zinc finger protein with KRAB and SCAN domains 1 isoform a [Homo sapiens]
C2H2-type zinc finger protein; zinc finger and BTB domain-containing protein( domain architecture ID 12210825)
Cys2His2 (C2H2)-type zinc finger protein may be involved in transcriptional regulation; zinc finger and BTB (BR-C, ttk and bab)/POZ (Pox virus and Zinc finger) domain-containing protein may be involved in transcriptional regulation
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
SCAN | smart00431 | leucine rich region; |
52-162 | 1.61e-58 | ||||
leucine rich region; : Pssm-ID: 128708 [Multi-domain] Cd Length: 113 Bit Score: 190.59 E-value: 1.61e-58
|
||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
356-537 | 2.78e-12 | ||||
FOG: Zn-finger [General function prediction only]; : Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 68.95 E-value: 2.78e-12
|
||||||||
KRAB_A-box | cd07765 | KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression ... |
227-262 | 1.45e-09 | ||||
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods. These proteins have been shown to play important roles in cell differentiation and organ development, and in regulating viral replication and transcription. A KRAB domain may consist of an A-box, or of an A-box plus either a B-box, a divergent B-box (b), or a C-box. Only the A-box is included in this model. The A-box is needed for repression, the B- and C- boxes are not. KRAB-ZFPs have one or two KRAB domains at their amino-terminal end, and multiple C2H2 zinc finger motifs at their C-termini. Some KRAB-ZFPs also contain a SCAN domain which mediates homo- and hetero-oligomerization. The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. A key mechanism appears to be the following: KRAB-AFPs tethered to DNA recruit, via their KRAB domain, the repressor KAP1 (KRAB-associated protein-1, also known as transcription intermediary factor 1 beta , KRAB-A interacting protein , and tripartite motif protein 28). The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation. : Pssm-ID: 143639 Cd Length: 40 Bit Score: 53.32 E-value: 1.45e-09
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
SCAN | smart00431 | leucine rich region; |
52-162 | 1.61e-58 | ||||
leucine rich region; Pssm-ID: 128708 [Multi-domain] Cd Length: 113 Bit Score: 190.59 E-value: 1.61e-58
|
||||||||
SCAN | pfam02023 | SCAN domain; The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) is found ... |
52-129 | 9.76e-46 | ||||
SCAN domain; The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) is found in several pfam00096 proteins. The domain has been shown to be able to mediate homo- and hetero-oligomerization. Pssm-ID: 460417 [Multi-domain] Cd Length: 89 Bit Score: 155.72 E-value: 9.76e-46
|
||||||||
SCAN | cd07936 | SCAN oligomerization domain; The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 ... |
52-129 | 5.79e-39 | ||||
SCAN oligomerization domain; The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) is found in several vertebrate proteins that contain C2H2 zinc finger motifs, many of which may be transcription factors playing roles in cell survival and differentiation. This protein-interaction domain is able to mediate homo- and hetero-oligomerization of SCAN-containing proteins. Some SCAN-containing proteins, including those of lower vertebrates, do not contain zinc finger motifs. It has been noted that the SCAN domain resembles a domain-swapped version of the C-terminal domain of the HIV capsid protein. This domain model features elements common to the three general groups of SCAN domains (SCAN-A1, SCAN-A2, and SCAN-B). The SCAND1 protein is truncated at the C-terminus with respect to this model, the SCAND2 protein appears to have a truncated central helix. Pssm-ID: 153421 Cd Length: 85 Bit Score: 137.39 E-value: 5.79e-39
|
||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
356-537 | 2.78e-12 | ||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 68.95 E-value: 2.78e-12
|
||||||||
KRAB_A-box | cd07765 | KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression ... |
227-262 | 1.45e-09 | ||||
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods. These proteins have been shown to play important roles in cell differentiation and organ development, and in regulating viral replication and transcription. A KRAB domain may consist of an A-box, or of an A-box plus either a B-box, a divergent B-box (b), or a C-box. Only the A-box is included in this model. The A-box is needed for repression, the B- and C- boxes are not. KRAB-ZFPs have one or two KRAB domains at their amino-terminal end, and multiple C2H2 zinc finger motifs at their C-termini. Some KRAB-ZFPs also contain a SCAN domain which mediates homo- and hetero-oligomerization. The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. A key mechanism appears to be the following: KRAB-AFPs tethered to DNA recruit, via their KRAB domain, the repressor KAP1 (KRAB-associated protein-1, also known as transcription intermediary factor 1 beta , KRAB-A interacting protein , and tripartite motif protein 28). The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation. Pssm-ID: 143639 Cd Length: 40 Bit Score: 53.32 E-value: 1.45e-09
|
||||||||
KRAB | smart00349 | krueppel associated box; |
227-262 | 3.89e-09 | ||||
krueppel associated box; Pssm-ID: 214630 [Multi-domain] Cd Length: 61 Bit Score: 52.98 E-value: 3.89e-09
|
||||||||
KRAB | pfam01352 | KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc ... |
226-261 | 1.22e-06 | ||||
KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc finger proteins containing C2H2 fingers. The KRAB domain is found to be involved in protein-protein interactions. The KRAB domain is generally encoded by two exons. The regions coded by the two exons are known as KRAB-A and KRAB-B. The A box plays an important role in repression by binding to corepressors, while the B box is thought to enhance this repression brought about by the A box. KRAB-containing proteins are thought to have critical functions in cell proliferation and differentiation, apoptosis and neoplastic transformation. Pssm-ID: 460171 Cd Length: 42 Bit Score: 45.15 E-value: 1.22e-06
|
||||||||
zf-H2C2_2 | pfam13465 | Zinc-finger double domain; |
475-500 | 3.68e-06 | ||||
Zinc-finger double domain; Pssm-ID: 463886 [Multi-domain] Cd Length: 26 Bit Score: 43.51 E-value: 3.68e-06
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
SCAN | smart00431 | leucine rich region; |
52-162 | 1.61e-58 | ||||
leucine rich region; Pssm-ID: 128708 [Multi-domain] Cd Length: 113 Bit Score: 190.59 E-value: 1.61e-58
|
||||||||
SCAN | pfam02023 | SCAN domain; The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) is found ... |
52-129 | 9.76e-46 | ||||
SCAN domain; The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) is found in several pfam00096 proteins. The domain has been shown to be able to mediate homo- and hetero-oligomerization. Pssm-ID: 460417 [Multi-domain] Cd Length: 89 Bit Score: 155.72 E-value: 9.76e-46
|
||||||||
SCAN | cd07936 | SCAN oligomerization domain; The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 ... |
52-129 | 5.79e-39 | ||||
SCAN oligomerization domain; The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) is found in several vertebrate proteins that contain C2H2 zinc finger motifs, many of which may be transcription factors playing roles in cell survival and differentiation. This protein-interaction domain is able to mediate homo- and hetero-oligomerization of SCAN-containing proteins. Some SCAN-containing proteins, including those of lower vertebrates, do not contain zinc finger motifs. It has been noted that the SCAN domain resembles a domain-swapped version of the C-terminal domain of the HIV capsid protein. This domain model features elements common to the three general groups of SCAN domains (SCAN-A1, SCAN-A2, and SCAN-B). The SCAND1 protein is truncated at the C-terminus with respect to this model, the SCAND2 protein appears to have a truncated central helix. Pssm-ID: 153421 Cd Length: 85 Bit Score: 137.39 E-value: 5.79e-39
|
||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
356-537 | 2.78e-12 | ||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 68.95 E-value: 2.78e-12
|
||||||||
KRAB_A-box | cd07765 | KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression ... |
227-262 | 1.45e-09 | ||||
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods. These proteins have been shown to play important roles in cell differentiation and organ development, and in regulating viral replication and transcription. A KRAB domain may consist of an A-box, or of an A-box plus either a B-box, a divergent B-box (b), or a C-box. Only the A-box is included in this model. The A-box is needed for repression, the B- and C- boxes are not. KRAB-ZFPs have one or two KRAB domains at their amino-terminal end, and multiple C2H2 zinc finger motifs at their C-termini. Some KRAB-ZFPs also contain a SCAN domain which mediates homo- and hetero-oligomerization. The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. A key mechanism appears to be the following: KRAB-AFPs tethered to DNA recruit, via their KRAB domain, the repressor KAP1 (KRAB-associated protein-1, also known as transcription intermediary factor 1 beta , KRAB-A interacting protein , and tripartite motif protein 28). The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation. Pssm-ID: 143639 Cd Length: 40 Bit Score: 53.32 E-value: 1.45e-09
|
||||||||
KRAB | smart00349 | krueppel associated box; |
227-262 | 3.89e-09 | ||||
krueppel associated box; Pssm-ID: 214630 [Multi-domain] Cd Length: 61 Bit Score: 52.98 E-value: 3.89e-09
|
||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
356-436 | 1.78e-07 | ||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 53.93 E-value: 1.78e-07
|
||||||||
KRAB | pfam01352 | KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc ... |
226-261 | 1.22e-06 | ||||
KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc finger proteins containing C2H2 fingers. The KRAB domain is found to be involved in protein-protein interactions. The KRAB domain is generally encoded by two exons. The regions coded by the two exons are known as KRAB-A and KRAB-B. The A box plays an important role in repression by binding to corepressors, while the B box is thought to enhance this repression brought about by the A box. KRAB-containing proteins are thought to have critical functions in cell proliferation and differentiation, apoptosis and neoplastic transformation. Pssm-ID: 460171 Cd Length: 42 Bit Score: 45.15 E-value: 1.22e-06
|
||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
431-492 | 1.35e-06 | ||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 50.85 E-value: 1.35e-06
|
||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
403-464 | 2.81e-06 | ||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 50.08 E-value: 2.81e-06
|
||||||||
zf-H2C2_2 | pfam13465 | Zinc-finger double domain; |
475-500 | 3.68e-06 | ||||
Zinc-finger double domain; Pssm-ID: 463886 [Multi-domain] Cd Length: 26 Bit Score: 43.51 E-value: 3.68e-06
|
||||||||
zf-H2C2_2 | pfam13465 | Zinc-finger double domain; |
419-444 | 5.24e-06 | ||||
Zinc-finger double domain; Pssm-ID: 463886 [Multi-domain] Cd Length: 26 Bit Score: 43.13 E-value: 5.24e-06
|
||||||||
zf-H2C2_2 | pfam13465 | Zinc-finger double domain; |
447-472 | 1.48e-05 | ||||
Zinc-finger double domain; Pssm-ID: 463886 [Multi-domain] Cd Length: 26 Bit Score: 41.97 E-value: 1.48e-05
|
||||||||
zf-H2C2_2 | pfam13465 | Zinc-finger double domain; |
391-415 | 1.48e-05 | ||||
Zinc-finger double domain; Pssm-ID: 463886 [Multi-domain] Cd Length: 26 Bit Score: 41.97 E-value: 1.48e-05
|
||||||||
zf-C2H2 | pfam00096 | Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ... |
461-483 | 1.60e-05 | ||||
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 41.52 E-value: 1.60e-05
|
||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
459-536 | 1.97e-05 | ||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 47.38 E-value: 1.97e-05
|
||||||||
zf-C2H2 | pfam00096 | Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ... |
433-455 | 6.38e-05 | ||||
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 39.98 E-value: 6.38e-05
|
||||||||
zf-C2H2 | pfam00096 | Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ... |
517-539 | 7.83e-05 | ||||
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 39.59 E-value: 7.83e-05
|
||||||||
zf-H2C2_2 | pfam13465 | Zinc-finger double domain; |
503-528 | 1.06e-04 | ||||
Zinc-finger double domain; Pssm-ID: 463886 [Multi-domain] Cd Length: 26 Bit Score: 39.28 E-value: 1.06e-04
|
||||||||
zf-C2H2 | pfam00096 | Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ... |
377-399 | 1.62e-04 | ||||
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 38.82 E-value: 1.62e-04
|
||||||||
zf-C2H2 | pfam00096 | Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ... |
489-511 | 3.12e-04 | ||||
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 38.05 E-value: 3.12e-04
|
||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
487-539 | 5.81e-04 | ||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 42.76 E-value: 5.81e-04
|
||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
359-539 | 7.09e-04 | ||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 42.38 E-value: 7.09e-04
|
||||||||
zf-C2H2 | pfam00096 | Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ... |
405-427 | 8.23e-04 | ||||
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 36.89 E-value: 8.23e-04
|
||||||||
Blast search parameters | ||||
|