glutathione S-transferase omega-1 [Rattus norvegicus]
glutathione S-transferase omega family protein( domain architecture ID 10122750)
glutathione S-transferase (GST) omega family protein such as class-omega GSTs, which catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins than GSTs
List of domain hits
Name | Accession | Description | Interval | E-value | |||
GST_N_Omega | cd03055 | GST_N family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular ... |
5-94 | 8.82e-53 | |||
GST_N family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. They contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. Polymorphisms of the class Omega GST genes may be associated with the development of some types of cancer and the age-at-onset of both Alzheimer's and Parkinson's diseases. : Pssm-ID: 239353 [Multi-domain] Cd Length: 89 Bit Score: 165.60 E-value: 8.82e-53
|
|||||||
GST_C_Omega | cd03184 | C-terminal, alpha helical domain of Class Omega Glutathione S-transferases; Glutathione ... |
108-229 | 1.08e-47 | |||
C-terminal, alpha helical domain of Class Omega Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. They contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. Polymorphisms of the class Omega GST genes may be associated with the development of some types of cancer and the age-at-onset of both Alzheimer's and Parkinson's diseases. : Pssm-ID: 198293 [Multi-domain] Cd Length: 124 Bit Score: 153.63 E-value: 1.08e-47
|
|||||||
Name | Accession | Description | Interval | E-value | ||||
GST_N_Omega | cd03055 | GST_N family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular ... |
5-94 | 8.82e-53 | ||||
GST_N family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. They contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. Polymorphisms of the class Omega GST genes may be associated with the development of some types of cancer and the age-at-onset of both Alzheimer's and Parkinson's diseases. Pssm-ID: 239353 [Multi-domain] Cd Length: 89 Bit Score: 165.60 E-value: 8.82e-53
|
||||||||
GST_C_Omega | cd03184 | C-terminal, alpha helical domain of Class Omega Glutathione S-transferases; Glutathione ... |
108-229 | 1.08e-47 | ||||
C-terminal, alpha helical domain of Class Omega Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. They contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. Polymorphisms of the class Omega GST genes may be associated with the development of some types of cancer and the age-at-onset of both Alzheimer's and Parkinson's diseases. Pssm-ID: 198293 [Multi-domain] Cd Length: 124 Bit Score: 153.63 E-value: 1.08e-47
|
||||||||
GstA | COG0625 | Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; |
24-210 | 4.97e-39 | ||||
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440390 [Multi-domain] Cd Length: 205 Bit Score: 134.25 E-value: 4.97e-39
|
||||||||
GST_N_2 | pfam13409 | Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. |
31-96 | 1.54e-19 | ||||
Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. Pssm-ID: 433184 [Multi-domain] Cd Length: 68 Bit Score: 79.60 E-value: 1.54e-19
|
||||||||
PLN02817 | PLN02817 | glutathione dehydrogenase (ascorbate) |
32-185 | 3.35e-16 | ||||
glutathione dehydrogenase (ascorbate) Pssm-ID: 166458 [Multi-domain] Cd Length: 265 Bit Score: 75.41 E-value: 3.35e-16
|
||||||||
GST_C | pfam00043 | Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety ... |
143-210 | 1.96e-05 | ||||
Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes. Pssm-ID: 459647 [Multi-domain] Cd Length: 93 Bit Score: 42.27 E-value: 1.96e-05
|
||||||||
O-ClC | TIGR00862 | intracellular chloride channel protein; The Organellar Chloride Channel (O-ClC) Family (TC 1.A. ... |
32-155 | 4.31e-05 | ||||
intracellular chloride channel protein; The Organellar Chloride Channel (O-ClC) Family (TC 1.A.12) Proteins of the O-ClC family are voltage-sensitive chloride channels found in intracellular membranes but not the plasma membranes of animal cells. They are found in human nuclear membranes, and the bovine protein targets to the microsomes, but not the plasma membrane, when expressed in Xenopus laevis oocytes. These proteins are thought to function in the regulation of the membrane potential and in transepithelial ion absorption and secretion in the kidney. [Transport and binding proteins, Anions] Pssm-ID: 129941 [Multi-domain] Cd Length: 236 Bit Score: 43.31 E-value: 4.31e-05
|
||||||||
PRK15113 | PRK15113 | glutathione transferase; |
31-111 | 6.05e-05 | ||||
glutathione transferase; Pssm-ID: 185068 [Multi-domain] Cd Length: 214 Bit Score: 42.64 E-value: 6.05e-05
|
||||||||
GrxC | COG0695 | Glutaredoxin [Posttranslational modification, protein turnover, chaperones]; |
23-54 | 4.04e-03 | ||||
Glutaredoxin [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440459 [Multi-domain] Cd Length: 74 Bit Score: 35.17 E-value: 4.04e-03
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
GST_N_Omega | cd03055 | GST_N family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular ... |
5-94 | 8.82e-53 | ||||
GST_N family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. They contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. Polymorphisms of the class Omega GST genes may be associated with the development of some types of cancer and the age-at-onset of both Alzheimer's and Parkinson's diseases. Pssm-ID: 239353 [Multi-domain] Cd Length: 89 Bit Score: 165.60 E-value: 8.82e-53
|
||||||||
GST_C_Omega | cd03184 | C-terminal, alpha helical domain of Class Omega Glutathione S-transferases; Glutathione ... |
108-229 | 1.08e-47 | ||||
C-terminal, alpha helical domain of Class Omega Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. They contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. Polymorphisms of the class Omega GST genes may be associated with the development of some types of cancer and the age-at-onset of both Alzheimer's and Parkinson's diseases. Pssm-ID: 198293 [Multi-domain] Cd Length: 124 Bit Score: 153.63 E-value: 1.08e-47
|
||||||||
GstA | COG0625 | Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; |
24-210 | 4.97e-39 | ||||
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440390 [Multi-domain] Cd Length: 205 Bit Score: 134.25 E-value: 4.97e-39
|
||||||||
GST_N_2 | pfam13409 | Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. |
31-96 | 1.54e-19 | ||||
Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. Pssm-ID: 433184 [Multi-domain] Cd Length: 68 Bit Score: 79.60 E-value: 1.54e-19
|
||||||||
GST_N_3 | pfam13417 | Glutathione S-transferase, N-terminal domain; |
27-101 | 1.11e-17 | ||||
Glutathione S-transferase, N-terminal domain; Pssm-ID: 433190 [Multi-domain] Cd Length: 75 Bit Score: 74.57 E-value: 1.11e-17
|
||||||||
GST_N_family | cd00570 | Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic ... |
24-94 | 1.60e-17 | ||||
Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK subfamily, a member of the DsbA family). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxin 2 and stringent starvation protein A. Pssm-ID: 238319 [Multi-domain] Cd Length: 71 Bit Score: 74.15 E-value: 1.60e-17
|
||||||||
PLN02817 | PLN02817 | glutathione dehydrogenase (ascorbate) |
32-185 | 3.35e-16 | ||||
glutathione dehydrogenase (ascorbate) Pssm-ID: 166458 [Multi-domain] Cd Length: 265 Bit Score: 75.41 E-value: 3.35e-16
|
||||||||
GST_N | pfam02798 | Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to ... |
23-95 | 3.67e-13 | ||||
Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to a variety of targets. Also included in the alignment, but not GSTs: S-crystallins from squid (similarity to GST previously noted); eukaryotic elongation factors 1-gamma (not known to have GST activity and similarity not previously recognized); HSP26 family of stress-related proteins including auxin-regulated proteins in plants and stringent starvation proteins in E. coli (not known to have GST activity and similarity not previously recognized). The glutathione molecule binds in a cleft between the N- and C-terminal domains - the catalytically important residues are proposed to reside in the N-terminal domain. Pssm-ID: 460698 [Multi-domain] Cd Length: 76 Bit Score: 62.71 E-value: 3.67e-13
|
||||||||
PLN02378 | PLN02378 | glutathione S-transferase DHAR1 |
32-185 | 7.74e-13 | ||||
glutathione S-transferase DHAR1 Pssm-ID: 166019 [Multi-domain] Cd Length: 213 Bit Score: 65.50 E-value: 7.74e-13
|
||||||||
GST_N_SspA | cd03059 | GST_N family, Stringent starvation protein A (SspA) subfamily; SspA is a RNA polymerase (RNAP) ... |
27-97 | 2.41e-12 | ||||
GST_N family, Stringent starvation protein A (SspA) subfamily; SspA is a RNA polymerase (RNAP)-associated protein required for the lytic development of phage P1 and for stationary phase-induced acid tolerance of E. coli. It is implicated in survival during nutrient starvation. SspA adopts the GST fold with an N-terminal TRX-fold domain and a C-terminal alpha helical domain, but it does not bind glutathione (GSH) and lacks GST activity. SspA is highly conserved among gram-negative bacteria. Related proteins found in Neisseria (called RegF), Francisella and Vibrio regulate the expression of virulence factors necessary for pathogenesis. Pssm-ID: 239357 [Multi-domain] Cd Length: 73 Bit Score: 60.42 E-value: 2.41e-12
|
||||||||
GST_N_Phi | cd03053 | GST_N family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related ... |
24-95 | 1.76e-11 | ||||
GST_N family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related fungal and bacterial proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Phi GST subfamily has experience extensive gene duplication. The Arabidopsis and Oryza genomes contain 13 and 16 Phi GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Tau GSTs, showing class specificity in substrate preference. Phi enzymes are highly reactive toward chloroacetanilide and thiocarbamate herbicides. Some Phi GSTs have other functions including transport of flavonoid pigments to the vacuole, shoot regeneration and GSH peroxidase activity. Pssm-ID: 239351 [Multi-domain] Cd Length: 76 Bit Score: 58.43 E-value: 1.76e-11
|
||||||||
GST_N_GTT2_like | cd03051 | GST_N family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly ... |
25-94 | 3.20e-11 | ||||
GST_N family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT2. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT2, a homodimer, exhibits GST activity with standard substrates. Strains with deleted GTT2 genes are viable but exhibit increased sensitivity to heat shock. Pssm-ID: 239349 [Multi-domain] Cd Length: 74 Bit Score: 57.69 E-value: 3.20e-11
|
||||||||
GST_N_Omega_like | cd03060 | GST_N family, Omega-like subfamily; composed of uncharacterized proteins with similarity to ... |
27-87 | 1.76e-10 | ||||
GST_N family, Omega-like subfamily; composed of uncharacterized proteins with similarity to class Omega GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. Like Omega enzymes, proteins in this subfamily contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. Pssm-ID: 239358 [Multi-domain] Cd Length: 71 Bit Score: 55.44 E-value: 1.76e-10
|
||||||||
GST_N_Tau | cd03058 | GST_N family, Class Tau subfamily; GSTs are cytosolic dimeric proteins involved in cellular ... |
33-97 | 1.02e-08 | ||||
GST_N family, Class Tau subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The plant-specific class Tau GST subfamily has undergone extensive gene duplication. The Arabidopsis and Oryza genomes contain 28 and 40 Tau GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Phi GSTs, showing class specificity in substrate preference. Tau enzymes are highly efficient in detoxifying diphenylether and aryloxyphenoxypropionate herbicides. In addition, Tau GSTs play important roles in intracellular signalling, biosynthesis of anthocyanin, responses to soil stresses and responses to auxin and cytokinin hormones. Pssm-ID: 239356 [Multi-domain] Cd Length: 74 Bit Score: 50.74 E-value: 1.02e-08
|
||||||||
GST_C_family | cd00299 | C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione ... |
116-206 | 1.29e-08 | ||||
C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione S-transferase (GST) family, C-terminal alpha helical domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxins, stringent starvation protein A, and aminoacyl-tRNA synthetases. Pssm-ID: 198286 [Multi-domain] Cd Length: 100 Bit Score: 51.35 E-value: 1.29e-08
|
||||||||
PRK10542 | PRK10542 | glutathionine S-transferase; Provisional |
40-210 | 3.88e-08 | ||||
glutathionine S-transferase; Provisional Pssm-ID: 182533 [Multi-domain] Cd Length: 201 Bit Score: 51.99 E-value: 3.88e-08
|
||||||||
GST_N_GTT1_like | cd03046 | GST_N family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly ... |
35-98 | 5.53e-07 | ||||
GST_N family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT1, and the Schizosaccharomyces pombe GST-III. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT1, a homodimer, exhibits GST activity with standard substrates and associates with the endoplasmic reticulum. Its expression is induced after diauxic shift and remains high throughout the stationary phase. S. pombe GST-III is implicated in the detoxification of various metals. Pssm-ID: 239344 [Multi-domain] Cd Length: 76 Bit Score: 45.96 E-value: 5.53e-07
|
||||||||
sspA | PRK09481 | stringent starvation protein A; Provisional |
34-187 | 7.74e-07 | ||||
stringent starvation protein A; Provisional Pssm-ID: 236537 [Multi-domain] Cd Length: 211 Bit Score: 48.17 E-value: 7.74e-07
|
||||||||
GST_N_Zeta | cd03042 | GST_N family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular ... |
45-94 | 2.20e-06 | ||||
GST_N family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Zeta GSTs, also known as maleylacetoacetate (MAA) isomerases, catalyze the isomerization of MAA to fumarylacetoacetate, the penultimate step in tyrosine/phenylalanine catabolism, using GSH as a cofactor. They show little GSH-conjugating activity towards traditional GST substrates but display modest GSH peroxidase activity. They are also implicated in the detoxification of the carcinogen dichloroacetic acid by catalyzing its dechlorination to glyoxylic acid. Pssm-ID: 239340 [Multi-domain] Cd Length: 73 Bit Score: 44.10 E-value: 2.20e-06
|
||||||||
GST_C_Tau | cd03185 | C-terminal, alpha helical domain of Class Tau Glutathione S-transferases; Glutathione ... |
122-212 | 1.64e-05 | ||||
C-terminal, alpha helical domain of Class Tau Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Tau subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The plant-specific class Tau GST subfamily has undergone extensive gene duplication. The Arabidopsis and Oryza genomes contain 28 and 40 Tau GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Phi GSTs, showing class specificity in substrate preference. Tau enzymes are highly efficient in detoxifying diphenylether and aryloxyphenoxypropionate herbicides. In addition, Tau GSTs play important roles in intracellular signalling, biosynthesis of anthocyanin, responses to soil stresses and responses to auxin and cytokinin hormones. Pssm-ID: 198294 [Multi-domain] Cd Length: 127 Bit Score: 42.94 E-value: 1.64e-05
|
||||||||
GST_N_3 | cd03049 | GST_N family, unknown subfamily 3; composed of uncharacterized bacterial proteins with ... |
33-94 | 1.79e-05 | ||||
GST_N family, unknown subfamily 3; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Pssm-ID: 239347 [Multi-domain] Cd Length: 73 Bit Score: 41.86 E-value: 1.79e-05
|
||||||||
GST_C | pfam00043 | Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety ... |
143-210 | 1.96e-05 | ||||
Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes. Pssm-ID: 459647 [Multi-domain] Cd Length: 93 Bit Score: 42.27 E-value: 1.96e-05
|
||||||||
GST_N_etherase_LigE | cd03038 | GST_N family, Beta etherase LigE subfamily; composed of proteins similar to Sphingomonas ... |
31-98 | 2.41e-05 | ||||
GST_N family, Beta etherase LigE subfamily; composed of proteins similar to Sphingomonas paucimobilis beta etherase, LigE, a GST-like protein that catalyzes the cleavage of the beta-aryl ether linkages present in low-moleculer weight lignins using GSH as the hydrogen donor. This reaction is an essential step in the degradation of lignin, a complex phenolic polymer that is the most abundant aromatic material in the biosphere. The beta etherase activity of LigE is enantioselective and it complements the activity of the other GST family beta etherase, LigF. Pssm-ID: 239336 [Multi-domain] Cd Length: 84 Bit Score: 41.56 E-value: 2.41e-05
|
||||||||
O-ClC | TIGR00862 | intracellular chloride channel protein; The Organellar Chloride Channel (O-ClC) Family (TC 1.A. ... |
32-155 | 4.31e-05 | ||||
intracellular chloride channel protein; The Organellar Chloride Channel (O-ClC) Family (TC 1.A.12) Proteins of the O-ClC family are voltage-sensitive chloride channels found in intracellular membranes but not the plasma membranes of animal cells. They are found in human nuclear membranes, and the bovine protein targets to the microsomes, but not the plasma membrane, when expressed in Xenopus laevis oocytes. These proteins are thought to function in the regulation of the membrane potential and in transepithelial ion absorption and secretion in the kidney. [Transport and binding proteins, Anions] Pssm-ID: 129941 [Multi-domain] Cd Length: 236 Bit Score: 43.31 E-value: 4.31e-05
|
||||||||
PRK15113 | PRK15113 | glutathione transferase; |
31-111 | 6.05e-05 | ||||
glutathione transferase; Pssm-ID: 185068 [Multi-domain] Cd Length: 214 Bit Score: 42.64 E-value: 6.05e-05
|
||||||||
GST_N_4 | cd03056 | GST_N family, unknown subfamily 4; composed of uncharacterized bacterial proteins with ... |
46-93 | 6.44e-05 | ||||
GST_N family, unknown subfamily 4; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Pssm-ID: 239354 [Multi-domain] Cd Length: 73 Bit Score: 40.25 E-value: 6.44e-05
|
||||||||
PRK10357 | PRK10357 | putative glutathione S-transferase; Provisional |
33-107 | 1.26e-04 | ||||
putative glutathione S-transferase; Provisional Pssm-ID: 182405 [Multi-domain] Cd Length: 202 Bit Score: 41.63 E-value: 1.26e-04
|
||||||||
GST_N_Beta | cd03057 | GST_N family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular ... |
40-98 | 3.84e-04 | ||||
GST_N family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Unlike mammalian GSTs which detoxify a broad range of compounds, the bacterial class Beta GSTs exhibit limited GSH conjugating activity with a narrow range of substrates. In addition to GSH conjugation, they also bind antibiotics and reduce the antimicrobial activity of beta-lactam drugs. The structure of the Proteus mirabilis enzyme reveals that the cysteine in the active site forms a covalent bond with GSH. Pssm-ID: 239355 [Multi-domain] Cd Length: 77 Bit Score: 37.90 E-value: 3.84e-04
|
||||||||
GST_N_CLIC | cd03061 | GST_N family, Chloride Intracellular Channel (CLIC) subfamily; composed of CLIC1-5, p64, ... |
32-73 | 5.14e-04 | ||||
GST_N family, Chloride Intracellular Channel (CLIC) subfamily; composed of CLIC1-5, p64, parchorin and similar proteins. They are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division and apoptosis. They can exist in both water-soluble and membrane-bound states, and are found in various vesicles and membranes. Biochemical studies of the C. elegans homolog, EXC-4, show that the membrane localization domain is present in the N-terminal part of the protein. The structure of soluble human CLIC1 reveals that it is monomeric and it adopts a fold similar to GSTs, containing an N-terminal domain with a TRX fold and a C-terminal alpha helical domain. Upon oxidation, the N-terminal domain of CLIC1 undergoes a structural change to form a non-covalent dimer stabilized by the formation of an intramolecular disulfide bond between two cysteines that are far apart in the reduced form. The CLIC1 dimer bears no similarity to GST dimers. The redox-controlled structural rearrangement exposes a large hydrophobic surface, which is masked by dimerization in vitro. In vivo, this surface may represent the docking interface of CLIC1 in its membrane-bound state. The two cysteines in CLIC1 that form the disulfide bond in oxidizing conditions are essential for dimerization and chloride channel activity, however, in other subfamily members, the second cysteine is not conserved. Pssm-ID: 239359 Cd Length: 91 Bit Score: 38.12 E-value: 5.14e-04
|
||||||||
PRK10387 | PRK10387 | glutaredoxin 2; Provisional |
32-206 | 9.96e-04 | ||||
glutaredoxin 2; Provisional Pssm-ID: 236679 [Multi-domain] Cd Length: 210 Bit Score: 39.09 E-value: 9.96e-04
|
||||||||
GST_C_3 | pfam14497 | Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043. |
132-210 | 1.07e-03 | ||||
Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043. Pssm-ID: 464190 [Multi-domain] Cd Length: 104 Bit Score: 37.54 E-value: 1.07e-03
|
||||||||
PLN02473 | PLN02473 | glutathione S-transferase |
22-77 | 1.78e-03 | ||||
glutathione S-transferase Pssm-ID: 166114 [Multi-domain] Cd Length: 214 Bit Score: 38.43 E-value: 1.78e-03
|
||||||||
GRX_family | cd02066 | Glutaredoxin (GRX) family; composed of GRX, approximately 10 kDa in size, and proteins ... |
24-75 | 2.93e-03 | ||||
Glutaredoxin (GRX) family; composed of GRX, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including human GRX1 and GRX2, as well as E. coli GRX1 and GRX3, which are members of this family. E. coli GRX2, however, is a 24-kDa protein that belongs to the GSH S-transferase (GST) family. Pssm-ID: 239017 [Multi-domain] Cd Length: 72 Bit Score: 35.52 E-value: 2.93e-03
|
||||||||
GST_C_MetRS_N | cd10307 | Glutathione S-transferase C-terminal-like, alpha helical domain of Methionyl-tRNA synthetase ... |
121-187 | 3.14e-03 | ||||
Glutathione S-transferase C-terminal-like, alpha helical domain of Methionyl-tRNA synthetase from higher eukaryotes; Glutathione S-transferase (GST) C-terminal domain family, Methionyl-tRNA synthetase (MetRS) subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of MetRS from higher eukaryotes. Aminoacyl-tRNA synthetases (aaRSs) comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. MetRS is a class I aaRS, containing a Rossman fold catalytic core. It recognizes the initiator tRNA as well as the Met-tRNA for protein chain elongation. The GST_C-like domain of MetRS from higher eukaryotes is likely involved in protein-protein interactions, to mediate the formation of the multi-aaRS complex that acts as a molecular hub to coordinate protein synthesis. AaRSs from prokaryotes, which are active as dimers, do not contain this GST_C-like domain. Pssm-ID: 198340 [Multi-domain] Cd Length: 102 Bit Score: 36.32 E-value: 3.14e-03
|
||||||||
GST_N_EF1Bgamma | cd03044 | GST_N family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part ... |
26-93 | 3.76e-03 | ||||
GST_N family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal TRX-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in protein biosynthesis, EF1Bgamma may also display other functions. The recombinant rice protein has been shown to possess GSH conjugating activity. The yeast EF1Bgamma binds membranes in a calcium dependent manner and is also part of a complex that binds to the msrA (methionine sulfoxide reductase) promoter suggesting a function in the regulation of its gene expression. Pssm-ID: 239342 [Multi-domain] Cd Length: 75 Bit Score: 35.31 E-value: 3.76e-03
|
||||||||
GrxC | COG0695 | Glutaredoxin [Posttranslational modification, protein turnover, chaperones]; |
23-54 | 4.04e-03 | ||||
Glutaredoxin [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440459 [Multi-domain] Cd Length: 74 Bit Score: 35.17 E-value: 4.04e-03
|
||||||||
Blast search parameters | ||||
|