTEQLMRQTFSPFGQIMEIRVFPDKGYSFVRFNSHESAAHAIVSVNGTTIEG 136
Cdd:cd12587     2 CRLFVGNLPADITEDEFKRLFAKYGEPGEVFINKGKGFGFIKLESRALAEIAKAELDDTPMRG 64
RRM1_ACF cd12486
RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
4-27 8.46e-03

RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM1 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. It contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409912 [Multi-domain]  Cd Length: 78  Bit Score: 34.57  E-value: 8.46e-03
                          10        20
                  ....*....|....*....|....
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQM 27
Cdd:cd12486    39 GNNRGYAFVTFSNKQEARNAIKQL 62
RRM2_Nop4p cd12675
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
4-45 8.52e-03

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410076 [Multi-domain]  Cd Length: 83  Bit Score: 34.38  E-value: 8.52e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 1191017726   4 GKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRK 45
Cdd:cd12675    39 GKLSGFAFVTMKGRKNAEEALESVNGLEIDGRPVAVDWAVSK 80
RRM_DAZL cd12672
RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; ...
3-45 8.54e-03

RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; This subgroup corresponds to the RRM of DAZL, also termed SPGY-like-autosomal, encoded by the autosomal homolog of DAZ gene, DAZL. It is ancestral to the deleted in azoospermia (DAZ) protein. DAZL is germ-cell-specific RNA-binding protein that contains a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a DAZ motif, a protein-protein interaction domain. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410073 [Multi-domain]  Cd Length: 82  Bit Score: 34.37  E-value: 8.54e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIQQMggQWLGGRQIRTNWATRK 45
Cdd:cd12672    42 TGVSKGYGFVSFYDDVDIQKIVESQ--INFHGKKLKLGPAIRK 82
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
3-38 8.96e-03

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 34.12  E-value: 8.96e-03
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1191017726   3 TGKSKGYGFVSFFNKWDAENAIqQMGGQWLGGRQIR 38
Cdd:cd12400    38 TGKSKGCAFVEFDNQKALQKAL-KLHHTSLGGRKIN 72
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
84-140 9.56e-03

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 34.30  E-value: 9.56e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1191017726  84 GLTEQLMRQTFSPFGQIMEIRVFPDK------GYSFVRFNSHESAAHAIVSVNGTTIEGHVVK 140
Cdd:cd12650    11 NMTQDEIRSLFSSIGEIESCKLIRDKvtgqslGYGFVNYVDPSDAEKAINTLNGLRLQNKTIK 73
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
1-50 9.61e-03

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 34.52  E-value: 9.61e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1191017726   1 MATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGRQIRTNWATRKPPAPK 50
Cdd:cd12390    37 MGNGVPRGFAFVEFASAEDAEEAQQLLNGHDLQGSPIRVSFGNPGRPGAS 86
RRM_PRC cd12624
RNA recognition motif (RRM) found in peroxisome proliferator-activated receptor gamma ...
76-126 9.70e-03

RNA recognition motif (RRM) found in peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PRC) and similar proteins; This subgroup corresponds to the RRM of PRC, also termed PGC-1-related coactivator, one of the members of PGC-1 transcriptional coactivators family, including peroxisome proliferator-activated receptor gamma coactivators PGC-1alpha and PGC-1beta. Unlike PGC-1alpha and PGC-1beta, PRC is ubiquitous and more abundantly expressed in proliferating cells than in growth-arrested cells. PRC has been implicated in the regulation of several metabolic pathways, mitochondrial biogenesis, and cell growth. It functions as a growth-regulated transcriptional cofactor activating many nuclear genes specifying mitochondrial respiratory function. PRC directly interacts with nuclear transcriptional factors implicated in respiratory chain expression including nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2), CREB (cAMP-response element-binding protein), and estrogen-related receptor alpha (ERRalpha). It interacts indirectly with the NRF-2beta subunit through host cell factor (HCF), a cellular protein involved in herpes simplex virus (HSV) infection and cell cycle regulation. Furthermore, like PGC-1alpha and PGC-1beta, PRC can transactivate a number of NRF-dependent nuclear genes required for mitochondrial respiratory function, including those encoding cytochrome c, 5-aminolevulinate synthase, Tfam, and TFB1M, and TFB2M. Further research indicates that PRC may also act as a sensor of metabolic stress that orchestrates a redox-sensitive program of inflammatory gene expression. PRC is a multi-domain protein containing an N-terminal activation domain, an LXXLL coactivator signature, a central proline-rich region, a tetrapeptide motif (DHDY) responsible for HCF binding, a C-terminal arginine/serine-rich (SR) domain, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410035 [Multi-domain]  Cd Length: 91  Bit Score: 34.41  E-value: 9.70e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1191017726  76 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRV-FPDKG--YSFVRFNSHESAAHAI 126
Cdd:cd12624     5 VYIGKIRGRMTRSELKDRFSVFGEIEECTIhFREEGdnYGFVTYRYTEDAFAAI 58
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH