NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|922582352|ref|NP_001300608|]
View 

RRM domain-containing protein [Caenorhabditis elegans]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM_SF super family cl17169
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
116-200 2.53e-52

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


The actual alignment was detected with superfamily member cd12743:

Pssm-ID: 473069 [Multi-domain]  Cd Length: 85  Bit Score: 167.76  E-value: 2.53e-52
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 116 KDCVRLRGLPYEATVQHIVTFLGDFATMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASACAAGVHNNFMSVGKKKRYIE 195
Cdd:cd12743    1 KDCIRLRGLPYEAQVEHILEFLGDFAKMIVFQGVHMVYNAQGQPSGEAFIQMDSEQSASACAQQRHNRYMVFGKKQRYIE 80

                 ....*
gi 922582352 196 VFQAS 200
Cdd:cd12743   81 VFQCS 85
RRM2_ESRPs_Fusilli cd12508
RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein ESRP1, ESRP2, ...
8-83 7.23e-42

RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins; This subfamily corresponds to the RRM2 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli.Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous FGFR2 splicing and functions as a splicing factor. It shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


:

Pssm-ID: 409930 [Multi-domain]  Cd Length: 80  Bit Score: 140.57  E-value: 7.23e-42
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   8 AIIVRMRGLPYDCTDAQIRTFFEPLK----LTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKS 83
Cdd:cd12508    1 QVIVRMRGLPFSATAADILAFFGGECpvtgGKDGILFVTYPDGRPTGDAFVLFATEEDAQQALGKHKELLGKRYIELFRS 80
 
Name Accession Description Interval E-value
RRM3_Fusilli cd12743
RNA recognition motif 3 (RRM3) found in Drosophila RNA-binding protein Fusilli and similar ...
116-200 2.53e-52

RNA recognition motif 3 (RRM3) found in Drosophila RNA-binding protein Fusilli and similar proteins; This subgroup corresponds to the RRM3 of RNA-binding protein Fusilli which is encoded by Drosophila fusilli (fus) gene. Loss of Fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. Fusilli contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 241187 [Multi-domain]  Cd Length: 85  Bit Score: 167.76  E-value: 2.53e-52
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 116 KDCVRLRGLPYEATVQHIVTFLGDFATMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASACAAGVHNNFMSVGKKKRYIE 195
Cdd:cd12743    1 KDCIRLRGLPYEAQVEHILEFLGDFAKMIVFQGVHMVYNAQGQPSGEAFIQMDSEQSASACAQQRHNRYMVFGKKQRYIE 80

                 ....*
gi 922582352 196 VFQAS 200
Cdd:cd12743   81 VFQCS 85
RRM2_ESRPs_Fusilli cd12508
RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein ESRP1, ESRP2, ...
8-83 7.23e-42

RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins; This subfamily corresponds to the RRM2 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli.Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous FGFR2 splicing and functions as a splicing factor. It shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 409930 [Multi-domain]  Cd Length: 80  Bit Score: 140.57  E-value: 7.23e-42
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   8 AIIVRMRGLPYDCTDAQIRTFFEPLK----LTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKS 83
Cdd:cd12508    1 QVIVRMRGLPFSATAADILAFFGGECpvtgGKDGILFVTYPDGRPTGDAFVLFATEEDAQQALGKHKELLGKRYIELFRS 80
RRM smart00360
RNA recognition motif;
11-80 4.54e-11

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 57.99  E-value: 4.54e-11
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 922582352    11 VRMRGLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLK-HRQVIGQRYIEL 80
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFgKVESVRLVRDKETGKSKGFAFVEFESEEDAEKALEAlNGKELDGRPLKV 73
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
11-79 4.40e-10

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 55.32  E-value: 4.40e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   11 VRMRGLPYDCTDAQIRTFFEPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLK-HRQVIGQRYIE 79
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEAlNGKELGGRELK 70
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
14-64 5.95e-05

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 41.24  E-value: 5.95e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 922582352  14 RGLPYDCTDAQIRTFFEP------LKL-TDKilfitRTdGRPTGDAFVQFETEEDAQQ 64
Cdd:COG0724    7 GNLPYSVTEEDLRELFSEygevtsVKLiTDR-----ET-GRSRGFGFVEMPDDEEAQA 58
 
Name Accession Description Interval E-value
RRM3_Fusilli cd12743
RNA recognition motif 3 (RRM3) found in Drosophila RNA-binding protein Fusilli and similar ...
116-200 2.53e-52

RNA recognition motif 3 (RRM3) found in Drosophila RNA-binding protein Fusilli and similar proteins; This subgroup corresponds to the RRM3 of RNA-binding protein Fusilli which is encoded by Drosophila fusilli (fus) gene. Loss of Fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. Fusilli contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 241187 [Multi-domain]  Cd Length: 85  Bit Score: 167.76  E-value: 2.53e-52
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 116 KDCVRLRGLPYEATVQHIVTFLGDFATMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASACAAGVHNNFMSVGKKKRYIE 195
Cdd:cd12743    1 KDCIRLRGLPYEAQVEHILEFLGDFAKMIVFQGVHMVYNAQGQPSGEAFIQMDSEQSASACAQQRHNRYMVFGKKQRYIE 80

                 ....*
gi 922582352 196 VFQAS 200
Cdd:cd12743   81 VFQCS 85
RRM2_ESRPs_Fusilli cd12508
RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein ESRP1, ESRP2, ...
8-83 7.23e-42

RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins; This subfamily corresponds to the RRM2 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli.Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous FGFR2 splicing and functions as a splicing factor. It shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 409930 [Multi-domain]  Cd Length: 80  Bit Score: 140.57  E-value: 7.23e-42
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   8 AIIVRMRGLPYDCTDAQIRTFFEPLK----LTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKS 83
Cdd:cd12508    1 QVIVRMRGLPFSATAADILAFFGGECpvtgGKDGILFVTYPDGRPTGDAFVLFATEEDAQQALGKHKELLGKRYIELFRS 80
RRM3_ESRPs_Fusilli cd12509
RNA recognition motif 3 (RRM3) found in epithelial splicing regulatory protein ESRP1, ESRP2, ...
116-200 1.35e-36

RNA recognition motif 3 (RRM3) found in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins; This subfamily corresponds to the RRM3 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli. Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous FGFR2 splicing and functions as a splicing factor. Fusilli shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 409931 [Multi-domain]  Cd Length: 81  Bit Score: 126.82  E-value: 1.35e-36
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 116 KDCVRLRGLPYEATVQHIVTFLGDFATMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASACAAGVHNNfmsvGKKKRYIE 195
Cdd:cd12509    1 RDCIRLRGLPYSATVEDILNFLGEFAKHIAPQGVHMVINAQGRPSGDAFIQMLSAEFARLAAQKRHKH----HMGERYIE 76

                 ....*
gi 922582352 196 VFQAS 200
Cdd:cd12509   77 VFQCS 81
RRM2_Fusilli cd12741
RNA recognition motif 2 (RRM2) found in Drosophila RNA-binding protein Fusilli and similar ...
1-83 1.59e-31

RNA recognition motif 2 (RRM2) found in Drosophila RNA-binding protein Fusilli and similar proteins; This subgroup corresponds to the RRM2 of RNA-binding protein Fusilli which is encoded by Drosophila fusilli (fus) gene. Loss of Fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. Fusilli contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 410137 [Multi-domain]  Cd Length: 99  Bit Score: 114.16  E-value: 1.59e-31
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   1 MEFVS-ANAIIVRMRGLPYDCTDAQIRTFF----EPLKLTDK---ILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQV 72
Cdd:cd12741    9 QNFLSkGGQVIIRMRGLPYDCTPKQVVEFFctgdKIPHVLDGaegVLFVKKPDGRATGDAFVLFETEEVAEKALEKHRQH 88
                         90
                 ....*....|.
gi 922582352  73 IGQRYIELFKS 83
Cdd:cd12741   89 IGSRYIELFRS 99
RRM3_ESRP1_ESRP2 cd12742
RNA recognition motif 3 (RRM3) found in epithelial splicing regulatory protein ESRP1, ESRP2 ...
116-200 1.99e-30

RNA recognition motif 3 (RRM3) found in epithelial splicing regulatory protein ESRP1, ESRP2 and similar proteins; This subgroup corresponds to the RRM3 of ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B). These are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410138 [Multi-domain]  Cd Length: 81  Bit Score: 110.66  E-value: 1.99e-30
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 116 KDCVRLRGLPYEATVQHIVTFLGDFATMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASACAAGVHNNFMsvgkKKRYIE 195
Cdd:cd12742    1 RDCIRLRGLPYAATIEDILEFLGEFAADIRPHGVHMVLNHQGRPSGDAFIQMKSADRAFLAAQKCHKKTM----KDRYVE 76

                 ....*
gi 922582352 196 VFQAS 200
Cdd:cd12742   77 VFQCS 81
RRM2_ESRP2 cd12740
RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein 2 (ESRP2) and ...
2-94 9.24e-29

RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein 2 (ESRP2) and similar proteins; This subgroup corresponds to the RRM2 of ESRP2, also termed RNA-binding motif protein 35B (RBM35B), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (also termed p120-Catenin) and ENAH (also termed hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. ESRP2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 241184 [Multi-domain]  Cd Length: 107  Bit Score: 107.38  E-value: 9.24e-29
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   2 EFVS-ANAIIVRMRGLPYDCTDAQIRTFFEP----LKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQR 76
Cdd:cd12740    9 QFLSkENQVIIRMRGLPFTATPEDVLGFLGPecpvTGGTEGLLFVKYPDGRPTGDAFVLFACEEYAQNALKKHKGILGKR 88
                         90
                 ....*....|....*...
gi 922582352  77 YIELFKSTAAEVQQVVKR 94
Cdd:cd12740   89 YIELFRSTAAEVQQVLNR 106
RRM2_hnRNPH_CRSF1_like cd12504
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H ...
10-84 1.30e-27

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family; This subfamily corresponds to the RRM2 of hnRNP H protein family which includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9). They represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing, having similar RNA binding affinities and specifically recognizing the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. Furthermore, hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in the splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. The family also includes a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 also contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409927 [Multi-domain]  Cd Length: 77  Bit Score: 103.20  E-value: 1.30e-27
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLT-DKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKST 84
Cdd:cd12504    2 VVRLRGLPYGCTKEEIAQFFSGLEIVpNGITLPMDRRGRSTGEAFVQFASQEIAEQALGKHKEKIGHRYIEIFRSS 77
RRM2_ESRP1 cd12739
RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein 1 (ESRP1) and ...
2-94 1.88e-27

RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein 1 (ESRP1) and similar proteins; This subgroup corresponds to the RRM2 of ESRP1, also termed RNA-binding motif protein 35A (RBM35A), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (also termed p120-Catenin) and ENAH (also termed hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. Additional research indicated that ESRP1 functions as a tumor suppressor in colon cancer cells. It may be involved in posttranscriptional regulation of various genes by exerting a differential effect on protein translation via 5' untranslated regions (UTRs) of mRNAs. ESRP1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410136 [Multi-domain]  Cd Length: 111  Bit Score: 103.98  E-value: 1.88e-27
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   2 EFVSA-NAIIVRMRGLPYDCTDAQIRTFF-EPLKLT---DKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQR 76
Cdd:cd12739    9 QFLSKeNQVIVRMRGLPFTATAEEVLAFFgQHCPVTggkEGILFVTYPDSRPTGDAFVLFACEEYAQNALKKHKDLLGKR 88
                         90
                 ....*....|....*...
gi 922582352  77 YIELFKSTAAEVQQVVKR 94
Cdd:cd12739   89 YIELFRSTAAEVQQVLNR 106
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
10-81 7.35e-27

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 101.10  E-value: 7.35e-27
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLT-DKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELF 81
Cdd:cd12254    1 VVRLRGLPFSATEEDIRDFFSGLDIPpDGIHIVYDDDGRPTGEAYVEFASEEDAQRALRRHKGKMGGRYIEVF 73
RRM2_GRSF1 cd12505
RNA recognition motif 2 (RRM2) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; ...
10-83 1.66e-24

RNA recognition motif 2 (RRM2) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; This subfamily corresponds to the RRM2 of GRSF-1, a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for the RNA binding. In addition, GRSF-1 has two auxiliary domains, an acidic alpha-helical domain and an N-terminal alanine-rich region, that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409928 [Multi-domain]  Cd Length: 77  Bit Score: 94.90  E-value: 1.66e-24
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKS 83
Cdd:cd12505    3 VVRLRGLPYSCTEADIAHFFSGLDIVDITFVMDLRGGRKTGEAFVQFASPEMAAQALLKHKEEIGNRYIEIFPS 76
RRM1_hnRNPH_GRSF1_like cd12503
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H ...
10-83 8.38e-24

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, G-rich sequence factor 1 (GRSF-1) and similar proteins; This subfamily corresponds to the RRM1 of hnRNP H proteins and GRSF-1. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. These proteins have similar RNA binding affinities and specifically recognize the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. Members in this family have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. They also include a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. They may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409926 [Multi-domain]  Cd Length: 77  Bit Score: 93.22  E-value: 8.38e-24
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLTDK---ILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKS 83
Cdd:cd12503    1 VVRARGLPWSATAEDVLNFFTDCRIKGGengIHFTYTREGRPSGEAFIELESEEDVEKALEKHNEHMGHRYIEVFRS 77
RRM2_hnRNPH_hnRNPH2_hnRNPF cd12731
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP H, hnRNP ...
5-89 6.14e-22

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP H, hnRNP H2, hnRNP F and similar proteins; This subgroup corresponds to the RRM2 of hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F. These represent a group of nuclear RNA binding proteins that play important roles in the regulation of alternative splicing decisions. hnRNP H and hnRNP F are two closely related proteins, both of which bind to the RNA sequence DGGGD. They are present in a complex with the tissue-specific splicing factor Fox2, and regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts. The presence of Fox 2 can allows hnRNP H and hnRNP F to better compete with the SR protein ASF/SF2 for binding to FGFR2 exon IIIc. Thus, hnRNP H and hnRNP F can function as potent silencers of FGFR2 exon IIIc inclusion through an interaction with the exonic GGG motifs. Furthermore, hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize.


Pssm-ID: 410130 [Multi-domain]  Cd Length: 90  Bit Score: 88.53  E-value: 6.14e-22
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   5 SANAIIVRMRGLPYDCTDAQIRTFFEPLKLT-DKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKS 83
Cdd:cd12731    5 TANDGFVRLRGLPFGCSKEEIVQFFSGLEIVpNGITLPVDFQGRSTGEAFVQFASQEIAEKALKKHKERIGHRYIEIFKS 84

                 ....*.
gi 922582352  84 TAAEVQ 89
Cdd:cd12731   85 SRAEVR 90
RRM1_hnRNPH_hnRNPH2_hnRNPF cd12729
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP H , ...
10-83 3.43e-21

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP H , hnRNP H2, hnRNP F and similar proteins; This subgroup corresponds to the RRM1 of hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F. These represent a group of nuclear RNA binding proteins that play important roles in the regulation of alternative splicing decisions. hnRNP H and hnRNP F are two closely related proteins, both of which bind to the RNA sequence DGGGD. They are present in a complex with the tissue-specific splicing factor Fox2, and regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts. The presence of Fox 2 can allows hnRNP H and hnRNP F to better compete with the SR protein ASF/SF2 for binding to FGFR2 exon IIIc. Thus, hnRNP H and hnRNP F can function as potent silencers of FGFR2 exon IIIc inclusion through an interaction with the exonic GGG motifs. Furthermore, hnRNP H and hnRNP H2 are almost identical. Both of them have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize.


Pssm-ID: 410128 [Multi-domain]  Cd Length: 79  Bit Score: 85.98  E-value: 3.43e-21
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLTDK---ILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKS 83
Cdd:cd12729    3 VVKVRGLPWSCSADEVQNFFSDCKIANGasgIHFIYTREGRPSGEAFVELESEEDVKLALKKDRETMGHRYVEVFKS 79
RRM3_hnRNPH_CRSF1_like cd12506
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H ...
10-81 5.04e-20

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H protein family, G-rich sequence factor 1 (GRSF-1) and similar proteins; This subfamily corresponds to the RRM3 of hnRNP H proteins and GRSF-1. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. These proteins have similar RNA binding affinities and specifically recognize the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in the splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. For instance, members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. The family also includes a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 also contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409929 [Multi-domain]  Cd Length: 75  Bit Score: 82.80  E-value: 5.04e-20
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKlTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELF 81
Cdd:cd12506    2 TVHMRGLPYRATENDIFEFFSPLN-PVNVRIRYNKDGRATGEADVEFATHEDAVAAMSKDRENMGHRYIELF 72
RRM2_RBM12B cd12746
RNA recognition motif 2 (RRM2) found in RNA-binding protein 12B (RBM12B) and similar proteins; ...
11-84 1.97e-19

RNA recognition motif 2 (RRM2) found in RNA-binding protein 12B (RBM12B) and similar proteins; This subgroup corresponds to the RRM2 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear.


Pssm-ID: 410140 [Multi-domain]  Cd Length: 86  Bit Score: 81.72  E-value: 1.97e-19
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLtDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKST 84
Cdd:cd12746    5 LFLRGMPYSATEDDVRNFFSGLKV-DGVIFLKHPNGRNNGNGLVKFATKEDASEGLKRHRQYMGSRFIEVTRTT 77
RRM2_hnRNPH3 cd12732
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) ...
10-84 1.14e-18

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP H3 (also termed hnRNP 2H9), a nuclear RNA binding protein that belongs to the hnRNP H protein family that also includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F. This family is involved in mRNA processing and exhibit extensive sequence homology. Currently, little is known about the functions of hnRNP H3 except for its role in the splicing arrest induced by heat shock. In addition, the typical hnRNP H proteins contain contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, like other hnRNP H protein family members, hnRNP H3 has an extensive glycine-rich region near the C-terminus, which may allow it to homo- or heterodimerize.


Pssm-ID: 410131 [Multi-domain]  Cd Length: 96  Bit Score: 79.97  E-value: 1.14e-18
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLT-DKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKST 84
Cdd:cd12732   20 TVRLRGLPFGCSKEEIVQFFSGLEIVpNGITLTMDYQGRSTGEAFVQFASKEIAENALGKHKERIGHRYIEIFKSS 95
RRM1_GRSF1 cd12730
RNA recognition motif 1 (RRM1) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; ...
10-82 1.55e-18

RNA recognition motif 1 (RRM1) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; This subgroup corresponds to the RRM1 of GRSF-1, a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for the RNA binding. In addition, GRSF-1 has two auxiliary domains, an acidic alpha-helical domain and an N-terminal alanine-rich region, that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 410129 [Multi-domain]  Cd Length: 79  Bit Score: 79.07  E-value: 1.55e-18
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKL---TDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFK 82
Cdd:cd12730    3 IVRARGLPWSCTAEDVLSFFSDCRIrngEDGIHFLLNRDGKRRGDALIELESEEDVQKALEQHRKYMGQRYVEVFE 78
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
118-197 4.79e-18

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 77.22  E-value: 4.79e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 118 CVRLRGLPYEATVQHIVTFLGDFAtmVKFQGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMsvgkKKRYIEVF 197
Cdd:cd12254    1 VVRLRGLPFSATEEDIRDFFSGLD--IPPDGIHIVYDDDGRPTGEAYVEFASEEDAQR-ALRRHKGKM----GGRYIEVF 73
RRM2_RMB19 cd12502
RNA recognition motif 2 (RRM2) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
11-81 2.02e-17

RNA recognition motif 2 (RRM2) found in RNA-binding protein 19 (RBM19) and similar proteins; This subfamily corresponds to the RRM2 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is also essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409925 [Multi-domain]  Cd Length: 72  Bit Score: 75.53  E-value: 2.02e-17
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLTdKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELF 81
Cdd:cd12502    3 VKLRGAPFNVKEKQIREFFSPLKPV-AIRIVKNAHGNKTGYVFVDFKSEEDVEKALKRNKDYMGGRYIEVF 72
RRM1_hnRNPH_GRSF1_like cd12503
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H ...
119-198 3.61e-15

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, G-rich sequence factor 1 (GRSF-1) and similar proteins; This subfamily corresponds to the RRM1 of hnRNP H proteins and GRSF-1. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. These proteins have similar RNA binding affinities and specifically recognize the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. Members in this family have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. They also include a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. They may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409926 [Multi-domain]  Cd Length: 77  Bit Score: 69.73  E-value: 3.61e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFATMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMSvgkkKRYIEVFQ 198
Cdd:cd12503    2 VRARGLPWSATAEDVLNFFTDCRIKGGENGIHFTYTREGRPSGEAFIELESEEDVEK-ALEKHNEHMG----HRYIEVFR 76
RRM2_RBM12_like cd12511
RNA recognition motif 2 (RRM2) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
11-81 1.20e-14

RNA recognition motif 2 (RRM2) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM2 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B shows high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409933 [Multi-domain]  Cd Length: 73  Bit Score: 67.96  E-value: 1.20e-14
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLtDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELF 81
Cdd:cd12511    2 LSLHGMPYSAMENDVRDFFHGLRV-DGVHLLKDHVGRNNGNALVKFASPQDASEGLKCHRMLMGQRFVEVS 71
RRM1_ESRPs_Fusilli cd12507
RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein ESRP1, ESRP2, ...
10-83 1.18e-13

RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins; This subfamily corresponds to the RRM1 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B). These are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli. Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. It shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 240951 [Multi-domain]  Cd Length: 75  Bit Score: 65.21  E-value: 1.18e-13
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLTDK-ILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKS 83
Cdd:cd12507    1 VVRARGLPWQSSDQDIAQFFRGLNIAKGgVALCLSAQGRRNGEALIRFVDQEHRDLALQRHKHHMGTRYIEVYKA 75
RRM3_GRSF1 cd12733
RNA recognition motif 3 (RRM3) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; ...
11-81 1.90e-13

RNA recognition motif 3 (RRM3) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; This subgroup corresponds to the RRM3 of G-rich sequence factor 1 (GRSF-1), a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for the RNA binding. In addition, GRSF-1 has two auxiliary domains, an acidic alpha-helical domain and an N-terminal alanine-rich region, that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 410132 [Multi-domain]  Cd Length: 75  Bit Score: 64.79  E-value: 1.90e-13
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLTdKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELF 81
Cdd:cd12733    3 VHMRGLPFQANGQDIINFFAPLKPV-RITMEYGPDGKATGEADVHFASHEDAVAAMAKDRSHMQHRYIELF 72
RRM2_ESRPs_Fusilli cd12508
RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein ESRP1, ESRP2, ...
119-197 4.46e-13

RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins; This subfamily corresponds to the RRM2 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli.Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous FGFR2 splicing and functions as a splicing factor. It shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 409930 [Multi-domain]  Cd Length: 80  Bit Score: 63.92  E-value: 4.46e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFATMVKF-QGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMSvgkkKRYIEVF 197
Cdd:cd12508    4 VRMRGLPFSATAADILAFFGGECPVTGGkDGILFVTYPDGRPTGDAFVLFATEEDAQQ-ALGKHKELLG----KRYIELF 78
RRM1_ESRP1 cd12736
RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein 1 (ESRP1) and ...
1-91 1.86e-12

RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein 1 (ESRP1) and similar proteins; This subgroup corresponds to the RRM1 of ESRP1, also termed RNA-binding motif protein 35A (RBM35A), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (p120-Catenin) and ENAH (hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. Additional research indicated that ESRP1 functions as a tumor suppressor in colon cancer cells. It may be involved in posttranscriptional regulation of various genes by exerting a differential effect on protein translation via 5' untranslated regions (UTRs) of mRNAs. ESRP1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410134 [Multi-domain]  Cd Length: 93  Bit Score: 62.73  E-value: 1.86e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   1 MEFVSANAIIvRMRGLPYDCTDAQIRTFFEPLKLTDK-ILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIE 79
Cdd:cd12736    3 MEIIDDNTVI-RARGLPWQSSDQDIARFFKGLNIAKGgAALCLNAQGRRNGEALVRFVNEEHRDLALQRHKHHMGNRYIE 81
                         90
                 ....*....|..
gi 922582352  80 LFKSTAAEVQQV 91
Cdd:cd12736   82 VYKATGEDFLKI 93
RRM1_Fusilli cd12738
RNA recognition motif 1 (RRM1) found in Drosophila RNA-binding protein Fusilli and similar ...
10-87 2.44e-12

RNA recognition motif 1 (RRM1) found in Drosophila RNA-binding protein Fusilli and similar proteins; This subgroup corresponds to the RRM1 of RNA-binding protein Fusilli which is encoded by Drosophila fusilli (fus) gene. Loss of Fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. Fusilli contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 241182 [Multi-domain]  Cd Length: 80  Bit Score: 61.85  E-value: 2.44e-12
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLTDK-ILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKSTAAE 87
Cdd:cd12738    1 VVRARGLPWQSSDQDIAKFFRGLNIAKGgVALCLNPQGRRNGEALVRFTCTEHRDLALKRHKHHIGQRYIEVYKATGED 79
RRM4_RBM12_like cd12514
RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
11-76 2.55e-12

RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM4 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409936 [Multi-domain]  Cd Length: 73  Bit Score: 61.66  E-value: 2.55e-12
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEP-LKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQR 76
Cdd:cd12514    2 IRITNLPYDATPVDIQRFFEDhGVRPEDVHLLRNKKGRGNGEALVTFKSEGDAREVLKLNGKKLGKR 68
RRM3_hnRNPH3 cd12735
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) ...
11-81 3.99e-12

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) and similar proteins; This subgroup corresponds to the RRM3 of hnRNP H3 (also termed hnRNP 2H9), a nuclear RNA binding protein that belongs to the hnRNP H protein family that also includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), and hnRNP F. This family is involved in mRNA processing and exhibit extensive sequence homology. Currently, little is known about the functions of hnRNP H3 except for its role in the splicing arrest induced by heat shock. In addition, the typical hnRNP H proteins contain contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, like other hnRNP H protein family members, hnRNP H3 has an extensive glycine-rich region near the C-terminus, which may allow it to homo- or heterodimerize.


Pssm-ID: 241179 [Multi-domain]  Cd Length: 75  Bit Score: 61.18  E-value: 3.99e-12
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLTdKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELF 81
Cdd:cd12735    3 VHMRGLPFRATESDIANFFSPLNPI-RVHIDIGADGRATGEADVEFATHEDAVAAMSKDKNHMQHRYIELF 72
RRM2_RBM12 cd12747
RNA recognition motif 2 (RRM2) found in RNA-binding protein 12 (RBM12) and similar proteins; ...
11-81 5.81e-12

RNA recognition motif 2 (RRM2) found in RNA-binding protein 12 (RBM12) and similar proteins; This subgroup corresponds to the RRM2 of RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), which is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear.


Pssm-ID: 410141 [Multi-domain]  Cd Length: 75  Bit Score: 60.58  E-value: 5.81e-12
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLtDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELF 81
Cdd:cd12747    4 VHLHGMPFSATEADVRDFFHGLRI-DAIHMLKDHLGRNNGNALVKFYSPQDTFEALKRNRMMMGQRYIEVS 73
RRM1_hnRNPH_hnRNPH2_hnRNPF cd12729
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP H , ...
119-199 2.08e-11

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP H , hnRNP H2, hnRNP F and similar proteins; This subgroup corresponds to the RRM1 of hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F. These represent a group of nuclear RNA binding proteins that play important roles in the regulation of alternative splicing decisions. hnRNP H and hnRNP F are two closely related proteins, both of which bind to the RNA sequence DGGGD. They are present in a complex with the tissue-specific splicing factor Fox2, and regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts. The presence of Fox 2 can allows hnRNP H and hnRNP F to better compete with the SR protein ASF/SF2 for binding to FGFR2 exon IIIc. Thus, hnRNP H and hnRNP F can function as potent silencers of FGFR2 exon IIIc inclusion through an interaction with the exonic GGG motifs. Furthermore, hnRNP H and hnRNP H2 are almost identical. Both of them have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize.


Pssm-ID: 410128 [Multi-domain]  Cd Length: 79  Bit Score: 59.02  E-value: 2.08e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFATMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASacaAGVHNNFMSVGkkKRYIEVFQ 198
Cdd:cd12729    4 VKVRGLPWSCSADEVQNFFSDCKIANGASGIHFIYTREGRPSGEAFVELESEEDVK---LALKKDRETMG--HRYVEVFK 78

                 .
gi 922582352 199 A 199
Cdd:cd12729   79 S 79
RRM1_RBM12_like cd12510
RNA recognition motif 1 (RRM1) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
8-84 2.51e-11

RNA recognition motif 1 (RRM1) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM1 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409932 [Multi-domain]  Cd Length: 74  Bit Score: 58.83  E-value: 2.51e-11
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 922582352   8 AIIVRMRGLPYDCTDAQIRTFFEPLKLTDKILFITrtdGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKST 84
Cdd:cd12510    1 SVVIRLQGLPWEAGSLDIRRFFSGLTIPDGGVHII---GGEKGEAFIIFATDEDARLAMMRDGQTIKGSKVKLFLSS 74
RRM3_ESRPs_Fusilli cd12509
RNA recognition motif 3 (RRM3) found in epithelial splicing regulatory protein ESRP1, ESRP2, ...
11-82 2.80e-11

RNA recognition motif 3 (RRM3) found in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins; This subfamily corresponds to the RRM3 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli. Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous FGFR2 splicing and functions as a splicing factor. Fusilli shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 409931 [Multi-domain]  Cd Length: 81  Bit Score: 59.02  E-value: 2.80e-11
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEplKLTDKILF-----ITRTDGRPTGDAFVQFETEEDAQQGLLK-HRQVIGQRYIELFK 82
Cdd:cd12509    4 IRLRGLPYSATVEDILNFLG--EFAKHIAPqgvhmVINAQGRPSGDAFIQMLSAEFARLAAQKrHKHHMGERYIEVFQ 79
RRM3_RBM12 cd12512
RNA recognition motif 3 (RRM3) found in RNA-binding protein 12 (RBM12) and similar proteins; ...
11-80 2.95e-11

RNA recognition motif 3 (RRM3) found in RNA-binding protein 12 (RBM12) and similar proteins; This subfamily corresponds to the RRM3 of RBM12. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear.


Pssm-ID: 409934 [Multi-domain]  Cd Length: 101  Bit Score: 59.48  E-value: 2.95e-11
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLTDKILFITR-TDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIEL 80
Cdd:cd12512   12 VYLKGLPYEAENKHVIEFFKKLDIVEDSIYIAYgPNGRATGEGFVEFRNEIDYKAALCRHKQYMGNRFIQV 82
RRM1_GRSF1 cd12730
RNA recognition motif 1 (RRM1) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; ...
118-198 3.60e-11

RNA recognition motif 1 (RRM1) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; This subgroup corresponds to the RRM1 of GRSF-1, a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for the RNA binding. In addition, GRSF-1 has two auxiliary domains, an acidic alpha-helical domain and an N-terminal alanine-rich region, that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 410129 [Multi-domain]  Cd Length: 79  Bit Score: 58.66  E-value: 3.60e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 118 CVRLRGLPYEATVQHIVTFLGDFATMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMsvgkKKRYIEVF 197
Cdd:cd12730    3 IVRARGLPWSCTAEDVLSFFSDCRIRNGEDGIHFLLNRDGKRRGDALIELESEEDVQK-ALEQHRKYM----GQRYVEVF 77

                 .
gi 922582352 198 Q 198
Cdd:cd12730   78 E 78
RRM1_ESRP2 cd12737
RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein 2 (ESRP2) and ...
10-87 3.95e-11

RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein 2 (ESRP2) and similar proteins; This subgroup corresponds to the RRM1 of ESRP2, also termed RNA-binding motif protein 35B (RBM35B), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (also termed p120-Catenin) and ENAH (also termed hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. ESRP2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410135 [Multi-domain]  Cd Length: 80  Bit Score: 58.48  E-value: 3.95e-11
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLTDK-ILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKSTAAE 87
Cdd:cd12737    1 VIRARGLPWQSSDQDIARFFKGLNIAKGgVALCLNAQGRRNGEALVRFVNSEQRDLALERHKHHMGSRYIEVYKATGEE 79
RRM smart00360
RNA recognition motif;
11-80 4.54e-11

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 57.99  E-value: 4.54e-11
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 922582352    11 VRMRGLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLK-HRQVIGQRYIEL 80
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFgKVESVRLVRDKETGKSKGFAFVEFESEEDAEKALEAlNGKELDGRPLKV 73
RRM3_hnRNPH_hnRNPH2_hnRNPF cd12734
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H , ...
11-81 1.03e-10

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H , hnRNP H2, hnRNP F and similar proteins; This subgroup corresponds to the RRM3 of hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F, which represent a group of nuclear RNA binding proteins that play important roles in the regulation of alternative splicing decisions. hnRNP H and hnRNP F are two closely related proteins, both of which bind to the RNA sequence DGGGD. They are present in a complex with the tissue-specific splicing factor Fox2, and regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts. The presence of Fox 2 can allows hnRNP H and hnRNP F to better compete with the SR protein ASF/SF2 for binding to FGFR2 exon IIIc. Thus, hnRNP H and hnRNP F can function as potent silencers of FGFR2 exon IIIc inclusion through an interaction with the exonic GGG motifs. Furthermore, hnRNP H and hnRNP H2 are almost identical; bothe have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize.


Pssm-ID: 410133 [Multi-domain]  Cd Length: 76  Bit Score: 57.36  E-value: 1.03e-10
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLTdKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELF 81
Cdd:cd12734    3 VHMRGLPYRATENDIYNFFSPLNPV-RVHIEIGPDGRVTGEADVEFATHEDAVAAMSKDKANMQHRYVELF 72
RRM5_RBM12_like cd12515
RNA recognition motif 5 (RRM5) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
10-81 1.29e-10

RNA recognition motif 5 (RRM5) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM5 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409937 [Multi-domain]  Cd Length: 75  Bit Score: 56.85  E-value: 1.29e-10
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLTDKILFITRTD-GRPTGDAFVQFETEEDAQQGLLK-HRQVIGQRYIELF 81
Cdd:cd12515    2 VVKMRNLPFKATIEDILDFFYGYRVIPDSVSIRYNDdGQPTGDARVAFPSPREARRAVRElNNRPLGGRKVKLF 75
RRM1_ESRPs_Fusilli cd12507
RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein ESRP1, ESRP2, ...
118-199 2.54e-10

RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins; This subfamily corresponds to the RRM1 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B). These are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli. Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. It shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 240951 [Multi-domain]  Cd Length: 75  Bit Score: 55.97  E-value: 2.54e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 118 CVRLRGLPYEATVQHIVTFlgdFATM-VKFQGVHMVYNNQGHPSGEAFIQMINEQAASaCAAGVHNNFMSvgkkKRYIEV 196
Cdd:cd12507    1 VVRARGLPWQSSDQDIAQF---FRGLnIAKGGVALCLSAQGRRNGEALIRFVDQEHRD-LALQRHKHHMG----TRYIEV 72

                 ...
gi 922582352 197 FQA 199
Cdd:cd12507   73 YKA 75
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
11-79 4.40e-10

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 55.32  E-value: 4.40e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   11 VRMRGLPYDCTDAQIRTFFEPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLK-HRQVIGQRYIE 79
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEAlNGKELGGRELK 70
RRM3_ESRP1_ESRP2 cd12742
RNA recognition motif 3 (RRM3) found in epithelial splicing regulatory protein ESRP1, ESRP2 ...
11-82 4.56e-10

RNA recognition motif 3 (RRM3) found in epithelial splicing regulatory protein ESRP1, ESRP2 and similar proteins; This subgroup corresponds to the RRM3 of ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B). These are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410138 [Multi-domain]  Cd Length: 81  Bit Score: 55.58  E-value: 4.56e-10
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 922582352  11 VRMRGLPYDCTDAQIRTF---FEPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLK-HRQVIGQRYIELFK 82
Cdd:cd12742    4 IRLRGLPYAATIEDILEFlgeFAADIRPHGVHMVLNHQGRPSGDAFIQMKSADRAFLAAQKcHKKTMKDRYVEVFQ 79
RRM2_hnRNPH_CRSF1_like cd12504
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H ...
118-200 5.53e-10

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family; This subfamily corresponds to the RRM2 of hnRNP H protein family which includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9). They represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing, having similar RNA binding affinities and specifically recognizing the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. Furthermore, hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in the splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. The family also includes a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 also contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409927 [Multi-domain]  Cd Length: 77  Bit Score: 55.05  E-value: 5.53e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 118 CVRLRGLPYEATVQHIVTFLGDFAtmVKFQGVHMVYNNQGHPSGEAFIQMiNEQAASACAAGVHnnfmsvgKKK---RYI 194
Cdd:cd12504    2 VVRLRGLPYGCTKEEIAQFFSGLE--IVPNGITLPMDRRGRSTGEAFVQF-ASQEIAEQALGKH-------KEKighRYI 71

                 ....*.
gi 922582352 195 EVFQAS 200
Cdd:cd12504   72 EIFRSS 77
RRM2_hnRNPH_hnRNPH2_hnRNPF cd12731
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP H, hnRNP ...
110-204 1.17e-09

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP H, hnRNP H2, hnRNP F and similar proteins; This subgroup corresponds to the RRM2 of hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F. These represent a group of nuclear RNA binding proteins that play important roles in the regulation of alternative splicing decisions. hnRNP H and hnRNP F are two closely related proteins, both of which bind to the RNA sequence DGGGD. They are present in a complex with the tissue-specific splicing factor Fox2, and regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts. The presence of Fox 2 can allows hnRNP H and hnRNP F to better compete with the SR protein ASF/SF2 for binding to FGFR2 exon IIIc. Thus, hnRNP H and hnRNP F can function as potent silencers of FGFR2 exon IIIc inclusion through an interaction with the exonic GGG motifs. Furthermore, hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize.


Pssm-ID: 410130 [Multi-domain]  Cd Length: 90  Bit Score: 54.63  E-value: 1.17e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 110 APEEKKKDCVRLRGLPYEATVQHIVTFlgdfatmvkFQGVHMVYNN-------QGHPSGEAFIQMINEQAASAcAAGVHN 182
Cdd:cd12731    2 SPDTANDGFVRLRGLPFGCSKEEIVQF---------FSGLEIVPNGitlpvdfQGRSTGEAFVQFASQEIAEK-ALKKHK 71
                         90       100
                 ....*....|....*....|..
gi 922582352 183 NFMSvgkkKRYIEVFQASAEEL 204
Cdd:cd12731   72 ERIG----HRYIEIFKSSRAEV 89
RRM3_RBM12B cd12513
RNA recognition motif 3 (RRM3) found in RNA-binding protein 12B (RBM12B) and similar proteins; ...
11-81 1.84e-09

RNA recognition motif 3 (RRM3) found in RNA-binding protein 12B (RBM12B) and similar proteins; This subgroup corresponds to the RRM3 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear.


Pssm-ID: 409935 [Multi-domain]  Cd Length: 81  Bit Score: 53.96  E-value: 1.84e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLTDK-ILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELF 81
Cdd:cd12513    3 VHLKNLSYSVDKRDIRNFFRDLDISDDqIKFLHDKYGKRTREAFVMFKNEKDYQTALSLHKGCLGNRTVYIY 74
RRM1_RBM12B cd12744
RNA recognition motif 1 (RRM1) found in RNA-binding protein 12B (RBM12B) and similar proteins; ...
8-89 3.02e-09

RNA recognition motif 1 (RRM1) found in RNA-binding protein 12B (RBM12B) and similar proteins; This subgroup corresponds to the RRM1 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear.


Pssm-ID: 410139 [Multi-domain]  Cd Length: 79  Bit Score: 53.29  E-value: 3.02e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   8 AIIVRMRGLPYDCTDAQIRTFFEPLKLTDKILFITrtdGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKSTAAE 87
Cdd:cd12744    1 AVVIRLQGLPVVAGSTDIRHFFTGLTIPDGGVHII---GGELGEAFIIFATDEDARRAMSRSGGFIKGSRVELFLSSKAE 77

                 ..
gi 922582352  88 VQ 89
Cdd:cd12744   78 MQ 79
RRM5_RBM12_like cd12515
RNA recognition motif 5 (RRM5) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
117-197 6.86e-09

RNA recognition motif 5 (RRM5) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM5 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409937 [Multi-domain]  Cd Length: 75  Bit Score: 51.84  E-value: 6.86e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 117 DCVRLRGLPYEATVQHIVTFLGDFAtmVKFQGVHMVYNNQGHPSGEAFIQMINEQAASACAAGVHNNFMSVgkkkRYIEV 196
Cdd:cd12515    1 CVVKMRNLPFKATIEDILDFFYGYR--VIPDSVSIRYNDDGQPTGDARVAFPSPREARRAVRELNNRPLGG----RKVKL 74

                 .
gi 922582352 197 F 197
Cdd:cd12515   75 F 75
RRM2_Fusilli cd12741
RNA recognition motif 2 (RRM2) found in Drosophila RNA-binding protein Fusilli and similar ...
119-199 9.29e-09

RNA recognition motif 2 (RRM2) found in Drosophila RNA-binding protein Fusilli and similar proteins; This subgroup corresponds to the RRM2 of RNA-binding protein Fusilli which is encoded by Drosophila fusilli (fus) gene. Loss of Fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. Fusilli contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 410137 [Multi-domain]  Cd Length: 99  Bit Score: 52.15  E-value: 9.29e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFL--GDFATMVKF--QGVHMVYNNQGHPSGEAFIQMINEQAASACAAgvhNNFMSVGkkKRYI 194
Cdd:cd12741   20 IRMRGLPYDCTPKQVVEFFctGDKIPHVLDgaEGVLFVKKPDGRATGDAFVLFETEEVAEKALE---KHRQHIG--SRYI 94

                 ....*
gi 922582352 195 EVFQA 199
Cdd:cd12741   95 ELFRS 99
RRM2_hnRNPH3 cd12732
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) ...
112-200 3.30e-08

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP H3 (also termed hnRNP 2H9), a nuclear RNA binding protein that belongs to the hnRNP H protein family that also includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F. This family is involved in mRNA processing and exhibit extensive sequence homology. Currently, little is known about the functions of hnRNP H3 except for its role in the splicing arrest induced by heat shock. In addition, the typical hnRNP H proteins contain contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, like other hnRNP H protein family members, hnRNP H3 has an extensive glycine-rich region near the C-terminus, which may allow it to homo- or heterodimerize.


Pssm-ID: 410131 [Multi-domain]  Cd Length: 96  Bit Score: 50.69  E-value: 3.30e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 112 EEKKKDC-VRLRGLPYEATVQHIVTFlgdfatmvkFQGVHMVYNN-------QGHPSGEAFIQMINEQAASAcAAGVHNN 183
Cdd:cd12732   13 TENSSDGtVRLRGLPFGCSKEEIVQF---------FSGLEIVPNGitltmdyQGRSTGEAFVQFASKEIAEN-ALGKHKE 82
                         90
                 ....*....|....*..
gi 922582352 184 FMSvgkkKRYIEVFQAS 200
Cdd:cd12732   83 RIG----HRYIEIFKSS 95
RRM2_ESRP2 cd12740
RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein 2 (ESRP2) and ...
119-204 3.63e-08

RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein 2 (ESRP2) and similar proteins; This subgroup corresponds to the RRM2 of ESRP2, also termed RNA-binding motif protein 35B (RBM35B), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (also termed p120-Catenin) and ENAH (also termed hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. ESRP2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 241184 [Multi-domain]  Cd Length: 107  Bit Score: 50.76  E-value: 3.63e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFATMVK-FQGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMSvgkkKRYIEVF 197
Cdd:cd12740   19 IRMRGLPFTATPEDVLGFLGPECPVTGgTEGLLFVKYPDGRPTGDAFVLFACEEYAQN-ALKKHKGILG----KRYIELF 93

                 ....*..
gi 922582352 198 QASAEEL 204
Cdd:cd12740   94 RSTAAEV 100
RRM1_RBM12 cd12745
RNA recognition motif 1 (RRM1) found in RNA-binding protein 12 (RBM12) and similar proteins; ...
8-93 3.73e-08

RNA recognition motif 1 (RRM1) found in RNA-binding protein 12 (RBM12) and similar proteins; This subgrup corresponds to the RRM1 of RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear.


Pssm-ID: 241189 [Multi-domain]  Cd Length: 92  Bit Score: 50.42  E-value: 3.73e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352   8 AIIVRMRGLPYDCTDAQIRTFFEPLKLTDKILFITrtdGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKSTAAE 87
Cdd:cd12745    2 AVVIRLQGLPIVAGTMDIRHFFSGLTIPDGGVHIV---GGELGEAFIVFATDEDARLGMMRTGGTIKGSKVSLLLSSKTE 78

                 ....*.
gi 922582352  88 VQQVVK 93
Cdd:cd12745   79 MQNMIE 84
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
11-64 4.79e-08

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 49.59  E-value: 4.79e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQQ 64
Cdd:cd00590    1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVRDRDGKSKGFAFVEFESPEDAEK 54
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
16-78 5.88e-08

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 49.53  E-value: 5.88e-08
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 922582352  16 LPYDCTDAQIRTFFEPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYI 78
Cdd:cd12402   10 LPYDVTEDDIEDFFRGLNISSVRLPRENGPGRLRGFGYVEFEDRESLIQALSLNEESLKNRRI 72
RRM1_ESRP2 cd12737
RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein 2 (ESRP2) and ...
119-204 6.05e-08

RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein 2 (ESRP2) and similar proteins; This subgroup corresponds to the RRM1 of ESRP2, also termed RNA-binding motif protein 35B (RBM35B), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (also termed p120-Catenin) and ENAH (also termed hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. ESRP2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410135 [Multi-domain]  Cd Length: 80  Bit Score: 49.62  E-value: 6.05e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFAtmVKFQGVHMVYNNQGHPSGEAFIQMINEQAASaCAAGVHNNFMSVgkkkRYIEVFQ 198
Cdd:cd12737    2 IRARGLPWQSSDQDIARFFKGLN--IAKGGVALCLNAQGRRNGEALVRFVNSEQRD-LALERHKHHMGS----RYIEVYK 74

                 ....*.
gi 922582352 199 ASAEEL 204
Cdd:cd12737   75 ATGEEF 80
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
15-84 9.34e-08

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 48.86  E-value: 9.34e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352  15 GLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKST 84
Cdd:cd12330    6 GLAPDVTEEEFKEYFEQFgTVVDAVVMLDHDTGRSRGFGFVTFDSESAVEKVLSKGFHELGGKKVEVKRAT 76
RRM2_ESRP1 cd12739
RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein 1 (ESRP1) and ...
119-204 1.91e-07

RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein 1 (ESRP1) and similar proteins; This subgroup corresponds to the RRM2 of ESRP1, also termed RNA-binding motif protein 35A (RBM35A), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (also termed p120-Catenin) and ENAH (also termed hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. Additional research indicated that ESRP1 functions as a tumor suppressor in colon cancer cells. It may be involved in posttranscriptional regulation of various genes by exerting a differential effect on protein translation via 5' untranslated regions (UTRs) of mRNAs. ESRP1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410136 [Multi-domain]  Cd Length: 111  Bit Score: 48.89  E-value: 1.91e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFATMV-KFQGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMSvgkkKRYIEVF 197
Cdd:cd12739   19 VRMRGLPFTATAEEVLAFFGQHCPVTgGKEGILFVTYPDSRPTGDAFVLFACEEYAQN-ALKKHKDLLG----KRYIELF 93

                 ....*..
gi 922582352 198 QASAEEL 204
Cdd:cd12739   94 RSTAAEV 100
RRM1_PHIP1 cd12271
RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting ...
15-78 2.58e-07

RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; This subfamily corresponds to the RRM1 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409714 [Multi-domain]  Cd Length: 72  Bit Score: 47.32  E-value: 2.58e-07
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 922582352  15 GLPYDCTDAQIRTFFEPLKLTDKILFITRTD-GRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYI 78
Cdd:cd12271    5 GIPYYSTEAEIRSYFSSCGEVRSVDLMRFPDsGNFRGIAFITFKTEEAAKRALALDGEMLGNRFL 69
RRM2_GRSF1 cd12505
RNA recognition motif 2 (RRM2) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; ...
119-197 4.72e-07

RNA recognition motif 2 (RRM2) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; This subfamily corresponds to the RRM2 of GRSF-1, a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for the RNA binding. In addition, GRSF-1 has two auxiliary domains, an acidic alpha-helical domain and an N-terminal alanine-rich region, that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409928 [Multi-domain]  Cd Length: 77  Bit Score: 46.75  E-value: 4.72e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVtflgDFATMVKFQGVHMVYNNQG-HPSGEAFIQMINEQAAsACAAGVHNNFMSvgkkKRYIEVF 197
Cdd:cd12505    4 VRLRGLPYSCTEADIA----HFFSGLDIVDITFVMDLRGgRKTGEAFVQFASPEMA-AQALLKHKEEIG----NRYIEIF 74
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
14-68 8.88e-07

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 46.17  E-value: 8.88e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 922582352  14 RGLPYDCTDAQIRTFFEPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLK 68
Cdd:cd12392    8 KGLPFSCTKEELEELFKQHGTVKDVRLVTYRNGKPKGLAYVEYENEADASQAVLK 62
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
14-105 9.94e-07

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 46.65  E-value: 9.94e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352  14 RGLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDA----QQGLLKHRQVIGQRYIELFKSTAAEV 88
Cdd:cd12676    7 RNLPFDATEDELYSHFSQFgPLKYARVVKDPATGRSKGTAFVKFKNKEDAdnclSAAPEAQSTSLLEKYSLEQDITDDVS 86
                         90
                 ....*....|....*..
gi 922582352  89 QQVVKRCNLINSSPAVA 105
Cdd:cd12676   87 AKFTLDGRVLQVTPAVS 103
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
16-76 1.05e-06

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 45.68  E-value: 1.05e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352  16 LPYDCTDAQIRTFFEPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQR 76
Cdd:cd12391    7 LDYSVPEDKIREIFSGCGEITDVRLVKNYKGKSKGYCYVEFKDEESAQKALKLDRQPVEGR 67
RRM3_hnRNPH_CRSF1_like cd12506
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H ...
118-200 1.05e-06

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H protein family, G-rich sequence factor 1 (GRSF-1) and similar proteins; This subfamily corresponds to the RRM3 of hnRNP H proteins and GRSF-1. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. These proteins have similar RNA binding affinities and specifically recognize the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in the splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. For instance, members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. The family also includes a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 also contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409929 [Multi-domain]  Cd Length: 75  Bit Score: 45.82  E-value: 1.05e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 118 CVRLRGLPYEATVQHIVTFLGDFATMvkfqGVHMVYNNQGHPSGEAFIQMINEQAASACaagvhnnfMSVGKKK---RYI 194
Cdd:cd12506    2 TVHMRGLPYRATENDIFEFFSPLNPV----NVRIRYNKDGRATGEADVEFATHEDAVAA--------MSKDRENmghRYI 69

                 ....*.
gi 922582352 195 EVFQAS 200
Cdd:cd12506   70 ELFLNS 75
RRM3_Fusilli cd12743
RNA recognition motif 3 (RRM3) found in Drosophila RNA-binding protein Fusilli and similar ...
11-84 1.69e-06

RNA recognition motif 3 (RRM3) found in Drosophila RNA-binding protein Fusilli and similar proteins; This subgroup corresponds to the RRM3 of RNA-binding protein Fusilli which is encoded by Drosophila fusilli (fus) gene. Loss of Fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. Fusilli contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 241187 [Multi-domain]  Cd Length: 85  Bit Score: 45.65  E-value: 1.69e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352  11 VRMRGLPYDCTDAQIRTF---FEPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQ---QGLLKHRQVIG--QRYIELFK 82
Cdd:cd12743    4 IRLRGLPYEAQVEHILEFlgdFAKMIVFQGVHMVYNAQGQPSGEAFIQMDSEQSASacaQQRHNRYMVFGkkQRYIEVFQ 83

                 ..
gi 922582352  83 ST 84
Cdd:cd12743   84 CS 85
RRM1_ESRP1 cd12736
RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein 1 (ESRP1) and ...
119-204 1.83e-06

RNA recognition motif 1 (RRM1) found in epithelial splicing regulatory protein 1 (ESRP1) and similar proteins; This subgroup corresponds to the RRM1 of ESRP1, also termed RNA-binding motif protein 35A (RBM35A), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (p120-Catenin) and ENAH (hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. Additional research indicated that ESRP1 functions as a tumor suppressor in colon cancer cells. It may be involved in posttranscriptional regulation of various genes by exerting a differential effect on protein translation via 5' untranslated regions (UTRs) of mRNAs. ESRP1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410134 [Multi-domain]  Cd Length: 93  Bit Score: 45.78  E-value: 1.83e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFAtmVKFQGVHMVYNNQGHPSGEAFIQMINEQAASaCAAGVHNNFMSvgkkKRYIEVFQ 198
Cdd:cd12736   12 IRARGLPWQSSDQDIARFFKGLN--IAKGGAALCLNAQGRRNGEALVRFVNEEHRD-LALQRHKHHMG----NRYIEVYK 84

                 ....*.
gi 922582352 199 ASAEEL 204
Cdd:cd12736   85 ATGEDF 90
RRM4_RBM12B cd12748
RNA recognition motif 4 (RRM4) found in RNA-binding protein 12B (RBM12B) and similar proteins; ...
11-74 1.88e-06

RNA recognition motif 4 (RRM4) found in RNA-binding protein 12B (RBM12B) and similar proteins; This subgroup corresponds to the RRM4 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear.


Pssm-ID: 410142 [Multi-domain]  Cd Length: 76  Bit Score: 45.08  E-value: 1.88e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLTDKILFITRTD-GRPTGDAFVQFETEEDAQQGL-LKHRQVIG 74
Cdd:cd12748    3 IYVRNLPFDVTKVEVQDFFEGFALAEDDIILLYDDkGVGLGEALVKFKSEEEAMKAErLNGQRFLG 68
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
14-63 2.99e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 44.51  E-value: 2.99e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 922582352  14 RGLPYDCTDAQIRTFFE---PLK----LTDKilfitrTDGRPTGDAFVQFETEEDAQ 63
Cdd:cd12413    5 RNLPYDTTDEQLEELFSdvgPVKrcfvVKDK------GKDKCRGFGYVTFALAEDAQ 55
RRM4_RBM12_like cd12514
RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
118-173 4.50e-06

RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM4 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409936 [Multi-domain]  Cd Length: 73  Bit Score: 43.94  E-value: 4.50e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 922582352 118 CVRLRGLPYEATVQHIVTFLGDFatMVKFQGVHMVYNNQGHPSGEAFIQMINEQAA 173
Cdd:cd12514    1 FIRITNLPYDATPVDIQRFFEDH--GVRPEDVHLLRNKKGRGNGEALVTFKSEGDA 54
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
9-66 5.90e-06

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 43.69  E-value: 5.90e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 922582352   9 IIVRmrGLPYDCTDAQIRTFFEPL-KLTDkILFITRTDGRPTGDAFVQFETEEDAQQGL 66
Cdd:cd12414    2 LIVR--NLPFKCTEDDLKKLFSKFgKVLE-VTIPKKPDGKLRGFAFVQFTNVADAAKAI 57
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
9-66 1.10e-05

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 42.93  E-value: 1.10e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352   9 IIVRmrGLPYDCTDAQIRTFFE-PLKLTD-KILfitRT-DGRPTGDAFVQFETEEDAQQGL 66
Cdd:cd12565    3 IIVK--NLPKYVTEKRLKEHFSkKGEITDvKVM---RTkDGKSRRFGFIGFKSEEEAQKAV 58
RRM3_RBM12 cd12512
RNA recognition motif 3 (RRM3) found in RNA-binding protein 12 (RBM12) and similar proteins; ...
118-196 2.15e-05

RNA recognition motif 3 (RRM3) found in RNA-binding protein 12 (RBM12) and similar proteins; This subfamily corresponds to the RRM3 of RBM12. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear.


Pssm-ID: 409934 [Multi-domain]  Cd Length: 101  Bit Score: 42.91  E-value: 2.15e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 922582352 118 CVRLRGLPYEATVQHIVTFLGDFATMVkfQGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMSvgkkKRYIEV 196
Cdd:cd12512   11 CVYLKGLPYEAENKHVIEFFKKLDIVE--DSIYIAYGPNGRATGEGFVEFRNEIDYKA-ALCRHKQYMG----NRFIQV 82
RRM4_RBM12 cd12749
RNA recognition motif 4 (RRM4) found in RNA-binding protein 12 (RBM12) and similar proteins; ...
16-93 2.31e-05

RNA recognition motif 4 (RRM4) found in RNA-binding protein 12 (RBM12) and similar proteins; This subgroup corresponds to the RRM4 of RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), which is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear.


Pssm-ID: 410143 [Multi-domain]  Cd Length: 88  Bit Score: 42.50  E-value: 2.31e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 922582352  16 LPYDCTDAQIRTFFEPLKLTDKILFI-TRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKSTAAEVQQVVK 93
Cdd:cd12749    7 IPYNITKKDVLQFLEGIGLDENSVQVlVDNNGQGLGQALVQFKSEDDARKAERLHRKKLNGRDAFLHLVTLEEMKEIEK 85
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
11-79 2.84e-05

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 41.86  E-value: 2.84e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKLTDKI---LFITRTDGRPT-GDAFVQFETEEDAQQGLLKHRQVIGQRYIE 79
Cdd:cd12298    3 IRVRNLDFELDEEALRGIFEKFGEIESInipKKQKNRKGRHNnGFAFVTFEDADSAESALQLNGTLLDNRKIS 75
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
6-64 2.97e-05

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 41.83  E-value: 2.97e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 922582352   6 ANAIIVRmrGLPYDCTDAQIRTFFEPL-KLTD-KIlfITRTDGRPTGDAFVQFETEEDAQQ 64
Cdd:cd12412    2 PNRIFVG--GIDWDTTEEELREFFSKFgKVKDvKI--IKDRAGVSKGYGFVTFETQEDAEK 58
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
14-80 4.68e-05

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 41.23  E-value: 4.68e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 922582352  14 RGLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIEL 80
Cdd:cd12450    5 GNLSWSATQDDLENFFSDCgEVVDVRIAMDRDDGRSKGFGHVEFASAESAQKALEKSGQDLGGREIRL 72
RRM2_RMB19 cd12502
RNA recognition motif 2 (RRM2) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
119-197 5.03e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein 19 (RBM19) and similar proteins; This subfamily corresponds to the RRM2 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is also essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409925 [Multi-domain]  Cd Length: 72  Bit Score: 40.86  E-value: 5.03e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 922582352 119 VRLRGLPYEATVQHIVTFLgdfaTMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMsvgkKKRYIEVF 197
Cdd:cd12502    3 VKLRGAPFNVKEKQIREFF----SPLKPVAIRIVKNAHGNKTGYVFVDFKSEEDVEK-ALKRNKDYM----GGRYIEVF 72
RRM1_Fusilli cd12738
RNA recognition motif 1 (RRM1) found in Drosophila RNA-binding protein Fusilli and similar ...
119-204 5.17e-05

RNA recognition motif 1 (RRM1) found in Drosophila RNA-binding protein Fusilli and similar proteins; This subgroup corresponds to the RRM1 of RNA-binding protein Fusilli which is encoded by Drosophila fusilli (fus) gene. Loss of Fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. Fusilli contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 241182 [Multi-domain]  Cd Length: 80  Bit Score: 41.05  E-value: 5.17e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFAtmVKFQGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMSvgkkKRYIEVFQ 198
Cdd:cd12738    2 VRARGLPWQSSDQDIAKFFRGLN--IAKGGVALCLNPQGRRNGEALVRFTCTEHRDL-ALKRHKHHIG----QRYIEVYK 74

                 ....*.
gi 922582352 199 ASAEEL 204
Cdd:cd12738   75 ATGEDF 80
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
14-64 5.95e-05

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 41.24  E-value: 5.95e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 922582352  14 RGLPYDCTDAQIRTFFEP------LKL-TDKilfitRTdGRPTGDAFVQFETEEDAQQ 64
Cdd:COG0724    7 GNLPYSVTEEDLRELFSEygevtsVKLiTDR-----ET-GRSRGFGFVEMPDDEEAQA 58
RRM_ARP_like cd12452
RNA recognition motif (RRM) found in yeast asparagine-rich protein (ARP) and similar proteins; ...
10-84 6.32e-05

RNA recognition motif (RRM) found in yeast asparagine-rich protein (ARP) and similar proteins; This subfamily corresponds to the RRM of ARP, also termed NRP1, encoded by Saccharomyces cerevisiae YDL167C. Although its exact biological function remains unclear, ARP contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), two Ran-binding protein zinc fingers (zf-RanBP), and an asparagine-rich region. It may possess RNA-binding and zinc ion binding activities. Additional research had indicated that ARP may function as a factor involved in the stress response.


Pssm-ID: 409886 [Multi-domain]  Cd Length: 83  Bit Score: 40.96  E-value: 6.32e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLTDKILFITRT--DGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKST 84
Cdd:cd12452    2 ILYMNGLPHDTTQSELESWFTQHGVRPVAFWTLKTpeQIKPSGSGFAVFQSHEEAAESLALNGRALGDRAIEVQPSS 78
RRM2_DAZAP1 cd12327
RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) ...
15-83 7.61e-05

RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins; This subfamily corresponds to the RRM2 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated is predominantly nuclear and the nonacetylated form is in cytoplasm. DAZAP1 also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain.


Pssm-ID: 409765 [Multi-domain]  Cd Length: 80  Bit Score: 40.56  E-value: 7.61e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352  15 GLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIELFKS 83
Cdd:cd12327    9 GIPHNCGETELRDYFKRYgVVTEVVMMYDAEKQRSRGFGFITFEDEQSVDQAVNMHFHDIMGKKVEVKRA 78
RRM5_RBM12B cd12750
RNA recognition motif 5 (RRM5) found in RNA-binding protein 12B (RBM12B) and similar proteins; ...
119-191 1.12e-04

RNA recognition motif 5 (RRM5) found in RNA-binding protein 12B (RBM12B) and similar proteins; This subgroup corresponds to the RRM5 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear.


Pssm-ID: 410144 [Multi-domain]  Cd Length: 77  Bit Score: 40.18  E-value: 1.12e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 922582352 119 VRLRGLPYEATVQHIVTFLgdFATMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASACAAGVhnNFMSVGKKK 191
Cdd:cd12750    3 VKLFNLPFKATVNEILDFF--YGYRVIPDSVSIQYNEQGLPTGDAIIAMETYEEAMAAVQDL--NDRPIGPRK 71
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
13-63 1.28e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 40.02  E-value: 1.28e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 922582352  13 MRGLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQ 63
Cdd:cd12316    4 VRNLPFTATEDELRELFEAFgKISEVHIPLDKQTKRSKGFAFVLFVIPEDAV 55
RRM3_hnRNPH3 cd12735
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) ...
119-200 1.36e-04

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) and similar proteins; This subgroup corresponds to the RRM3 of hnRNP H3 (also termed hnRNP 2H9), a nuclear RNA binding protein that belongs to the hnRNP H protein family that also includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), and hnRNP F. This family is involved in mRNA processing and exhibit extensive sequence homology. Currently, little is known about the functions of hnRNP H3 except for its role in the splicing arrest induced by heat shock. In addition, the typical hnRNP H proteins contain contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, like other hnRNP H protein family members, hnRNP H3 has an extensive glycine-rich region near the C-terminus, which may allow it to homo- or heterodimerize.


Pssm-ID: 241179 [Multi-domain]  Cd Length: 75  Bit Score: 39.99  E-value: 1.36e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFaTMVKfqgVHMVYNNQGHPSGEAFIQMINEQAASACAAGVHNNFmsvgkKKRYIEVFQ 198
Cdd:cd12735    3 VHMRGLPFRATESDIANFFSPL-NPIR---VHIDIGADGRATGEADVEFATHEDAVAAMSKDKNHM-----QHRYIELFL 73

                 ..
gi 922582352 199 AS 200
Cdd:cd12735   74 NS 75
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
14-63 2.65e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 39.12  E-value: 2.65e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 922582352  14 RGLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQ 63
Cdd:cd12415    6 RNLSFDTTEEDLKEFFSKFgEVKYARIVLDKDTGHSKGTAFVQFKTKESAD 56
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
15-63 2.81e-04

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 39.07  E-value: 2.81e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 922582352  15 GLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQ 63
Cdd:cd21608    6 NLSWDTTEDDLRDLFSEFgEVESAKVITDRETGRSRGFGFVTFSTAEAAE 55
RRM3_GRSF1 cd12733
RNA recognition motif 3 (RRM3) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; ...
119-200 3.59e-04

RNA recognition motif 3 (RRM3) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; This subgroup corresponds to the RRM3 of G-rich sequence factor 1 (GRSF-1), a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for the RNA binding. In addition, GRSF-1 has two auxiliary domains, an acidic alpha-helical domain and an N-terminal alanine-rich region, that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 410132 [Multi-domain]  Cd Length: 75  Bit Score: 38.59  E-value: 3.59e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFATMvkfqGVHMVYNNQGHPSGEAFIQMINEQAASACAAGVHNNFmsvgkKKRYIEVFQ 198
Cdd:cd12733    3 VHMRGLPFQANGQDIINFFAPLKPV----RITMEYGPDGKATGEADVHFASHEDAVAAMAKDRSHM-----QHRYIELFL 73

                 ..
gi 922582352 199 AS 200
Cdd:cd12733   74 NS 75
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
15-63 5.50e-04

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 38.12  E-value: 5.50e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 922582352  15 GLPYDCTDAQIRTFFEPLKLTDKILFIT-RTDGRPTGDAFVQFETEEDAQ 63
Cdd:cd12384    7 GLPYHTTDDSLREYFEQFGEIEEAVVITdRQTGKSRGYGFVTMADREAAE 56
RRM2_RBM12_like cd12511
RNA recognition motif 2 (RRM2) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
119-199 5.73e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM2 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B shows high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409933 [Multi-domain]  Cd Length: 73  Bit Score: 37.92  E-value: 5.73e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIvtflGDFATMVKFQGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMSvgkkKRYIEVFQ 198
Cdd:cd12511    2 LSLHGMPYSAMENDV----RDFFHGLRVDGVHLLKDHVGRNNGNALVKFASPQDASE-GLKCHRMLMG----QRFVEVSP 72

                 .
gi 922582352 199 A 199
Cdd:cd12511   73 A 73
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
9-70 8.01e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 37.68  E-value: 8.01e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 922582352   9 IIVRmrGLPYDCTDAQIRTFFEPL-KLTDKILFITRtDGRPTGDAFVQFETEEDAQQGlLKHR 70
Cdd:cd12564    3 LIVK--NLPSSITEDRLRKLFSAFgTITDVQLKYTK-DGKFRRFGFVGFKSEEEAQKA-LKHF 61
RRM_YRA1_MLO3 cd12267
RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA ...
9-80 9.74e-04

RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA export protein mlo3 and similar proteins; This subfamily corresponds to the RRM of Yra1p and mlo3. Yra1p is an essential nuclear RNA-binding protein encoded by Saccharomyces cerevisiae YRA1 gene. It belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p possesses potent RNA annealing activity and interacts with a number of proteins involved in nuclear transport and RNA processing. It binds to the mRNA export factor Mex67p/TAP and couples transcription to export in yeast. Yra1p is associated with Pse1p and Kap123p, two members of the beta-importin family, further mediating transport of Yra1p into the nucleus. In addition, the co-transcriptional loading of Yra1p is required for autoregulation. Yra1p consists of two highly conserved N- and C-terminal boxes and a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This subfamily includes RNA-annealing protein mlo3, also termed mRNA export protein mlo3, which has been identified in fission yeast as a protein that causes defects in chromosome segregation when overexpressed. It shows high sequence similarity with Yra1p.


Pssm-ID: 409711 [Multi-domain]  Cd Length: 78  Bit Score: 37.40  E-value: 9.74e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 922582352   9 IIVRmrGLPYDCTDAQIRTFF-EPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKH--RQVIGQRYIEL 80
Cdd:cd12267    3 VIVS--NLPKDVTEAQIREYFvSQIGPIKRVLLSYNEGGKSTGIANITFKRAGDATKAYDKFngRLDDGNRKMKV 75
RRM3_NCL cd12405
RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to ...
16-80 1.14e-03

RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409839 [Multi-domain]  Cd Length: 72  Bit Score: 37.16  E-value: 1.14e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 922582352  16 LPYDCTDAQIRTFFEplKLTDkiLFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQV-IGQRYIEL 80
Cdd:cd12405    9 LSYSATEESLQSVFE--KATS--IRIPQNNGRPKGYAFVEFESVEDAKEALESCNNTeIEGRSIRL 70
RRM3_hnRNPH_hnRNPH2_hnRNPF cd12734
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H , ...
118-200 1.15e-03

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H , hnRNP H2, hnRNP F and similar proteins; This subgroup corresponds to the RRM3 of hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F, which represent a group of nuclear RNA binding proteins that play important roles in the regulation of alternative splicing decisions. hnRNP H and hnRNP F are two closely related proteins, both of which bind to the RNA sequence DGGGD. They are present in a complex with the tissue-specific splicing factor Fox2, and regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts. The presence of Fox 2 can allows hnRNP H and hnRNP F to better compete with the SR protein ASF/SF2 for binding to FGFR2 exon IIIc. Thus, hnRNP H and hnRNP F can function as potent silencers of FGFR2 exon IIIc inclusion through an interaction with the exonic GGG motifs. Furthermore, hnRNP H and hnRNP H2 are almost identical; bothe have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize.


Pssm-ID: 410133 [Multi-domain]  Cd Length: 76  Bit Score: 37.33  E-value: 1.15e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 118 CVRLRGLPYEATVQHIVTFLGDFATMvkfqGVHMVYNNQGHPSGEAFIQMINEQAASACAAGVHNNFmsvgkKKRYIEVF 197
Cdd:cd12734    2 CVHMRGLPYRATENDIYNFFSPLNPV----RVHIEIGPDGRVTGEADVEFATHEDAVAAMSKDKANM-----QHRYVELF 72

                 ...
gi 922582352 198 QAS 200
Cdd:cd12734   73 LNS 75
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
13-67 1.49e-03

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 37.01  E-value: 1.49e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 922582352  13 MRGLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLL 67
Cdd:cd12566    7 LRNLPYSTKEDDLQKLFSKFgEVSEVHVPIDKKTKKSKGFAYVLFLDPEDAVQAYN 62
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
16-66 1.55e-03

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 37.18  E-value: 1.55e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 922582352  16 LPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQQGL 66
Cdd:cd12651   10 LPRTITEDELDTIFGAYgNIVQKNLLRDKLTGRPRGVAFVRYDKREEAQAAI 61
RRM1_PTBP1_hnRNPL_like cd12421
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
10-64 1.74e-03

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM1 of the majority of family members that include polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs. In addition, this family also includes RNA-binding motif protein 20 (RBM20) that is an alternative splicing regulator associated with dilated cardiomyopathy (DCM) and contains only one RRM.


Pssm-ID: 409855 [Multi-domain]  Cd Length: 74  Bit Score: 36.78  E-value: 1.74e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 922582352  10 IVRMRGLPYDCTDAQIRTFFEPLKLTDKILFItrtdgRPTGDAFVQFETEEDAQQ 64
Cdd:cd12421    1 VVHIRNLPPDATEADLVALGLPFGKVTNVLLL-----KGKNQALVEMEDVESASS 50
RRM2_NCL cd12404
RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to ...
14-66 1.90e-03

RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409838 [Multi-domain]  Cd Length: 77  Bit Score: 36.64  E-value: 1.90e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 922582352  14 RGLPYDCTDAQIRTFFEPLKltdKILFITRTDGRPTGDAFVQFETEEDAQQGL 66
Cdd:cd12404    9 KNLPYSTTQDELKEVFEDAV---DIRIPMGRDGRSKGIAYIEFKSEAEAEKAL 58
RRM1_PTBP1_hnRNPL_like cd12421
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
119-176 2.58e-03

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM1 of the majority of family members that include polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs. In addition, this family also includes RNA-binding motif protein 20 (RBM20) that is an alternative splicing regulator associated with dilated cardiomyopathy (DCM) and contains only one RRM.


Pssm-ID: 409855 [Multi-domain]  Cd Length: 74  Bit Score: 36.01  E-value: 2.58e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDFATMVKFqgVHMVYNNQghpsgeAFIQMINEQAASAC 176
Cdd:cd12421    2 VHIRNLPPDATEADLVALGLPFGKVTNV--LLLKGKNQ------ALVEMEDVESASSM 51
RRM2_RBM12B cd12746
RNA recognition motif 2 (RRM2) found in RNA-binding protein 12B (RBM12B) and similar proteins; ...
119-203 2.69e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein 12B (RBM12B) and similar proteins; This subgroup corresponds to the RRM2 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear.


Pssm-ID: 410140 [Multi-domain]  Cd Length: 86  Bit Score: 36.65  E-value: 2.69e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352 119 VRLRGLPYEATVQHIVTFLGDfatmVKFQGVHMVYNNQGHPSGEAFIQMINEQAASAcAAGVHNNFMSvgkkKRYIEVFQ 198
Cdd:cd12746    5 LFLRGMPYSATEDDVRNFFSG----LKVDGVIFLKHPNGRNNGNGLVKFATKEDASE-GLKRHRQYMG----SRFIEVTR 75

                 ....*
gi 922582352 199 ASAEE 203
Cdd:cd12746   76 TTEEQ 80
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
16-72 3.33e-03

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 35.96  E-value: 3.33e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 922582352  16 LPYDCTDAQIRTFF-EPLKLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQV 72
Cdd:cd12399    6 LPYSASEEQLKSLFgQFGAVFDVKLPMDRETKRPRGFGFVELQEEESAEKAIAKLDGT 63
RRM1_hnRNPA_hnRNPD_like cd12325
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and ...
15-79 4.34e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and hnRNP D subfamilies and similar proteins; This subfamily corresponds to the RRM1 in the hnRNP A subfamily which includes hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The hnRNP D subfamily includes hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus, plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this subfamily contain two putative RRMs and a glycine- and tyrosine-rich C-terminus. The family also contains DAZAP1 (Deleted in azoospermia-associated protein 1), RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins. They all harbor two RRMs.


Pssm-ID: 409763 [Multi-domain]  Cd Length: 72  Bit Score: 35.58  E-value: 4.34e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 922582352  15 GLPYDCTDAQIRTFFEPL-KLTDKILFITRTDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYIE 79
Cdd:cd12325    5 GLSWETTEESLREYFSKYgEVVDCVVMKDPATGRSRGFGFVTFKDPSSVDAVLAARPHTLDGRTID 70
RRM1_La cd12291
RNA recognition motif 1 in La autoantigen (La or LARP3) and similar proteins; This subfamily ...
11-63 5.25e-03

RNA recognition motif 1 in La autoantigen (La or LARP3) and similar proteins; This subfamily corresponds to the RRM1 of La autoantigen, also termed Lupus La protein, or La ribonucleoprotein, or Sjoegren syndrome type B antigen (SS-B), a highly abundant nuclear phosphoprotein and well conserved in eukaryotes. It specifically binds the 3'-terminal UUU-OH motif of nascent RNA polymerase III transcripts and protects them from exonucleolytic degradation by 3' exonucleases. In addition, La can directly facilitate the translation and/or metabolism of many UUU-3' OH-lacking cellular and viral mRNAs, through binding internal RNA sequences within the untranslated regions of target mRNAs. La contains an N-terminal La motif (LAM), followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also possesses a short basic motif (SBM) and a nuclear localization signal (NLS) at the C-terminus.


Pssm-ID: 409733 [Multi-domain]  Cd Length: 73  Bit Score: 35.26  E-value: 5.25e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 922582352  11 VRMRGLPYDCTDAQIRTFFEPLKltdKILFI----TRTDGRPTGDAFVQFETEEDAQ 63
Cdd:cd12291    2 VYVKGFPLDATLDDIQEFFEKKG---KVENVrmrrDLDSKEFKGSVFVEFKTEEEAK 55
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
16-64 7.37e-03

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 34.80  E-value: 7.37e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 922582352  16 LPYDCTDAQIRTFFE---PLK----LTDkilfitRTDGRPTGDAFVQFETEEDAQQ 64
Cdd:cd12398    8 IPYDATEEQLKEIFSevgPVVsfrlVTD------RETGKPKGYGFCEFRDAETALS 57
RRM4_RBM12B cd12748
RNA recognition motif 4 (RRM4) found in RNA-binding protein 12B (RBM12B) and similar proteins; ...
118-174 7.80e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein 12B (RBM12B) and similar proteins; This subgroup corresponds to the RRM4 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear.


Pssm-ID: 410142 [Multi-domain]  Cd Length: 76  Bit Score: 35.07  E-value: 7.80e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 922582352 118 CVRLRGLPYEATVQHIVTFLGDFAtmVKFQGVHMVYNNQGHPSGEAFIQMINEQAAS 174
Cdd:cd12748    2 CIYVRNLPFDVTKVEVQDFFEGFA--LAEDDIILLYDDKGVGLGEALVKFKSEEEAM 56
RRM1_RBM34 cd12394
RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
11-78 8.90e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM1 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409828 [Multi-domain]  Cd Length: 91  Bit Score: 35.26  E-value: 8.90e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 922582352  11 VRMRGLPydctdaqirtfFEPLKLTDKILFITR--TDGRPTGDAFVQFETEEDAQQGLLKHRQVIGQRYI 78
Cdd:cd12394   30 VRFRSVA-----------VANPKLPKKVAVIKKkfHPKRDSMNAYVVFKEEESAQKALKLNGTEFEGHHI 88
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
121-176 9.66e-03

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 34.88  E-value: 9.66e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 922582352 121 LRGLPYEATVQHIVTFLGDFATmVKFqgVHMVYN-NQGHPSGEAFIQMINEQAASAC 176
Cdd:cd12415    5 IRNLSFDTTEEDLKEFFSKFGE-VKY--ARIVLDkDTGHSKGTAFVQFKTKESADKC 58
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH