ganglioside-induced differentiation-associated protein 1-like 1 isoform 4 [Homo sapiens]
ganglioside-induced differentiation-associated family protein( domain architecture ID 10122725)
ganglioside-induced differentiation-associated protein (GDAP) such as GDAP1 and GDAP1-like 1 (GDAP1L1), which are glutathione S-transferase (GST) family proteins that do not possess GSH-conjugating activity using standard substrates
List of domain hits
Name | Accession | Description | Interval | E-value | |||
GST_C_family super family | cl02776 | C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione ... |
143-253 | 3.46e-78 | |||
C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione S-transferase (GST) family, C-terminal alpha helical domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxins, stringent starvation protein A, and aminoacyl-tRNA synthetases. The actual alignment was detected with superfamily member cd10302: Pssm-ID: 470672 Cd Length: 111 Bit Score: 233.36 E-value: 3.46e-78
|
|||||||
GST_N_GDAP1 | cd03052 | GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; ... |
47-119 | 8.71e-47 | |||
GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal TRX-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. : Pssm-ID: 239350 [Multi-domain] Cd Length: 73 Bit Score: 151.93 E-value: 8.71e-47
|
|||||||
Name | Accession | Description | Interval | E-value | ||||
GST_C_GDAP1L1 | cd10302 | C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein ... |
143-253 | 3.46e-78 | ||||
C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1-like 1; Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1-like 1 (GDAP1L1) subfamily; GDAP1L1 is a paralogue of GDAP1 with about 56% sequence identity and 70% similarity. It's function is unknown. Like GDAP1, it does not exhibit GST activity using standard substrates. GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. Pssm-ID: 198335 Cd Length: 111 Bit Score: 233.36 E-value: 3.46e-78
|
||||||||
GST_N_GDAP1 | cd03052 | GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; ... |
47-119 | 8.71e-47 | ||||
GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal TRX-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. Pssm-ID: 239350 [Multi-domain] Cd Length: 73 Bit Score: 151.93 E-value: 8.71e-47
|
||||||||
GstA | COG0625 | Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; |
47-259 | 1.25e-28 | ||||
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440390 [Multi-domain] Cd Length: 205 Bit Score: 109.22 E-value: 1.25e-28
|
||||||||
GST_N_2 | pfam13409 | Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. |
58-121 | 5.33e-09 | ||||
Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. Pssm-ID: 433184 [Multi-domain] Cd Length: 68 Bit Score: 51.86 E-value: 5.33e-09
|
||||||||
PRK15113 | PRK15113 | glutathione transferase; |
47-122 | 7.95e-05 | ||||
glutathione transferase; Pssm-ID: 185068 [Multi-domain] Cd Length: 214 Bit Score: 43.02 E-value: 7.95e-05
|
||||||||
GST_C | pfam00043 | Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety ... |
167-250 | 1.07e-04 | ||||
Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes. Pssm-ID: 459647 [Multi-domain] Cd Length: 93 Bit Score: 40.35 E-value: 1.07e-04
|
||||||||
PLN02395 | PLN02395 | glutathione S-transferase |
57-257 | 1.37e-04 | ||||
glutathione S-transferase Pssm-ID: 166036 [Multi-domain] Cd Length: 215 Bit Score: 42.16 E-value: 1.37e-04
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
GST_C_GDAP1L1 | cd10302 | C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein ... |
143-253 | 3.46e-78 | ||||
C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1-like 1; Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1-like 1 (GDAP1L1) subfamily; GDAP1L1 is a paralogue of GDAP1 with about 56% sequence identity and 70% similarity. It's function is unknown. Like GDAP1, it does not exhibit GST activity using standard substrates. GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. Pssm-ID: 198335 Cd Length: 111 Bit Score: 233.36 E-value: 3.46e-78
|
||||||||
GST_C_GDAP1_like | cd03204 | C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein ... |
143-253 | 2.33e-60 | ||||
C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1-like proteins; Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1 (GDAP1)-like subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. Pssm-ID: 198313 Cd Length: 111 Bit Score: 188.04 E-value: 2.33e-60
|
||||||||
GST_N_GDAP1 | cd03052 | GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; ... |
47-119 | 8.71e-47 | ||||
GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal TRX-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. Pssm-ID: 239350 [Multi-domain] Cd Length: 73 Bit Score: 151.93 E-value: 8.71e-47
|
||||||||
GST_C_GDAP1 | cd10303 | C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1; ... |
143-253 | 2.48e-43 | ||||
C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1; Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. Pssm-ID: 198336 [Multi-domain] Cd Length: 111 Bit Score: 144.38 E-value: 2.48e-43
|
||||||||
GstA | COG0625 | Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; |
47-259 | 1.25e-28 | ||||
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440390 [Multi-domain] Cd Length: 205 Bit Score: 109.22 E-value: 1.25e-28
|
||||||||
GST_N_family | cd00570 | Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic ... |
47-119 | 2.33e-12 | ||||
Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK subfamily, a member of the DsbA family). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxin 2 and stringent starvation protein A. Pssm-ID: 238319 [Multi-domain] Cd Length: 71 Bit Score: 61.43 E-value: 2.33e-12
|
||||||||
GST_N_2 | pfam13409 | Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. |
58-121 | 5.33e-09 | ||||
Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. Pssm-ID: 433184 [Multi-domain] Cd Length: 68 Bit Score: 51.86 E-value: 5.33e-09
|
||||||||
GST_N_3 | pfam13417 | Glutathione S-transferase, N-terminal domain; |
49-122 | 9.18e-08 | ||||
Glutathione S-transferase, N-terminal domain; Pssm-ID: 433190 [Multi-domain] Cd Length: 75 Bit Score: 48.76 E-value: 9.18e-08
|
||||||||
GST_N_GTT2_like | cd03051 | GST_N family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly ... |
49-119 | 1.48e-07 | ||||
GST_N family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT2. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT2, a homodimer, exhibits GST activity with standard substrates. Strains with deleted GTT2 genes are viable but exhibit increased sensitivity to heat shock. Pssm-ID: 239349 [Multi-domain] Cd Length: 74 Bit Score: 48.06 E-value: 1.48e-07
|
||||||||
GST_N | pfam02798 | Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to ... |
45-120 | 1.90e-07 | ||||
Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to a variety of targets. Also included in the alignment, but not GSTs: S-crystallins from squid (similarity to GST previously noted); eukaryotic elongation factors 1-gamma (not known to have GST activity and similarity not previously recognized); HSP26 family of stress-related proteins including auxin-regulated proteins in plants and stringent starvation proteins in E. coli (not known to have GST activity and similarity not previously recognized). The glutathione molecule binds in a cleft between the N- and C-terminal domains - the catalytically important residues are proposed to reside in the N-terminal domain. Pssm-ID: 460698 [Multi-domain] Cd Length: 76 Bit Score: 47.69 E-value: 1.90e-07
|
||||||||
GST_C_family | cd00299 | C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione ... |
175-247 | 7.04e-07 | ||||
C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione S-transferase (GST) family, C-terminal alpha helical domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxins, stringent starvation protein A, and aminoacyl-tRNA synthetases. Pssm-ID: 198286 [Multi-domain] Cd Length: 100 Bit Score: 46.72 E-value: 7.04e-07
|
||||||||
GST_N_Zeta | cd03042 | GST_N family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular ... |
47-119 | 2.52e-06 | ||||
GST_N family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Zeta GSTs, also known as maleylacetoacetate (MAA) isomerases, catalyze the isomerization of MAA to fumarylacetoacetate, the penultimate step in tyrosine/phenylalanine catabolism, using GSH as a cofactor. They show little GSH-conjugating activity towards traditional GST substrates but display modest GSH peroxidase activity. They are also implicated in the detoxification of the carcinogen dichloroacetic acid by catalyzing its dechlorination to glyoxylic acid. Pssm-ID: 239340 [Multi-domain] Cd Length: 73 Bit Score: 44.48 E-value: 2.52e-06
|
||||||||
GST_N_4 | cd03056 | GST_N family, unknown subfamily 4; composed of uncharacterized bacterial proteins with ... |
49-118 | 5.85e-06 | ||||
GST_N family, unknown subfamily 4; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Pssm-ID: 239354 [Multi-domain] Cd Length: 73 Bit Score: 43.33 E-value: 5.85e-06
|
||||||||
GST_C_Beta | cd03188 | C-terminal, alpha helical domain of Class Beta Glutathione S-transferases; Glutathione ... |
180-257 | 2.51e-05 | ||||
C-terminal, alpha helical domain of Class Beta Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Unlike mammalian GSTs which detoxify a broad range of compounds, the bacterial class Beta GSTs exhibit GSH conjugating activity with a narrow range of substrates. In addition to GSH conjugation, they are involved in the protection against oxidative stress and are able to bind antibiotics and reduce the antimicrobial activity of beta-lactam drugs, contributing to antibiotic resistance. The structure of the Proteus mirabilis enzyme reveals that the cysteine in the active site forms a covalent bond with GSH. One member of this subfamily is a GST from Burkholderia xenovorans LB400 that is encoded by the bphK gene and is part of the biphenyl catabolic pathway. Pssm-ID: 198297 [Multi-domain] Cd Length: 113 Bit Score: 42.62 E-value: 2.51e-05
|
||||||||
GST_N_Phi | cd03053 | GST_N family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related ... |
47-105 | 5.92e-05 | ||||
GST_N family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related fungal and bacterial proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Phi GST subfamily has experience extensive gene duplication. The Arabidopsis and Oryza genomes contain 13 and 16 Phi GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Tau GSTs, showing class specificity in substrate preference. Phi enzymes are highly reactive toward chloroacetanilide and thiocarbamate herbicides. Some Phi GSTs have other functions including transport of flavonoid pigments to the vacuole, shoot regeneration and GSH peroxidase activity. Pssm-ID: 239351 [Multi-domain] Cd Length: 76 Bit Score: 40.71 E-value: 5.92e-05
|
||||||||
GST_N_SspA | cd03059 | GST_N family, Stringent starvation protein A (SspA) subfamily; SspA is a RNA polymerase (RNAP) ... |
47-122 | 6.89e-05 | ||||
GST_N family, Stringent starvation protein A (SspA) subfamily; SspA is a RNA polymerase (RNAP)-associated protein required for the lytic development of phage P1 and for stationary phase-induced acid tolerance of E. coli. It is implicated in survival during nutrient starvation. SspA adopts the GST fold with an N-terminal TRX-fold domain and a C-terminal alpha helical domain, but it does not bind glutathione (GSH) and lacks GST activity. SspA is highly conserved among gram-negative bacteria. Related proteins found in Neisseria (called RegF), Francisella and Vibrio regulate the expression of virulence factors necessary for pathogenesis. Pssm-ID: 239357 [Multi-domain] Cd Length: 73 Bit Score: 40.39 E-value: 6.89e-05
|
||||||||
PRK15113 | PRK15113 | glutathione transferase; |
47-122 | 7.95e-05 | ||||
glutathione transferase; Pssm-ID: 185068 [Multi-domain] Cd Length: 214 Bit Score: 43.02 E-value: 7.95e-05
|
||||||||
GST_C | pfam00043 | Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety ... |
167-250 | 1.07e-04 | ||||
Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes. Pssm-ID: 459647 [Multi-domain] Cd Length: 93 Bit Score: 40.35 E-value: 1.07e-04
|
||||||||
GST_N_Delta_Epsilon | cd03045 | GST_N family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved ... |
47-117 | 1.36e-04 | ||||
GST_N family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Delta and Epsilon subfamily is made up primarily of insect GSTs, which play major roles in insecticide resistance by facilitating reductive dehydrochlorination of insecticides or conjugating them with GSH to produce water-soluble metabolites that are easily excreted. They are also implicated in protection against cellular damage by oxidative stress. Pssm-ID: 239343 [Multi-domain] Cd Length: 74 Bit Score: 39.51 E-value: 1.36e-04
|
||||||||
PLN02395 | PLN02395 | glutathione S-transferase |
57-257 | 1.37e-04 | ||||
glutathione S-transferase Pssm-ID: 166036 [Multi-domain] Cd Length: 215 Bit Score: 42.16 E-value: 1.37e-04
|
||||||||
PLN02817 | PLN02817 | glutathione dehydrogenase (ascorbate) |
58-258 | 1.75e-04 | ||||
glutathione dehydrogenase (ascorbate) Pssm-ID: 166458 [Multi-domain] Cd Length: 265 Bit Score: 42.29 E-value: 1.75e-04
|
||||||||
GST_C_GTT1_like | cd03189 | C-terminal, alpha helical domain of GTT1-like Glutathione S-transferases; Glutathione ... |
174-250 | 3.30e-04 | ||||
C-terminal, alpha helical domain of GTT1-like Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT1, and the Schizosaccharomyces pombe GST-III. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. GTT1, a homodimer, exhibits GST activity with standard substrates and associates with the endoplasmic reticulum. Its expression is induced after diauxic shift and remains high throughout the stationary phase. S. pombe GST-III is implicated in the detoxification of various metals. Pssm-ID: 198298 [Multi-domain] Cd Length: 123 Bit Score: 39.60 E-value: 3.30e-04
|
||||||||
GST_C_2 | cd03180 | C-terminal, alpha helical domain of an unknown subfamily 2 of Glutathione S-transferases; ... |
202-253 | 4.23e-04 | ||||
C-terminal, alpha helical domain of an unknown subfamily 2 of Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 2; composed of uncharacterized bacterial proteins, with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Pssm-ID: 198289 [Multi-domain] Cd Length: 110 Bit Score: 39.18 E-value: 4.23e-04
|
||||||||
GST_C_8 | cd03207 | C-terminal, alpha helical domain of an unknown subfamily 8 of Glutathione S-transferases; ... |
174-252 | 7.87e-04 | ||||
C-terminal, alpha helical domain of an unknown subfamily 8 of Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 8; composed of Agrobacterium tumefaciens GST and other uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The three-dimensional structure of Agrobacterium tumefaciens GST has been determined but there is no information on its functional characterization. Pssm-ID: 198316 [Multi-domain] Cd Length: 101 Bit Score: 38.05 E-value: 7.87e-04
|
||||||||
GST_C_2 | pfam13410 | Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043. |
169-246 | 9.83e-03 | ||||
Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043. Pssm-ID: 433185 [Multi-domain] Cd Length: 67 Bit Score: 34.22 E-value: 9.83e-03
|
||||||||
GST_N_Ure2p_like | cd03048 | GST_N family, Ure2p-like subfamily; composed of the Saccharomyces cerevisiae Ure2p and related ... |
60-106 | 9.83e-03 | ||||
GST_N family, Ure2p-like subfamily; composed of the Saccharomyces cerevisiae Ure2p and related GSTs. Ure2p is a regulator for nitrogen catabolism in yeast. It represses the expression of several gene products involved in the use of poor nitrogen sources when rich sources are available. A transmissible conformational change of Ure2p results in a prion called [Ure3], an inactive, self-propagating and infectious amyloid. Ure2p displays a GST fold containing an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The N-terminal TRX-fold domain is sufficient to induce the [Ure3] phenotype and is also called the prion domain of Ure2p. In addition to its role in nitrogen regulation, Ure2p confers protection to cells against heavy metal ion and oxidant toxicity, and shows glutathione (GSH) peroxidase activity. Characterized GSTs in this subfamily include Aspergillus fumigatus GSTs 1 and 2, and Schizosaccharomyces pombe GST-I. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of GSH with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. Pssm-ID: 239346 [Multi-domain] Cd Length: 81 Bit Score: 34.44 E-value: 9.83e-03
|
||||||||
Blast search parameters | ||||
|