NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|240120132|ref|NP_001012306|]
View 

3 beta-hydroxysteroid dehydrogenase/Delta 5--

Protein Classification

Rossmann-fold NAD(P)-binding domain-containing protein( domain architecture ID 229380)

Rossmann-fold NAD(P)-binding domain-containing protein may function as an oxidoreductase

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
NADB_Rossmann super family cl21454
Rossmann-fold NAD(P)(+)-binding proteins; A large family of proteins that share a ...
5-302 1.03e-141

Rossmann-fold NAD(P)(+)-binding proteins; A large family of proteins that share a Rossmann-fold NAD(P)H/NAD(P)(+) binding (NADB) domain. The NADB domain is found in numerous dehydrogenases of metabolic pathways such as glycolysis, and many other redox enzymes. NAD binding involves numerous hydrogen-bonds and van der Waals contacts, in particular H-bonding of residues in a turn between the first strand and the subsequent helix of the Rossmann-fold topology. Characteristically, this turn exhibits a consensus binding pattern similar to GXGXXG, in which the first 2 glycines participate in NAD(P)-binding, and the third facilitates close packing of the helix to the beta-strand. Typically, proteins in this family contain a second domain in addition to the NADB domain, which is responsible for specifically binding a substrate and catalyzing a particular enzymatic reaction.


The actual alignment was detected with superfamily member cd09811:

Pssm-ID: 473865 [Multi-domain]  Cd Length: 354  Bit Score: 404.20  E-value: 1.03e-141
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   5 SCLVTGAGGFLGQRIIQLLVQEKD-LEEIRVLDKVFKPETREQFFS---------------------------------- 49
Cdd:cd09811    1 VCLVTGGGGFLGQHIIRLLLERKEeLKEIRVLDKAFGPELIEHFEKsqgktyvtdiegdikdlsflfracqgvsvvihta 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  50 ---------------------TQNLLEACIQASVPAFIFSSSVDVAGPNSYKDIVLNGHEDEHRESTWSDPYPYSKKMAE 108
Cdd:cd09811   81 aivdvfgppnyeeleevnvngTQAVLEACVQNNVKRLVYTSSIEVAGPNFKGRPIFNGVEDTPYEDTSTPPYASSKLLAE 160
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 109 KAVLAANGSMLKNGGTLQTCALRPMCIYGERSQFLSNTIIKALKNKFILRGGGKFSTANP-VYVGNVAWAHILAARGLRN 187
Cdd:cd09811  161 NIVLNANGAPLKQGGYLVTCALRPMYIYGEGSHFLTEIFDFLLTNNGWLFPRIKGSGVNPlVYVGNVAWAHILAAKALQV 240
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 188 PKKSpnIQGEFYYISDDTPHQSYDDLNYTLSKEWGFCL-NSRWYLPVPILYWLAFLLETVSFLLSPIYRYIPPFNRHLVT 266
Cdd:cd09811  241 PDKA--IRGQFYFISDDTPHNSYSDFNYELLKELGLRLkTSWWYVPLFLLYFLAFLLEIVSFLLRPYVKYRPRYNRHAVA 318
                        330       340       350
                 ....*....|....*....|....*....|....*.
gi 240120132 267 LTASTFTFSYKKAQRDLGYEPLVSWEEAKQKTSEWI 302
Cdd:cd09811  319 LTNSMFTFSYLKAQRHFGYMPLFSWEESKERTAKWV 354
 
Name Accession Description Interval E-value
3b-HSD_HSDB1_like_SDR_e cd09811
human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, ...
5-302 1.03e-141

human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, extended (e) SDRs; This extended-SDR subgroup includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7], and related proteins. These proteins have the characteristic active site tetrad and NAD(P)-binding motif of extended SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. C(27) 3beta-HSD is a membrane-bound enzyme of the endoplasmic reticulum, it catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187671 [Multi-domain]  Cd Length: 354  Bit Score: 404.20  E-value: 1.03e-141
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   5 SCLVTGAGGFLGQRIIQLLVQEKD-LEEIRVLDKVFKPETREQFFS---------------------------------- 49
Cdd:cd09811    1 VCLVTGGGGFLGQHIIRLLLERKEeLKEIRVLDKAFGPELIEHFEKsqgktyvtdiegdikdlsflfracqgvsvvihta 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  50 ---------------------TQNLLEACIQASVPAFIFSSSVDVAGPNSYKDIVLNGHEDEHRESTWSDPYPYSKKMAE 108
Cdd:cd09811   81 aivdvfgppnyeeleevnvngTQAVLEACVQNNVKRLVYTSSIEVAGPNFKGRPIFNGVEDTPYEDTSTPPYASSKLLAE 160
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 109 KAVLAANGSMLKNGGTLQTCALRPMCIYGERSQFLSNTIIKALKNKFILRGGGKFSTANP-VYVGNVAWAHILAARGLRN 187
Cdd:cd09811  161 NIVLNANGAPLKQGGYLVTCALRPMYIYGEGSHFLTEIFDFLLTNNGWLFPRIKGSGVNPlVYVGNVAWAHILAAKALQV 240
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 188 PKKSpnIQGEFYYISDDTPHQSYDDLNYTLSKEWGFCL-NSRWYLPVPILYWLAFLLETVSFLLSPIYRYIPPFNRHLVT 266
Cdd:cd09811  241 PDKA--IRGQFYFISDDTPHNSYSDFNYELLKELGLRLkTSWWYVPLFLLYFLAFLLEIVSFLLRPYVKYRPRYNRHAVA 318
                        330       340       350
                 ....*....|....*....|....*....|....*.
gi 240120132 267 LTASTFTFSYKKAQRDLGYEPLVSWEEAKQKTSEWI 302
Cdd:cd09811  319 LTNSMFTFSYLKAQRHFGYMPLFSWEESKERTAKWV 354
3Beta_HSD pfam01073
3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid ...
7-233 3.58e-108

3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD) catalyzes the oxidation and isomerization of 5-ene-3 beta-hydroxypregnene and 5-ene-hydroxyandrostene steroid precursors into the corresponding 4-ene-ketosteroids necessary for the formation of all classes of steroid hormones.


Pssm-ID: 366449 [Multi-domain]  Cd Length: 279  Bit Score: 316.23  E-value: 3.58e-108
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132    7 LVTGAGGFLGQRIIQLLVQEKDLEEIRVLDKVFKPETREQFFS------------------------------------- 49
Cdd:pfam01073   1 VVTGGGGFLGRHIIKLLVREGELKEVRVFDLRESPELLEDFSKsnvikyiqgdvtdkddldnalegvdvvihtasavdvf 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   50 ---------------TQNLLEACIQASVPAFIFSSSVDVAGPNSYKDIVLNGHEDEHRESTWSDPYPYSKKMAEKAVLAA 114
Cdd:pfam01073  81 gkytfdeimkvnvkgTQNVLEACVKAGVRVLVYTSSAEVVGPNSYGQPILNGDEETPYESTHQDAYPRSKAIAEKLVLKA 160
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  115 NGSMLKNGGTLQTCALRPMCIYGERSQFLSNTIIKALKNKFIL-RGGGKFSTANPVYVGNVAWAHILAARGLRNPKKSPN 193
Cdd:pfam01073 161 NGRPLKNGGRLYTCALRPAGIYGEGDRLLVPFIVNLAKLGLAKfKTGDDNNLSDRVYVGNVAWAHILAARALQDPKKMSS 240
                         250       260       270       280
                  ....*....|....*....|....*....|....*....|
gi 240120132  194 IQGEFYYISDDTPHQSYDDLNYTLSKEWGFCLNSrWYLPV 233
Cdd:pfam01073 241 IAGNAYFIYDDTPVQSYDDFNRTLLKSLGYDLPS-ISLPL 279
WcaG COG0451
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis];
7-302 5.45e-25

Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis];


Pssm-ID: 440220 [Multi-domain]  Cd Length: 295  Bit Score: 101.98  E-value: 5.45e-25
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   7 LVTGAGGFLGQRIIQLLVQEK---------------------------DLEEIRVLDKVFK---------------PETR 44
Cdd:COG0451    3 LVTGGAGFIGSHLARRLLARGhevvgldrsppgaanlaalpgvefvrgDLRDPEALAAALAgvdavvhlaapagvgEEDP 82
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  45 EQFFS-----TQNLLEACIQASVPAFIFSSSVDVAGPNsykdivlNGHEDEHRESTWSDPYPYSKKMAEKAVLAANgsml 119
Cdd:COG0451   83 DETLEvnvegTLNLLEAARAAGVKRFVYASSSSVYGDG-------EGPIDEDTPLRPVSPYGASKLAAELLARAYA---- 151
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 120 KNGGtLQTCALRPMCIYGER-SQFLSNTIIKALKNKFILRGGGKFSTANPVYVGNVAWAHILAARglrnpkkSPNIQGEF 198
Cdd:COG0451  152 RRYG-LPVTILRPGNVYGPGdRGVLPRLIRRALAGEPVPVFGDGDQRRDFIHVDDVARAIVLALE-------APAAPGGV 223
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 199 YYISDDTPHqSYDDLNYTLSKEWGfclnsrwyLPVPILYwlaflletvsfllspiyryipPFNRHLVTLTAstftFSYKK 278
Cdd:COG0451  224 YNVGGGEPV-TLRELAEAIAEALG--------RPPEIVY---------------------PARPGDVRPRR----ADNSK 269
                        330       340
                 ....*....|....*....|....
gi 240120132 279 AQRDLGYEPLVSWEEAKQKTSEWI 302
Cdd:COG0451  270 ARRELGWRPRTSLEEGLRETVAWY 293
 
Name Accession Description Interval E-value
3b-HSD_HSDB1_like_SDR_e cd09811
human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, ...
5-302 1.03e-141

human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, extended (e) SDRs; This extended-SDR subgroup includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7], and related proteins. These proteins have the characteristic active site tetrad and NAD(P)-binding motif of extended SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. C(27) 3beta-HSD is a membrane-bound enzyme of the endoplasmic reticulum, it catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187671 [Multi-domain]  Cd Length: 354  Bit Score: 404.20  E-value: 1.03e-141
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   5 SCLVTGAGGFLGQRIIQLLVQEKD-LEEIRVLDKVFKPETREQFFS---------------------------------- 49
Cdd:cd09811    1 VCLVTGGGGFLGQHIIRLLLERKEeLKEIRVLDKAFGPELIEHFEKsqgktyvtdiegdikdlsflfracqgvsvvihta 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  50 ---------------------TQNLLEACIQASVPAFIFSSSVDVAGPNSYKDIVLNGHEDEHRESTWSDPYPYSKKMAE 108
Cdd:cd09811   81 aivdvfgppnyeeleevnvngTQAVLEACVQNNVKRLVYTSSIEVAGPNFKGRPIFNGVEDTPYEDTSTPPYASSKLLAE 160
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 109 KAVLAANGSMLKNGGTLQTCALRPMCIYGERSQFLSNTIIKALKNKFILRGGGKFSTANP-VYVGNVAWAHILAARGLRN 187
Cdd:cd09811  161 NIVLNANGAPLKQGGYLVTCALRPMYIYGEGSHFLTEIFDFLLTNNGWLFPRIKGSGVNPlVYVGNVAWAHILAAKALQV 240
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 188 PKKSpnIQGEFYYISDDTPHQSYDDLNYTLSKEWGFCL-NSRWYLPVPILYWLAFLLETVSFLLSPIYRYIPPFNRHLVT 266
Cdd:cd09811  241 PDKA--IRGQFYFISDDTPHNSYSDFNYELLKELGLRLkTSWWYVPLFLLYFLAFLLEIVSFLLRPYVKYRPRYNRHAVA 318
                        330       340       350
                 ....*....|....*....|....*....|....*.
gi 240120132 267 LTASTFTFSYKKAQRDLGYEPLVSWEEAKQKTSEWI 302
Cdd:cd09811  319 LTNSMFTFSYLKAQRHFGYMPLFSWEESKERTAKWV 354
3Beta_HSD pfam01073
3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid ...
7-233 3.58e-108

3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD) catalyzes the oxidation and isomerization of 5-ene-3 beta-hydroxypregnene and 5-ene-hydroxyandrostene steroid precursors into the corresponding 4-ene-ketosteroids necessary for the formation of all classes of steroid hormones.


Pssm-ID: 366449 [Multi-domain]  Cd Length: 279  Bit Score: 316.23  E-value: 3.58e-108
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132    7 LVTGAGGFLGQRIIQLLVQEKDLEEIRVLDKVFKPETREQFFS------------------------------------- 49
Cdd:pfam01073   1 VVTGGGGFLGRHIIKLLVREGELKEVRVFDLRESPELLEDFSKsnvikyiqgdvtdkddldnalegvdvvihtasavdvf 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   50 ---------------TQNLLEACIQASVPAFIFSSSVDVAGPNSYKDIVLNGHEDEHRESTWSDPYPYSKKMAEKAVLAA 114
Cdd:pfam01073  81 gkytfdeimkvnvkgTQNVLEACVKAGVRVLVYTSSAEVVGPNSYGQPILNGDEETPYESTHQDAYPRSKAIAEKLVLKA 160
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  115 NGSMLKNGGTLQTCALRPMCIYGERSQFLSNTIIKALKNKFIL-RGGGKFSTANPVYVGNVAWAHILAARGLRNPKKSPN 193
Cdd:pfam01073 161 NGRPLKNGGRLYTCALRPAGIYGEGDRLLVPFIVNLAKLGLAKfKTGDDNNLSDRVYVGNVAWAHILAARALQDPKKMSS 240
                         250       260       270       280
                  ....*....|....*....|....*....|....*....|
gi 240120132  194 IQGEFYYISDDTPHQSYDDLNYTLSKEWGFCLNSrWYLPV 233
Cdd:pfam01073 241 IAGNAYFIYDDTPVQSYDDFNRTLLKSLGYDLPS-ISLPL 279
3b-HSD-like_SDR_e cd05241
3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs; Extended SDR family ...
5-302 3.53e-86

3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs; Extended SDR family domains belonging to this subgroup have the characteristic active site tetrad and a fairly well-conserved NAD(P)-binding motif. 3b-HSD catalyzes the NAD-dependent conversion of various steroids, such as pregnenolone to progesterone, or androstenediol to testosterone. This subgroup includes an unusual bifunctional 3b-HSD/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. It also includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7]. C(27) 3beta-HSD/HSD3B7 is a membrane-bound enzyme of the endoplasmic reticulum, that catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human NSDHL (NAD(P)H steroid dehydrogenase-like protein) cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187552 [Multi-domain]  Cd Length: 331  Bit Score: 261.98  E-value: 3.53e-86
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   5 SCLVTGAGGFLGQRIIQLLVQEkDLEEIRVLDKVFKPET----------------------------------------- 43
Cdd:cd05241    1 SVLVTGGSGFFGERLVKQLLER-GGTYVRSFDIAPPGEAlsawqhpnieflkgditdrndveqalsgadcvfhtaaivpl 79
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  44 ---REQFFS-----TQNLLEACIQASVPAFIFSSSVDVAGPnsyKDIVLNGHEDEHRESTWSDPYPYSKKMAEKAVLAAN 115
Cdd:cd05241   80 agpRDLYWEvnvggTQNVLDACQRCGVQKFVYTSSSSVIFG---GQNIHNGDETLPYPPLDSDMYAETKAIAEIIVLEAN 156
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 116 GSmlkngGTLQTCALRPMCIYGERSQFLSNTIIKALKNK-FILRGGGKFSTANPVYVGNVAWAHILAARGLRNPKKspnI 194
Cdd:cd05241  157 GR-----DDLLTCALRPAGIFGPGDQGLVPILFEWAEKGlVKFVFGRGNNLVDFTYVHNLAHAHILAAAALVKGKT---I 228
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 195 QGEFYYISDDTPHQSYDDLNYTLsKEWGFCLNSRWYLPVPILYWLAFLLETVSFLLSPIYRYIPPFNRHLVTltasTFTF 274
Cdd:cd05241  229 SGQTYFITDAEPHNMFELLRPVW-KALGFGSRPKIRLSGPLAYCAALLSELVSFMLGPYFVFSPFYVRALVT----PMYF 303
                        330       340
                 ....*....|....*....|....*...
gi 240120132 275 SYKKAQRDLGYEPLVSWEEAKQKTSEWI 302
Cdd:cd05241  304 SIAKAQKDLGYAPRYSNEEGLIETLNWY 331
3b-HSD-NSDHL-like_SDR_e cd09813
human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs; This ...
5-302 6.21e-51

human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs; This subgroup includes human NSDHL and related proteins. These proteins have the characteristic active site tetrad of extended SDRs, and also have a close match to their NAD(P)-binding motif. Human NSDHL is a 3beta-hydroxysteroid dehydrogenase (3 beta-HSD) which functions in the cholesterol biosynthetic pathway. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. Mutations in the gene encoding NSDHL cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. This subgroup also includes an unusual bifunctional [3beta-hydroxysteroid dehydrogenase (3b-HSD)/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187673 [Multi-domain]  Cd Length: 335  Bit Score: 171.39  E-value: 6.21e-51
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   5 SCLVTGAGGFLGQRIIQLLVqEKDLEEIRVLD-----------------------------KVF---KPET--------- 43
Cdd:cd09813    1 SCLVVGGSGFLGRHLVEQLL-RRGNPTVHVFDirptfeldpsssgrvqfhtgdltdpqdleKAFnekGPNVvfhtaspdh 79
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  44 ---REQFFS-----TQNLLEACIQASVPAFIFSSSVDVAgpnSYKDIVLNGHEDEHRESTWSDPYPYSKKMAEKAVLAAN 115
Cdd:cd09813   80 gsnDDLYYKvnvqgTRNVIEACRKCGVKKLVYTSSASVV---FNGQDIINGDESLPYPDKHQDAYNETKALAEKLVLKAN 156
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 116 GSMLKnggtLQTCALRPMCIYGERSQFLSNTIIKALKN---KFILrGGGK----FStanpvYVGNVAWAHILAARGLRNP 188
Cdd:cd09813  157 DPESG----LLTCALRPAGIFGPGDRQLVPGLLKAAKNgktKFQI-GDGNnlfdFT-----YVENVAHAHILAADALLSS 226
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 189 KKSPNIQGEFYYISDDTPHQSYDdLNYTLSKEWGFCLNSRWYLPVPILYWLAFLLETVSFLLSPIyryiPPFNRHLVTLT 268
Cdd:cd09813  227 SHAETVAGEAFFITNDEPIYFWD-FARAIWEGLGYERPPSIKLPRPVALYLASLLEWTCKVLGKE----PTFTPFRVALL 301
                        330       340       350
                 ....*....|....*....|....*....|....
gi 240120132 269 ASTFTFSYKKAQRDLGYEPLVSWEEAKQKTSEWI 302
Cdd:cd09813  302 CSTRYFNIEKAKKRLGYTPVVTLEEGIERTLQWF 335
3b-HSD_like_1_SDR_e cd09812
3beta-hydroxysteroid dehydrogenase (3b-HSD)-like, subgroup1, extended (e) SDRs; An ...
50-287 3.19e-38

3beta-hydroxysteroid dehydrogenase (3b-HSD)-like, subgroup1, extended (e) SDRs; An uncharacterized subgroup of the 3b-HSD-like extended-SDR family. Proteins in this subgroup have the characteristic active site tetrad and NAD(P)-binding motif of extended-SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187672 [Multi-domain]  Cd Length: 339  Bit Score: 138.41  E-value: 3.19e-38
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  50 TQNLLEACIQASVPAFIFSSSVDVA-GPNSYKdivlNGHE-------DEHrestwSDPYPYSKKMAEKAVLAANGSMLKN 121
Cdd:cd09812   92 TENIIQVCVRRRVPRLIYTSTFNVIfGGQPIR----NGDEslpylplDLH-----VDHYSRTKSIAEQLVLKANNMPLPN 162
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 122 -GGTLQTCALRPMCIYGERSQFLSNTIIKALKNK-FILRGGGKFSTANPVYVGNVAWAHILAARGLRNPKKSpNIQGEFY 199
Cdd:cd09812  163 nGGVLRTCALRPAGIYGPGEQRHLPRIVSYIEKGlFMFVYGDPKSLVEFVHVDNLVQAHILAAEALTTAKGY-IASGQAY 241
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 200 YISDDTPHQSYDDLNyTLSKEWGFCLNSrWYLPVPILYWLAFLLETVSFLLSPIYRYIPPFNRHLVTLTASTFTFSYKKA 279
Cdd:cd09812  242 FISDGRPVNNFEFFR-PLVEGLGYSFPS-LRLPLSLVYFFAFLTEMVHFALGPICNFQPLLTRTEVYKTGVTHYFSIEKA 319

                 ....*...
gi 240120132 280 QRDLGYEP 287
Cdd:cd09812  320 RAELGYEP 327
AR_FR_like_1_SDR_e cd05228
uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, ...
7-302 5.57e-26

uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, extended (e) SDRs; This subgroup contains proteins of unknown function related to aldehyde reductase and flavonoid reductase of the extended SDR-type. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The related flavonoid reductases act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187539 [Multi-domain]  Cd Length: 318  Bit Score: 105.06  E-value: 5.57e-26
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   7 LVTGAGGFLGQRIIQLLVQ--------------------------EKDLEEIRVL-------DKVF---------KPETR 44
Cdd:cd05228    2 LVTGATGFLGSNLVRALLAqgyrvralvrsgsdavlldglpvevvEGDLTDAASLaaamkgcDRVFhlaaftslwAKDRK 81
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  45 EQF----FSTQNLLEACIQASVPAFIFSSSVDVAGPNSykdivlNGHEDEH---RESTWSDPYPYSKKMAEKAVLAAngs 117
Cdd:cd05228   82 ELYrtnvEGTRNVLDAALEAGVRRVVHTSSIAALGGPP------DGRIDETtpwNERPFPNDYYRSKLLAELEVLEA--- 152
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 118 mLKNGgtLQTCALRPMCIYGERSqfLSNT-----IIKALKNK--FILRGGGKFstanpVYVGNVAWAHILAA-RGLRnpk 189
Cdd:cd05228  153 -AAEG--LDVVIVNPSAVFGPGD--EGPTstgldVLDYLNGKlpAYPPGGTSF-----VDVRDVAEGHIAAMeKGRR--- 219
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 190 kspniqGEFYYISDdtPHQSYDDLNYTLSKEWGfclnsRWYLPVPILYWLAFLLETVSFLLSPIYRYIPPFNRHLVTLTA 269
Cdd:cd05228  220 ------GERYILGG--ENLSFKQLFETLAEITG-----VKPPRRTIPPWLLKAVAALSELKARLTGKPPLLTPRTARVLR 286
                        330       340       350
                 ....*....|....*....|....*....|...
gi 240120132 270 STFTFSYKKAQRDLGYEPlVSWEEAKQKTSEWI 302
Cdd:cd05228  287 RNYLYSSDKARRELGYSP-RPLEEALRDTLAWL 318
WcaG COG0451
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis];
7-302 5.45e-25

Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis];


Pssm-ID: 440220 [Multi-domain]  Cd Length: 295  Bit Score: 101.98  E-value: 5.45e-25
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   7 LVTGAGGFLGQRIIQLLVQEK---------------------------DLEEIRVLDKVFK---------------PETR 44
Cdd:COG0451    3 LVTGGAGFIGSHLARRLLARGhevvgldrsppgaanlaalpgvefvrgDLRDPEALAAALAgvdavvhlaapagvgEEDP 82
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  45 EQFFS-----TQNLLEACIQASVPAFIFSSSVDVAGPNsykdivlNGHEDEHRESTWSDPYPYSKKMAEKAVLAANgsml 119
Cdd:COG0451   83 DETLEvnvegTLNLLEAARAAGVKRFVYASSSSVYGDG-------EGPIDEDTPLRPVSPYGASKLAAELLARAYA---- 151
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 120 KNGGtLQTCALRPMCIYGER-SQFLSNTIIKALKNKFILRGGGKFSTANPVYVGNVAWAHILAARglrnpkkSPNIQGEF 198
Cdd:COG0451  152 RRYG-LPVTILRPGNVYGPGdRGVLPRLIRRALAGEPVPVFGDGDQRRDFIHVDDVARAIVLALE-------APAAPGGV 223
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 199 YYISDDTPHqSYDDLNYTLSKEWGfclnsrwyLPVPILYwlaflletvsfllspiyryipPFNRHLVTLTAstftFSYKK 278
Cdd:COG0451  224 YNVGGGEPV-TLRELAEAIAEALG--------RPPEIVY---------------------PARPGDVRPRR----ADNSK 269
                        330       340
                 ....*....|....*....|....
gi 240120132 279 AQRDLGYEPLVSWEEAKQKTSEWI 302
Cdd:COG0451  270 ARRELGWRPRTSLEEGLRETVAWY 293
SDR_e cd08946
extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann ...
6-195 7.63e-19

extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 212494 [Multi-domain]  Cd Length: 200  Bit Score: 82.73  E-value: 7.63e-19
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   6 CLVTGAGGFLGQRIIQLLVQEKDleEIRVLDKV-------------FKPETREQFF-----STQNLLEACIQASVPAFIF 67
Cdd:cd08946    1 ILVTGGAGFIGSHLVRRLLERGH--EVVVIDRLdvvvhlaalvgvpASWDNPDEDFetnvvGTLNLLEAARKAGVKRFVY 78
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  68 SSSVDVAGPNSYKDIvlnghEDEHRESTwSDPYPYSKKMAEKAVLAANgsmlkNGGTLQTCALRPMCIYGER-----SQF 142
Cdd:cd08946   79 ASSASVYGSPEGLPE-----EEETPPRP-LSPYGVSKLAAEHLLRSYG-----ESYGLPVVILRLANVYGPGqrprlDGV 147
                        170       180       190       200       210
                 ....*....|....*....|....*....|....*....|....*....|....
gi 240120132 143 LSNTIIKALKNKFI-LRGGGKFsTANPVYVGNVAWAHILAARGLRNPKKSPNIQ 195
Cdd:cd08946  148 VNDFIRRALEGKPLtVFGGGNQ-TRDFIHVDDVVRAILHALENPLEGGGVYNIG 200
Epimerase pfam01370
NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. ...
7-194 3.90e-12

NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions.


Pssm-ID: 396097 [Multi-domain]  Cd Length: 238  Bit Score: 65.01  E-value: 3.90e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132    7 LVTGAGGFLGQRIIQLLVQEK--------------------------DLEEIRVLDKVFKP------------------- 41
Cdd:pfam01370   2 LVTGATGFIGSHLVRRLLEKGyevigldrltsasntarladlrfvegDLTDRDALEKLLADvrpdavihlaavggvgasi 81
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   42 ETREQFF-----STQNLLEACIQASVPAFIFSSSVDVAGPnsykdivlnGHEDEHRESTWSD------PYPYSKKMAEKA 110
Cdd:pfam01370  82 EDPEDFIeanvlGTLNLLEAARKAGVKRFLFASSSEVYGD---------GAEIPQEETTLTGplapnsPYAAAKLAGEWL 152
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  111 VLAANGSmlkngGTLQTCALRPMCIYGER------SQFLSNTIIKALKNK-FILRGGGK----FstanpVYVGNVAWAHI 179
Cdd:pfam01370 153 VLAYAAA-----YGLRAVILRLFNVYGPGdnegfvSRVIPALIRRILEGKpILLWGDGTqrrdF-----LYVDDVARAIL 222
                         250
                  ....*....|....*
gi 240120132  180 LAargLRNPKKSPNI 194
Cdd:pfam01370 223 LA---LEHGAVKGEI 234
UDP_AE_SDR_e cd05256
UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs; This subgroup contains ...
6-302 7.70e-11

UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs; This subgroup contains UDP-N-acetylglucosamine 4-epimerase of Pseudomonas aeruginosa, WbpP, an extended SDR, that catalyzes the NAD+ dependent conversion of UDP-GlcNAc and UDPGalNA to UDP-Glc and UDP-Gal. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187566 [Multi-domain]  Cd Length: 304  Bit Score: 61.85  E-value: 7.70e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   6 CLVTGAGGFLGQRIIQLLVqeKDLEEIRVLD------KVFKPETREQF-------------------------------- 47
Cdd:cd05256    2 VLVTGGAGFIGSHLVERLL--ERGHEVIVLDnlstgkKENLPEVKPNVkfiegdirddelvefafegvdyvfhqaaqasv 79
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  48 ---------------FSTQNLLEACIQASVPAFIFSSSVDVAGPNSYKDIvlngheDEHRESTWSDPYPYSKKMAEKAVL 112
Cdd:cd05256   80 prsiedpikdhevnvLGTLNLLEAARKAGVKRFVYASSSSVYGDPPYLPK------DEDHPPNPLSPYAVSKYAGELYCQ 153
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 113 AANGSMlknggTLQTCALRPMCIYGERSQ-------FLSNTIIKALKNK-FILRGGGKfSTANPVYVGNVAWAHILAARg 184
Cdd:cd05256  154 VFARLY-----GLPTVSLRYFNVYGPRQDpnggyaaVIPIFIERALKGEpPTIYGDGE-QTRDFTYVEDVVEANLLAAT- 226
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 185 lrnpKKSPniqGEFYYISDDTPHQsyddLNYtlskewgfclnsrwylpvpilywLAFLL-ETVSFLLSPIyrYIPPF--- 260
Cdd:cd05256  227 ----AGAG---GEVYNIGTGKRTS----VNE-----------------------LAELIrEILGKELEPV--YAPPRpgd 270
                        330       340       350       360
                 ....*....|....*....|....*....|....*....|..
gi 240120132 261 NRHlvTLTASTftfsykKAQRDLGYEPLVSWEEAKQKTSEWI 302
Cdd:cd05256  271 VRH--SLADIS------KAKKLLGWEPKVSFEEGLRLTVEWF 304
UDP_G4E_4_SDR_e cd05232
UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka ...
7-298 9.39e-10

UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of bacterial proteins, and includes the Staphylococcus aureus capsular polysaccharide Cap5N, which may have a role in the synthesis of UDP-N-acetyl-d-fucosamine. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187543 [Multi-domain]  Cd Length: 303  Bit Score: 58.52  E-value: 9.39e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   7 LVTGAGGFLGQRIIQLLVQEKDLEEIRV---------------------------LDKVF------------KPETREQF 47
Cdd:cd05232    3 LVTGANGFIGRALVDKLLSRGEEVRIAVrnaenaepsvvlaelpdidsftdlflgVDAVVhlaarvhvmndqGADPLSDY 82
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  48 FS-----TQNLLEACIQASVPAFIFSSSVDVAGPNSykdivLNGHEDEHRESTWSDPYPYSKKMAEKAV--LAANGSMlk 120
Cdd:cd05232   83 RKvntelTRRLARAAARQGVKRFVFLSSVKVNGEGT-----VGAPFDETDPPAPQDAYGRSKLEAERALleLGASDGM-- 155
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 121 nggtlQTCALRPMCIYGE--RSQFLSntIIKALKNKFILRGGGKFSTANPVYVGNVAWAHILAargLRNPKKSpniqGEF 198
Cdd:cd05232  156 -----EVVILRPPMVYGPgvRGNFAR--LMRLIDRGLPLPPGAVKNRRSLVSLDNLVDAIYLC---ISLPKAA----NGT 221
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 199 YYISDDTP---HQSYDDLNYTLSKewgfclnSRWYLPVPilywlAFLLETVSFLL---SPIYRyippfnrhlvtLTAStF 272
Cdd:cd05232  222 FLVSDGPPvstAELVDEIRRALGK-------PTRLLPVP-----AGLLRFAAKLLgkrAVIQR-----------LFGS-L 277
                        330       340
                 ....*....|....*....|....*.
gi 240120132 273 TFSYKKAQRDLGYEPLVSWEEAKQKT 298
Cdd:cd05232  278 QYDPEKTQNELGWRPPISLEEGLQET 303
FR_SDR_e cd08958
flavonoid reductase (FR), extended (e) SDRs; This subgroup contains FRs of the extended ...
6-181 7.83e-09

flavonoid reductase (FR), extended (e) SDRs; This subgroup contains FRs of the extended SDR-type and related proteins. These FRs act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites; they have the characteristic active site triad of the SDRs (though not the upstream active site Asn) and a NADP-binding motif that is very similar to the typical extended SDR motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187661 [Multi-domain]  Cd Length: 293  Bit Score: 55.66  E-value: 7.83e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   6 CLVTGAGGFLGQRIIQLLVQ--------------EKDLEEIRVLDK---------------------------VF----- 39
Cdd:cd08958    1 VCVTGASGFIGSWLVKRLLQrgytvratvrdpgdEKKVAHLLELEGakerlklfkadlldygsfdaaidgcdgVFhvasp 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  40 -------------KPETReqffSTQNLLEACIQA-SVPAFIFSSSVD--VAGPNSYKDIVLNghedehrESTWSDP---- 99
Cdd:cd08958   81 vdfdsedpeeemiEPAVK----GTLNVLEACAKAkSVKRVVFTSSVAavVWNPNRGEGKVVD-------ESCWSDLdfck 149
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 100 -----YPYSKKMAEKAVLA-ANGSMLK----NGGTLQTCALRPmciygeRSQFLSNTIIKALKNKFILRGGGKFSTanpV 169
Cdd:cd08958  150 ktklwYALSKTLAEKAAWEfAEENGLDlvtvNPSLVVGPFLQP------SLNSSSQLILSLLKGNAEMYQNGSLAL---V 220
                        250
                 ....*....|..
gi 240120132 170 YVGNVAWAHILA 181
Cdd:cd08958  221 HVDDVADAHILL 232
NDUFA9_like_SDR_a cd05271
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, ...
6-262 2.91e-08

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, atypical (a) SDRs; This subgroup of extended SDR-like proteins are atypical SDRs. They have a glycine-rich NAD(P)-binding motif similar to the typical SDRs, GXXGXXG, and have the YXXXK active site motif (though not the other residues of the SDR tetrad). Members identified include NDUFA9 (mitochondrial) and putative nucleoside-diphosphate-sugar epimerase. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187579 [Multi-domain]  Cd Length: 273  Bit Score: 53.79  E-value: 2.91e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   6 CLVTGAGGFLGQRIIQLLVQ------------------------------EKDLEEIRVLDKVFK------------PET 43
Cdd:cd05271    3 VTVFGATGFIGRYVVNRLAKrgsqvivpyrceayarrllvmgdlgqvlfvEFDLRDDESIRKALEgsdvvinlvgrlYET 82
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  44 REQFFS------TQNLLEACIQASVPAFIFSSSVDVagpnsykdivlngheDEHREStwsdPYPYSKKMAEKAVLAAngs 117
Cdd:cd05271   83 KNFSFEdvhvegPERLAKAAKEAGVERLIHISALGA---------------DANSPS----KYLRSKAEGEEAVREA--- 140
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132 118 mlknggtLQTCA-LRPMCIYGERSQFLSNTIIKALKNKFILRGGGKFSTANPVYVGNVAWAhilAARGLRNpkksPNIQG 196
Cdd:cd05271  141 -------FPEATiVRPSVVFGREDRFLNRFAKLLAFLPFPPLIGGGQTKFQPVYVGDVAEA---IARALKD----PETEG 206
                        250       260       270       280       290       300
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 240120132 197 EFYYISDdtPHQsyddlnYTLSK--EWGFCLNSRWYLPVPILYWLAFLLETVSFLLSPIYryiPPFNR 262
Cdd:cd05271  207 KTYELVG--PKV------YTLAElvELLRRLGGRKRRVLPLPLWLARLIARVKLLLLLPE---PPLTR 263
Gne_like_SDR_e cd05238
Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs; ...
7-108 1.82e-07

Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs; Nucleoside-diphosphate-sugar 4-epimerase has the characteristic active site tetrad and NAD-binding motif of the extended SDR, and is related to more specifically defined epimerases such as UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), which catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup includes Escherichia coli 055:H7 Gne, a UDP-GlcNAc 4-epimerase, essential for O55 antigen synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187549 [Multi-domain]  Cd Length: 305  Bit Score: 51.62  E-value: 1.82e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   7 LVTGAGGFLGQRIIQLLVQEKDLEEIRVLDKVF------------------KPETREQFF-------------------- 48
Cdd:cd05238    4 LITGASGFVGQRLAERLLSDVPNERLILIDVVSpkapsgaprvtqiagdlaVPALIEALAngrpdvvfhlaaivsggaea 83
                         90       100       110       120       130       140       150
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 240120132  49 -----------STQNLLEAC-IQASVPAFIFSSSVDVAGPNSYKDIVLNGHEDehreSTWSdpYPYSKKMAE 108
Cdd:cd05238   84 dfdlgyrvnvdGTRNLLEALrKNGPKPRFVFTSSLAVYGLPLPNPVTDHTALD----PASS--YGAQKAMCE 149
AR_SDR_e cd05227
aldehyde reductase, extended (e) SDRs; This subgroup contains aldehyde reductase of the ...
7-110 3.59e-06

aldehyde reductase, extended (e) SDRs; This subgroup contains aldehyde reductase of the extended SDR-type and related proteins. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187538 [Multi-domain]  Cd Length: 301  Bit Score: 47.65  E-value: 3.59e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   7 LVTGAGGFLGQRIIQLLVQE--------KDLEEIRVLDKVFKPETREQFFS----------------------------- 49
Cdd:cd05227    3 LVTGATGFIASHIVEQLLKAgykvrgtvRSLSKSAKLKALLKAAGYNDRLEfvivddltapnawdealkgvdyvihvasp 82
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  50 -------------------TQNLLEACIQA-SVPAFIF-SSSVDVAGPNSY-KDIVLNghEDEHRESTWS-----DPYPY 102
Cdd:cd05227   83 fpftgpdaeddvidpavegTLNVLEAAKAAgSVKRVVLtSSVAAVGDPTAEdPGKVFT--EEDWNDLTISksnglDAYIA 160

                 ....*...
gi 240120132 103 SKKMAEKA 110
Cdd:cd05227  161 SKTLAEKA 168
Lys2b COG3320
Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary ...
49-114 1.01e-04

Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary metabolites biosynthesis, transport and catabolism]; Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs is part of the Pathway/BioSystem: Lysine biosynthesis


Pssm-ID: 442549 [Multi-domain]  Cd Length: 265  Bit Score: 43.27  E-value: 1.01e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 240120132  49 STQNLLEACIQASVPAFIFSSSVDVAGPNSYKDIVLnghEDEHRE-STWSDPYPYSKKMAEKAVLAA 114
Cdd:COG3320  114 GTREVLRLAATGRLKPFHYVSTIAVAGPADRSGVFE---EDDLDEgQGFANGYEQSKWVAEKLVREA 177
UDP_G4E_3_SDR_e cd05240
UDP-glucose 4 epimerase (G4E), subgroup 3, extended (e) SDRs; Members of this bacterial ...
7-137 2.50e-04

UDP-glucose 4 epimerase (G4E), subgroup 3, extended (e) SDRs; Members of this bacterial subgroup are identified as possible sugar epimerases, such as UDP-glucose 4 epimerase. However, while the NAD(P)-binding motif is fairly well conserved, not all members retain the canonical active site tetrad of the extended SDRs. UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187551 [Multi-domain]  Cd Length: 306  Bit Score: 41.97  E-value: 2.50e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132   7 LVTGAGGFLGQRIIQLLVQEKDLEEIRVLDKV-------------------------------------------FKPET 43
Cdd:cd05240    2 LVTGAAGGLGRLLARRLAASPRVIGVDGLDRRrppgsppkveyvrldirdpaaadvfrereadavvhlafildppRDGAE 81
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 240120132  44 REQF--FSTQNLLEACIQASVPAFIFSSSVDVAGPNSYKDIVLngHEDEHRESTWSDPYPYSKKMAEKAVLAAngsmLKN 121
Cdd:cd05240   82 RHRInvDGTQNVLDACAAAGVPRVVVTSSVAVYGAHPDNPAPL--TEDAPLRGSPEFAYSRDKAEVEQLLAEF----RRR 155
                        170
                 ....*....|....*.
gi 240120132 122 GGTLQTCALRPMCIYG 137
Cdd:cd05240  156 HPELNVTVLRPATILG 171
SDR_e1 cd05235
extended (e) SDRs, subgroup 1; This family consists of an SDR module of multidomain proteins ...
49-119 1.29e-03

extended (e) SDRs, subgroup 1; This family consists of an SDR module of multidomain proteins identified as putative polyketide sythases fatty acid synthases (FAS), and nonribosomal peptide synthases, among others. However, unlike the usual ketoreductase modules of FAS and polyketide synthase, these domains are related to the extended SDRs, and have canonical NAD(P)-binding motifs and an active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187546 [Multi-domain]  Cd Length: 290  Bit Score: 39.94  E-value: 1.29e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 240120132  49 STQNLLEACIQASVPAFIFSSSVDVAGPNSYKDIVLNGHEDEHREST-WSDPYPYSKKMAEKAVLAANGSML 119
Cdd:cd05235  116 GTKELLKLAATGKLKPLHFVSTLSVFSAEEYNALDDEESDDMLESQNgLPNGYIQSKWVAEKLLREAANRGL 187
GalE COG1087
UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis];
49-70 3.12e-03

UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis];


Pssm-ID: 440704 [Multi-domain]  Cd Length: 328  Bit Score: 38.84  E-value: 3.12e-03
                         10        20
                 ....*....|....*....|..
gi 240120132  49 STQNLLEACIQASVPAFIFSSS 70
Cdd:COG1087   96 GTLNLLEAMREAGVKRFVFSSS 117
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH