dynamin-1 isoform 4 [Homo sapiens]
dynamin( domain architecture ID 11249456)
dynamin such as human dynamin-1, which is involved in clathrin-mediated endocytosis and other vesicular trafficking processes; contains an N-terminal GTPase domain that binds and hydrolyzes GTP, a middle domain involved in self-assembly and oligomerization, and a pleckstrin homology (PH) domain responsible for interactions with the GTPase effector domain (GED)
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
DYNc | smart00053 | Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the ... |
6-245 | 4.18e-154 | |||||
Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. : Pssm-ID: 197491 Cd Length: 240 Bit Score: 450.87 E-value: 4.18e-154
|
|||||||||
Dynamin_M | pfam01031 | Dynamin central region; This is the stalk region which lies between the GTPase domain, see ... |
215-502 | 1.42e-145 | |||||
Dynamin central region; This is the stalk region which lies between the GTPase domain, see pfam00350, and the pleckstrin homology (PH) domain, see pfam00169. This region dimerizes in a cross-like fashion forming a dynamin dimer in which the two G-domains are oriented in opposite directions. : Pssm-ID: 460033 Cd Length: 287 Bit Score: 430.79 E-value: 1.42e-145
|
|||||||||
PH_dynamin | cd01256 | Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle ... |
520-629 | 2.82e-83 | |||||
Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle formation. It has an N-terminal GTPase domain, followed by a PH domain, a GTPase effector domain and a C-terminal proline arginine rich domain. Dynamin-like proteins, which are found in metazoa, plants and yeast have the same domain architecture as dynamin, but lack the PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 269958 Cd Length: 112 Bit Score: 261.87 E-value: 2.82e-83
|
|||||||||
GED | pfam02212 | Dynamin GTPase effector domain; |
655-745 | 7.79e-34 | |||||
Dynamin GTPase effector domain; : Pssm-ID: 460495 Cd Length: 91 Bit Score: 124.55 E-value: 7.79e-34
|
|||||||||
PHA03247 super family | cl33720 | large tegument protein UL36; Provisional |
747-844 | 1.75e-05 | |||||
large tegument protein UL36; Provisional The actual alignment was detected with superfamily member PHA03247: Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 48.78 E-value: 1.75e-05
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
DYNc | smart00053 | Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the ... |
6-245 | 4.18e-154 | |||||
Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. Pssm-ID: 197491 Cd Length: 240 Bit Score: 450.87 E-value: 4.18e-154
|
|||||||||
DLP_1 | cd08771 | Dynamin_like protein family includes dynamins and Mx proteins; The dynamin family of large ... |
29-294 | 3.84e-148 | |||||
Dynamin_like protein family includes dynamins and Mx proteins; The dynamin family of large mechanochemical GTPases includes the classical dynamins and dynamin-like proteins (DLPs) that are found throughout the Eukarya. These proteins catalyze membrane fission during clathrin-mediated endocytosis. Dynamin consists of five domains; an N-terminal G domain that binds and hydrolyzes GTP, a middle domain (MD) involved in self-assembly and oligomerization, a pleckstrin homology (PH) domain responsible for interactions with the plasma membrane, GED, which is also involved in self-assembly, and a proline arginine rich domain (PRD) that interacts with SH3 domains on accessory proteins. To date, three vertebrate dynamin genes have been identified; dynamin 1, which is brain specific, mediates uptake of synaptic vesicles in presynaptic terminals; dynamin-2 is expressed ubiquitously and similarly participates in membrane fission; mutations in the MD, PH and GED domains of dynamin 2 have been linked to human diseases such as Charcot-Marie-Tooth peripheral neuropathy and rare forms of centronuclear myopathy. Dynamin 3 participates in megakaryocyte progenitor amplification, and is also involved in cytoplasmic enlargement and the formation of the demarcation membrane system. This family also includes interferon-induced Mx proteins that inhibit a wide range of viruses by blocking an early stage of the replication cycle. Dynamin oligomerizes into helical structures around the neck of budding vesicles in a GTP hydrolysis-dependent manner. Pssm-ID: 206738 Cd Length: 278 Bit Score: 437.06 E-value: 3.84e-148
|
|||||||||
Dynamin_M | pfam01031 | Dynamin central region; This is the stalk region which lies between the GTPase domain, see ... |
215-502 | 1.42e-145 | |||||
Dynamin central region; This is the stalk region which lies between the GTPase domain, see pfam00350, and the pleckstrin homology (PH) domain, see pfam00169. This region dimerizes in a cross-like fashion forming a dynamin dimer in which the two G-domains are oriented in opposite directions. Pssm-ID: 460033 Cd Length: 287 Bit Score: 430.79 E-value: 1.42e-145
|
|||||||||
PH_dynamin | cd01256 | Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle ... |
520-629 | 2.82e-83 | |||||
Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle formation. It has an N-terminal GTPase domain, followed by a PH domain, a GTPase effector domain and a C-terminal proline arginine rich domain. Dynamin-like proteins, which are found in metazoa, plants and yeast have the same domain architecture as dynamin, but lack the PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269958 Cd Length: 112 Bit Score: 261.87 E-value: 2.82e-83
|
|||||||||
Dynamin_N | pfam00350 | Dynamin family; |
34-207 | 2.25e-66 | |||||
Dynamin family; Pssm-ID: 459775 [Multi-domain] Cd Length: 168 Bit Score: 218.64 E-value: 2.25e-66
|
|||||||||
GED | pfam02212 | Dynamin GTPase effector domain; |
655-745 | 7.79e-34 | |||||
Dynamin GTPase effector domain; Pssm-ID: 460495 Cd Length: 91 Bit Score: 124.55 E-value: 7.79e-34
|
|||||||||
GED | smart00302 | Dynamin GTPase effector domain; |
654-745 | 1.25e-27 | |||||
Dynamin GTPase effector domain; Pssm-ID: 128597 Cd Length: 92 Bit Score: 106.94 E-value: 1.25e-27
|
|||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
520-623 | 1.27e-11 | |||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 61.81 E-value: 1.27e-11
|
|||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
520-623 | 2.51e-11 | |||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 61.03 E-value: 2.51e-11
|
|||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
747-844 | 1.75e-05 | |||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 48.78 E-value: 1.75e-05
|
|||||||||
Gag_MA | pfam01140 | Matrix protein (MA), p15; The matrix protein, p15, is encoded by the gag gene. MA is involved ... |
773-847 | 4.09e-04 | |||||
Matrix protein (MA), p15; The matrix protein, p15, is encoded by the gag gene. MA is involved in pathogenicity. Pssm-ID: 426076 [Multi-domain] Cd Length: 126 Bit Score: 41.21 E-value: 4.09e-04
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
DYNc | smart00053 | Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the ... |
6-245 | 4.18e-154 | |||||
Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. Pssm-ID: 197491 Cd Length: 240 Bit Score: 450.87 E-value: 4.18e-154
|
|||||||||
DLP_1 | cd08771 | Dynamin_like protein family includes dynamins and Mx proteins; The dynamin family of large ... |
29-294 | 3.84e-148 | |||||
Dynamin_like protein family includes dynamins and Mx proteins; The dynamin family of large mechanochemical GTPases includes the classical dynamins and dynamin-like proteins (DLPs) that are found throughout the Eukarya. These proteins catalyze membrane fission during clathrin-mediated endocytosis. Dynamin consists of five domains; an N-terminal G domain that binds and hydrolyzes GTP, a middle domain (MD) involved in self-assembly and oligomerization, a pleckstrin homology (PH) domain responsible for interactions with the plasma membrane, GED, which is also involved in self-assembly, and a proline arginine rich domain (PRD) that interacts with SH3 domains on accessory proteins. To date, three vertebrate dynamin genes have been identified; dynamin 1, which is brain specific, mediates uptake of synaptic vesicles in presynaptic terminals; dynamin-2 is expressed ubiquitously and similarly participates in membrane fission; mutations in the MD, PH and GED domains of dynamin 2 have been linked to human diseases such as Charcot-Marie-Tooth peripheral neuropathy and rare forms of centronuclear myopathy. Dynamin 3 participates in megakaryocyte progenitor amplification, and is also involved in cytoplasmic enlargement and the formation of the demarcation membrane system. This family also includes interferon-induced Mx proteins that inhibit a wide range of viruses by blocking an early stage of the replication cycle. Dynamin oligomerizes into helical structures around the neck of budding vesicles in a GTP hydrolysis-dependent manner. Pssm-ID: 206738 Cd Length: 278 Bit Score: 437.06 E-value: 3.84e-148
|
|||||||||
Dynamin_M | pfam01031 | Dynamin central region; This is the stalk region which lies between the GTPase domain, see ... |
215-502 | 1.42e-145 | |||||
Dynamin central region; This is the stalk region which lies between the GTPase domain, see pfam00350, and the pleckstrin homology (PH) domain, see pfam00169. This region dimerizes in a cross-like fashion forming a dynamin dimer in which the two G-domains are oriented in opposite directions. Pssm-ID: 460033 Cd Length: 287 Bit Score: 430.79 E-value: 1.42e-145
|
|||||||||
PH_dynamin | cd01256 | Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle ... |
520-629 | 2.82e-83 | |||||
Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle formation. It has an N-terminal GTPase domain, followed by a PH domain, a GTPase effector domain and a C-terminal proline arginine rich domain. Dynamin-like proteins, which are found in metazoa, plants and yeast have the same domain architecture as dynamin, but lack the PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269958 Cd Length: 112 Bit Score: 261.87 E-value: 2.82e-83
|
|||||||||
Dynamin_N | pfam00350 | Dynamin family; |
34-207 | 2.25e-66 | |||||
Dynamin family; Pssm-ID: 459775 [Multi-domain] Cd Length: 168 Bit Score: 218.64 E-value: 2.25e-66
|
|||||||||
GED | pfam02212 | Dynamin GTPase effector domain; |
655-745 | 7.79e-34 | |||||
Dynamin GTPase effector domain; Pssm-ID: 460495 Cd Length: 91 Bit Score: 124.55 E-value: 7.79e-34
|
|||||||||
GED | smart00302 | Dynamin GTPase effector domain; |
654-745 | 1.25e-27 | |||||
Dynamin GTPase effector domain; Pssm-ID: 128597 Cd Length: 92 Bit Score: 106.94 E-value: 1.25e-27
|
|||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
520-623 | 1.27e-11 | |||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 61.81 E-value: 1.27e-11
|
|||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
520-623 | 2.51e-11 | |||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 61.03 E-value: 2.51e-11
|
|||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
522-616 | 1.09e-09 | |||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 56.01 E-value: 1.09e-09
|
|||||||||
PH_GRP1-like | cd01252 | General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ... |
520-616 | 4.52e-06 | |||||
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269954 Cd Length: 119 Bit Score: 46.54 E-value: 4.52e-06
|
|||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
747-844 | 1.75e-05 | |||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 48.78 E-value: 1.75e-05
|
|||||||||
PHA03378 | PHA03378 | EBNA-3B; Provisional |
752-841 | 2.29e-05 | |||||
EBNA-3B; Provisional Pssm-ID: 223065 [Multi-domain] Cd Length: 991 Bit Score: 48.14 E-value: 2.29e-05
|
|||||||||
PH1_PH_fungal | cd13298 | Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ... |
539-616 | 3.00e-05 | |||||
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270110 Cd Length: 106 Bit Score: 43.77 E-value: 3.00e-05
|
|||||||||
PHA03378 | PHA03378 | EBNA-3B; Provisional |
751-850 | 4.23e-05 | |||||
EBNA-3B; Provisional Pssm-ID: 223065 [Multi-domain] Cd Length: 991 Bit Score: 47.37 E-value: 4.23e-05
|
|||||||||
PH_RhoGAP2 | cd13378 | Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ... |
520-622 | 4.76e-05 | |||||
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241529 Cd Length: 116 Bit Score: 43.40 E-value: 4.76e-05
|
|||||||||
PRK07764 | PRK07764 | DNA polymerase III subunits gamma and tau; Validated |
755-850 | 5.67e-05 | |||||
DNA polymerase III subunits gamma and tau; Validated Pssm-ID: 236090 [Multi-domain] Cd Length: 824 Bit Score: 46.90 E-value: 5.67e-05
|
|||||||||
PHA03378 | PHA03378 | EBNA-3B; Provisional |
763-846 | 6.31e-05 | |||||
EBNA-3B; Provisional Pssm-ID: 223065 [Multi-domain] Cd Length: 991 Bit Score: 46.98 E-value: 6.31e-05
|
|||||||||
PHA03378 | PHA03378 | EBNA-3B; Provisional |
748-845 | 1.44e-04 | |||||
EBNA-3B; Provisional Pssm-ID: 223065 [Multi-domain] Cd Length: 991 Bit Score: 45.83 E-value: 1.44e-04
|
|||||||||
PH_PEPP1_2_3 | cd13248 | Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ... |
520-616 | 2.25e-04 | |||||
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270068 Cd Length: 104 Bit Score: 41.10 E-value: 2.25e-04
|
|||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
751-850 | 2.74e-04 | |||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 44.93 E-value: 2.74e-04
|
|||||||||
Gag_MA | pfam01140 | Matrix protein (MA), p15; The matrix protein, p15, is encoded by the gag gene. MA is involved ... |
773-847 | 4.09e-04 | |||||
Matrix protein (MA), p15; The matrix protein, p15, is encoded by the gag gene. MA is involved in pathogenicity. Pssm-ID: 426076 [Multi-domain] Cd Length: 126 Bit Score: 41.21 E-value: 4.09e-04
|
|||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
728-850 | 5.26e-04 | |||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 44.16 E-value: 5.26e-04
|
|||||||||
MISS | pfam15822 | MAPK-interacting and spindle-stabilising protein-like; MISS is a family of eukaryotic ... |
747-844 | 5.32e-04 | |||||
MAPK-interacting and spindle-stabilising protein-like; MISS is a family of eukaryotic MAPK-interacting and spindle-stabilising protein-like proteins. MISS is rich in prolines and has four potential MAPK-phosphorylation sites, a MAPK-docking site, a PEST sequence (PEST motif) and a bipartite nuclear localization signal. The endogenous protein accumulates during mouse meiotic maturation and is found as discrete dots on the MII spindle. MISS is the first example of a physiological MAPK-substrate that is stabilized in MII that specifically regulates MII spindle integrity during the CSF arrest. Pssm-ID: 318115 [Multi-domain] Cd Length: 238 Bit Score: 42.67 E-value: 5.32e-04
|
|||||||||
PH_SWAP-70 | cd13273 | Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ... |
516-562 | 8.09e-04 | |||||
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270092 Cd Length: 110 Bit Score: 39.97 E-value: 8.09e-04
|
|||||||||
MISS | pfam15822 | MAPK-interacting and spindle-stabilising protein-like; MISS is a family of eukaryotic ... |
775-844 | 8.99e-04 | |||||
MAPK-interacting and spindle-stabilising protein-like; MISS is a family of eukaryotic MAPK-interacting and spindle-stabilising protein-like proteins. MISS is rich in prolines and has four potential MAPK-phosphorylation sites, a MAPK-docking site, a PEST sequence (PEST motif) and a bipartite nuclear localization signal. The endogenous protein accumulates during mouse meiotic maturation and is found as discrete dots on the MII spindle. MISS is the first example of a physiological MAPK-substrate that is stabilized in MII that specifically regulates MII spindle integrity during the CSF arrest. Pssm-ID: 318115 [Multi-domain] Cd Length: 238 Bit Score: 41.90 E-value: 8.99e-04
|
|||||||||
DUF4813 | pfam16072 | Domain of unknown function (DUF4813); This family of proteins is functionally uncharacterized. ... |
747-847 | 1.98e-03 | |||||
Domain of unknown function (DUF4813); This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 345 and 672 amino acids in length. Pssm-ID: 435117 [Multi-domain] Cd Length: 288 Bit Score: 41.28 E-value: 1.98e-03
|
|||||||||
PRK14951 | PRK14951 | DNA polymerase III subunits gamma and tau; Provisional |
751-850 | 3.96e-03 | |||||
DNA polymerase III subunits gamma and tau; Provisional Pssm-ID: 237865 [Multi-domain] Cd Length: 618 Bit Score: 40.85 E-value: 3.96e-03
|
|||||||||
PH_anillin | cd01263 | Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin ... |
541-616 | 4.18e-03 | |||||
Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin homology domain-containing family K) is an actin binding protein involved in cytokinesis. It interacts with GTP-bound Rho proteins and results in the inhibition of their GTPase activity. Dysregulation of the Rho signal transduction pathway has been implicated in many forms of cancer. Anillin proteins have a N-terminal HRI domain/ACC (anti-parallel coiled-coil) finger domain or Rho-binding domain binds small GTPases from the Rho family. The C-terminal PH domain helps target anillin to ectopic septin containing foci. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269964 Cd Length: 121 Bit Score: 38.03 E-value: 4.18e-03
|
|||||||||
MISS | pfam15822 | MAPK-interacting and spindle-stabilising protein-like; MISS is a family of eukaryotic ... |
746-848 | 4.24e-03 | |||||
MAPK-interacting and spindle-stabilising protein-like; MISS is a family of eukaryotic MAPK-interacting and spindle-stabilising protein-like proteins. MISS is rich in prolines and has four potential MAPK-phosphorylation sites, a MAPK-docking site, a PEST sequence (PEST motif) and a bipartite nuclear localization signal. The endogenous protein accumulates during mouse meiotic maturation and is found as discrete dots on the MII spindle. MISS is the first example of a physiological MAPK-substrate that is stabilized in MII that specifically regulates MII spindle integrity during the CSF arrest. Pssm-ID: 318115 [Multi-domain] Cd Length: 238 Bit Score: 39.97 E-value: 4.24e-03
|
|||||||||
PRK07764 | PRK07764 | DNA polymerase III subunits gamma and tau; Validated |
752-850 | 5.18e-03 | |||||
DNA polymerase III subunits gamma and tau; Validated Pssm-ID: 236090 [Multi-domain] Cd Length: 824 Bit Score: 40.35 E-value: 5.18e-03
|
|||||||||
PRK07764 | PRK07764 | DNA polymerase III subunits gamma and tau; Validated |
752-844 | 6.91e-03 | |||||
DNA polymerase III subunits gamma and tau; Validated Pssm-ID: 236090 [Multi-domain] Cd Length: 824 Bit Score: 39.97 E-value: 6.91e-03
|
|||||||||
FAP | pfam07174 | Fibronectin-attachment protein (FAP); This family contains bacterial fibronectin-attachment ... |
715-842 | 9.39e-03 | |||||
Fibronectin-attachment protein (FAP); This family contains bacterial fibronectin-attachment proteins (FAP). Family members are rich in alanine and proline, are approximately 300 long, and seem to be restricted to mycobacteria. These proteins contain a fibronectin-binding motif that allows mycobacteria to bind to fibronectin in the extracellular matrix. Pssm-ID: 429334 Cd Length: 301 Bit Score: 39.14 E-value: 9.39e-03
|
|||||||||
PRK07764 | PRK07764 | DNA polymerase III subunits gamma and tau; Validated |
752-850 | 9.55e-03 | |||||
DNA polymerase III subunits gamma and tau; Validated Pssm-ID: 236090 [Multi-domain] Cd Length: 824 Bit Score: 39.58 E-value: 9.55e-03
|
|||||||||
Blast search parameters | ||||
|