ganglioside-induced differentiation-associated protein 1-like 1 isoform 3 [Homo sapiens]
glutathione S-transferase family protein( domain architecture ID 88)
glutathione S-transferase (GST) family protein may catalyze the conjugation of reduced glutathione to a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress
List of domain hits
Name | Accession | Description | Interval | E-value | |||
GST_C_family super family | cl02776 | C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione ... |
112-222 | 2.42e-78 | |||
C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione S-transferase (GST) family, C-terminal alpha helical domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxins, stringent starvation protein A, and aminoacyl-tRNA synthetases. The actual alignment was detected with superfamily member cd10302: Pssm-ID: 470672 Cd Length: 111 Bit Score: 232.59 E-value: 2.42e-78
|
|||||||
Thioredoxin_like super family | cl00388 | Protein Disulfide Oxidoreductases and Other Proteins with a Thioredoxin fold; The thioredoxin ... |
1-30 | 4.39e-12 | |||
Protein Disulfide Oxidoreductases and Other Proteins with a Thioredoxin fold; The thioredoxin (TRX)-like superfamily is a large, diverse group of proteins containing a TRX fold. Many members contain a classic TRX domain with a redox active CXXC motif. They function as protein disulfide oxidoreductases (PDOs), altering the redox state of target proteins via the reversible oxidation of their active site dithiol. The PDO members of this superfamily include the families of TRX, protein disulfide isomerase (PDI), tlpA, glutaredoxin, NrdH redoxin, and bacterial Dsb proteins (DsbA, DsbC, DsbG, DsbE, DsbDgamma). Members of the superfamily that do not function as PDOs but contain a TRX-fold domain include phosducins, peroxiredoxins, glutathione (GSH) peroxidases, SCO proteins, GSH transferases (GST, N-terminal domain), arsenic reductases, TRX-like ferredoxins and calsequestrin, among others. The actual alignment was detected with superfamily member cd03052: Pssm-ID: 469754 [Multi-domain] Cd Length: 73 Bit Score: 60.25 E-value: 4.39e-12
|
|||||||
Name | Accession | Description | Interval | E-value | ||||
GST_C_GDAP1L1 | cd10302 | C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein ... |
112-222 | 2.42e-78 | ||||
C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1-like 1; Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1-like 1 (GDAP1L1) subfamily; GDAP1L1 is a paralogue of GDAP1 with about 56% sequence identity and 70% similarity. It's function is unknown. Like GDAP1, it does not exhibit GST activity using standard substrates. GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. Pssm-ID: 198335 Cd Length: 111 Bit Score: 232.59 E-value: 2.42e-78
|
||||||||
GST_N_GDAP1 | cd03052 | GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; ... |
1-30 | 4.39e-12 | ||||
GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal TRX-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. Pssm-ID: 239350 [Multi-domain] Cd Length: 73 Bit Score: 60.25 E-value: 4.39e-12
|
||||||||
GstA | COG0625 | Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; |
9-228 | 3.01e-11 | ||||
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440390 [Multi-domain] Cd Length: 205 Bit Score: 61.45 E-value: 3.01e-11
|
||||||||
GST_C | pfam00043 | Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety ... |
136-219 | 1.60e-04 | ||||
Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes. Pssm-ID: 459647 [Multi-domain] Cd Length: 93 Bit Score: 39.96 E-value: 1.60e-04
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
GST_C_GDAP1L1 | cd10302 | C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein ... |
112-222 | 2.42e-78 | ||||
C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1-like 1; Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1-like 1 (GDAP1L1) subfamily; GDAP1L1 is a paralogue of GDAP1 with about 56% sequence identity and 70% similarity. It's function is unknown. Like GDAP1, it does not exhibit GST activity using standard substrates. GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. Pssm-ID: 198335 Cd Length: 111 Bit Score: 232.59 E-value: 2.42e-78
|
||||||||
GST_C_GDAP1_like | cd03204 | C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein ... |
112-222 | 1.13e-60 | ||||
C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1-like proteins; Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1 (GDAP1)-like subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. Pssm-ID: 198313 Cd Length: 111 Bit Score: 187.66 E-value: 1.13e-60
|
||||||||
GST_C_GDAP1 | cd10303 | C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1; ... |
112-222 | 1.03e-43 | ||||
C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1; Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. Pssm-ID: 198336 [Multi-domain] Cd Length: 111 Bit Score: 144.38 E-value: 1.03e-43
|
||||||||
GST_N_GDAP1 | cd03052 | GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; ... |
1-30 | 4.39e-12 | ||||
GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal TRX-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. Pssm-ID: 239350 [Multi-domain] Cd Length: 73 Bit Score: 60.25 E-value: 4.39e-12
|
||||||||
GstA | COG0625 | Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; |
9-228 | 3.01e-11 | ||||
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440390 [Multi-domain] Cd Length: 205 Bit Score: 61.45 E-value: 3.01e-11
|
||||||||
GST_C_family | cd00299 | C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione ... |
144-216 | 9.17e-07 | ||||
C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione S-transferase (GST) family, C-terminal alpha helical domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxins, stringent starvation protein A, and aminoacyl-tRNA synthetases. Pssm-ID: 198286 [Multi-domain] Cd Length: 100 Bit Score: 46.34 E-value: 9.17e-07
|
||||||||
GST_C_Beta | cd03188 | C-terminal, alpha helical domain of Class Beta Glutathione S-transferases; Glutathione ... |
149-226 | 2.93e-05 | ||||
C-terminal, alpha helical domain of Class Beta Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Unlike mammalian GSTs which detoxify a broad range of compounds, the bacterial class Beta GSTs exhibit GSH conjugating activity with a narrow range of substrates. In addition to GSH conjugation, they are involved in the protection against oxidative stress and are able to bind antibiotics and reduce the antimicrobial activity of beta-lactam drugs, contributing to antibiotic resistance. The structure of the Proteus mirabilis enzyme reveals that the cysteine in the active site forms a covalent bond with GSH. One member of this subfamily is a GST from Burkholderia xenovorans LB400 that is encoded by the bphK gene and is part of the biphenyl catabolic pathway. Pssm-ID: 198297 [Multi-domain] Cd Length: 113 Bit Score: 42.23 E-value: 2.93e-05
|
||||||||
GST_C | pfam00043 | Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety ... |
136-219 | 1.60e-04 | ||||
Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes. Pssm-ID: 459647 [Multi-domain] Cd Length: 93 Bit Score: 39.96 E-value: 1.60e-04
|
||||||||
GST_C_2 | cd03180 | C-terminal, alpha helical domain of an unknown subfamily 2 of Glutathione S-transferases; ... |
171-222 | 2.37e-04 | ||||
C-terminal, alpha helical domain of an unknown subfamily 2 of Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 2; composed of uncharacterized bacterial proteins, with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Pssm-ID: 198289 [Multi-domain] Cd Length: 110 Bit Score: 39.57 E-value: 2.37e-04
|
||||||||
GST_C_GTT1_like | cd03189 | C-terminal, alpha helical domain of GTT1-like Glutathione S-transferases; Glutathione ... |
143-219 | 5.24e-04 | ||||
C-terminal, alpha helical domain of GTT1-like Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT1, and the Schizosaccharomyces pombe GST-III. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. GTT1, a homodimer, exhibits GST activity with standard substrates and associates with the endoplasmic reticulum. Its expression is induced after diauxic shift and remains high throughout the stationary phase. S. pombe GST-III is implicated in the detoxification of various metals. Pssm-ID: 198298 [Multi-domain] Cd Length: 123 Bit Score: 39.21 E-value: 5.24e-04
|
||||||||
GST_C_8 | cd03207 | C-terminal, alpha helical domain of an unknown subfamily 8 of Glutathione S-transferases; ... |
143-221 | 7.42e-04 | ||||
C-terminal, alpha helical domain of an unknown subfamily 8 of Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 8; composed of Agrobacterium tumefaciens GST and other uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The three-dimensional structure of Agrobacterium tumefaciens GST has been determined but there is no information on its functional characterization. Pssm-ID: 198316 [Multi-domain] Cd Length: 101 Bit Score: 38.05 E-value: 7.42e-04
|
||||||||
Blast search parameters | ||||
|