major facilitator superfamily (MFS) transporter facilitates the transport across cytoplasmic or internal membranes of one or more from a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ...
13-320
3.80e-101
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated.
The actual alignment was detected with superfamily member cd17390:
Pssm-ID: 475125 [Multi-domain] Cd Length: 350 Bit Score: 301.45 E-value: 3.80e-101
Major facilitator superfamily domain-containing protein 9; Major facilitator superfamily ...
13-320
3.80e-101
Major facilitator superfamily domain-containing protein 9; Major facilitator superfamily domain-containing protein 9 (MFSD9) is expressed in the central nervous system (CNS) and in most peripheral tissues but at very low expression levels. The function of MFSD9 is unknown. MFSD9 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340948 [Multi-domain] Cd Length: 350 Bit Score: 301.45 E-value: 3.80e-101
Major facilitator superfamily domain-containing protein 9; Major facilitator superfamily ...
13-320
3.80e-101
Major facilitator superfamily domain-containing protein 9; Major facilitator superfamily domain-containing protein 9 (MFSD9) is expressed in the central nervous system (CNS) and in most peripheral tissues but at very low expression levels. The function of MFSD9 is unknown. MFSD9 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340948 [Multi-domain] Cd Length: 350 Bit Score: 301.45 E-value: 3.80e-101
Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of the eukaryotic proteins MFSD9, MFSD10, MFSD14, and SLC46 family proteins, as well as bacterial multidrug resistance (MDR) transporters such as tetracycline resistance protein TetA and multidrug resistance protein MdtG. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. TetA proteins confer resistance to tetracycline while MdtG confers resistance to fosfomycin and deoxycholate. The Solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3), the best-studied of which is SLC46A1, which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. MFSD10 facilitates the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs) and confers resistance to such NSAIDs. The SLC46/TetA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340888 [Multi-domain] Cd Length: 349 Bit Score: 132.70 E-value: 6.45e-36
Solute carrier family 22 member 18 of the Major Facilitator Superfamily of transporters; ...
13-317
2.93e-25
Solute carrier family 22 member 18 of the Major Facilitator Superfamily of transporters; Solute carrier family 22 member 18 (SLC22A18) is also called Beckwith-Wiedemann syndrome chromosomal region 1 candidate gene A protein (BWR1A or BWSCR1A), efflux transporter-like protein, imprinted multi-membrane-spanning polyspecific transporter-related protein 1 (IMPT1), organic cation transporter-like protein 2 (ORCTL2), or tumor-suppressing subchromosomal transferable fragment candidate gene 5 protein (TSSC5). It is localized at the apical membrane surface of renal proximal tubules and may act as an organic cation/proton antiporter. It functions as a tumor suppressor in several cancer types including glioblastoma and colorectal cancer. SLC22A18 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340889 [Multi-domain] Cd Length: 382 Bit Score: 104.61 E-value: 2.93e-25
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ...
13-317
1.74e-17
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 82.24 E-value: 1.74e-17
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ...
3-317
1.75e-10
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated.
Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 61.29 E-value: 1.75e-10
Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major ...
13-314
4.73e-09
Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major Facilitator Superfamily; This family is composed of Bacillus subtilis multidrug efflux protein YfmO, bacillibactin exporter YmfD/YmfE, uncharacterized MFS-type transporter YvmA, and similar proteins. YfmO acts to efflux copper or a copper complex, and could contribute to copper resistance. YmfD/YmfE is involved in secretion of bacillibactin. The YfmO-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 341027 [Multi-domain] Cd Length: 374 Bit Score: 57.20 E-value: 4.73e-09
Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; ...
13-315
6.52e-08
Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; This family includes a group of putative arabinose efflux permease family transporters, such as alpha proteobacterium quinolone resistance protein NorA (characterized Staphylococcus aureus Quinolone resistance protein NorA belongs to a different group), Desulfovibrio dechloracetivorans bacillibactin exporter, Vibrio aerogenes antiseptic resistance protein. The biological function of those transporters remain unclear. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 341026 [Multi-domain] Cd Length: 374 Bit Score: 53.35 E-value: 6.52e-08
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ...
13-77
2.45e-06
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 48.73 E-value: 2.45e-06
Tetracycline resistance protein TetA and related proteins of the Major Facilitator Superfamily ...
13-315
2.75e-06
Tetracycline resistance protein TetA and related proteins of the Major Facilitator Superfamily of transporters; This subfamily is composed of tetracycline resistance proteins similar to Escherichia coli TetA(A), TetA(B), and TetA(E), which are metal-tetracycline/H(+) antiporters that confer resistance to tetracycline by an active tetracycline efflux, which is an energy-dependent process that decreases the accumulation of the antibiotic in cells. TetA-like tetracycline resistance proteins belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340946 [Multi-domain] Cd Length: 385 Bit Score: 48.40 E-value: 2.75e-06
Major facilitator superfamily domain-containing protein 10; Major facilitator superfamily ...
185-315
3.41e-05
Major facilitator superfamily domain-containing protein 10; Major facilitator superfamily domain-containing protein 10 (MFSD10) is also called tetracycline transporter-like protein (TETRAN). It is expressed in various human tissues, including the kidney. In cultured cells, its overexpression facilitated the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs). MFSD10/TETRAN overexpression cause resistance to some NSAIDs, suggesting that it may be an organic anion transporter that serves as an efflux pump for some NSAIDs and various other organic anions at the final excretion step. MFSD10 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340947 [Multi-domain] Cd Length: 391 Bit Score: 45.34 E-value: 3.41e-05
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the ...
12-291
4.69e-05
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MdtH and similar multidrug resistance (MDR) transporters from bacteria and archaea, many of which remain uncharacterized. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtH confers resistance to norfloxacin and enoxacin. MdtH-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340887 [Multi-domain] Cd Length: 376 Bit Score: 44.53 E-value: 4.69e-05
Hexuronate transporter, Glucarate transporter, and similar transporters of the Major ...
2-77
1.49e-04
Hexuronate transporter, Glucarate transporter, and similar transporters of the Major Facilitator Superfamily; This family is composed of predominantly bacterial transporters for hexuronate (ExuT), glucarate (GudP), galactarate (GarP), and galactonate (DgoT). They mediate the uptake of these compounds into the cell. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340877 [Multi-domain] Cd Length: 358 Bit Score: 42.94 E-value: 1.49e-04
Saccharomyces cerevisiae Azole resistance protein 1 (Azr1p), and similar multidrug resistance ...
13-51
1.52e-04
Saccharomyces cerevisiae Azole resistance protein 1 (Azr1p), and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of multidrug resistance (MDR) transporters including various Saccharomyces cerevisiae proteins such as azole resistance protein 1 (Azr1p), vacuolar basic amino acid transporter 1 (Vba1p), vacuolar basic amino acid transporter 5 (Vba5p), and Sge1p (also known as Nor1p, 10-N-nonyl acridine orange resistance protein, and crystal violet resistance protein). MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 341045 [Multi-domain] Cd Length: 337 Bit Score: 42.94 E-value: 1.52e-04
Yeast Polyamine transporter 1 (Tpo1) and similar multidrug resistance (MDR) transporters of ...
2-78
2.43e-04
Yeast Polyamine transporter 1 (Tpo1) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of fungal multidrug resistance (MDR) transporters including several proteins from Saccharomyces cerevisiae such as polyamine transporters 1-4 (Tpo1-4), quinidine resistance proteins 1-3 (Qdr1-3), dityrosine transporter 1 (Dtr1), fluconazole resistance protein 1 (Flr1), and protein HOL1. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, Flr1 confers resistance to the azole derivative fluconazole while Tpo1 confers resistance and adaptation to quinidine and ketoconazole. The polyamine transporters are involved in the detoxification of excess polyamines in the cytoplasm. Tpo1-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340881 [Multi-domain] Cd Length: 376 Bit Score: 42.56 E-value: 2.43e-04
Fungal trichothecene efflux pump (TRI12) of the Major Facilitator Superfamily of transporters; ...
12-78
5.80e-04
Fungal trichothecene efflux pump (TRI12) of the Major Facilitator Superfamily of transporters; This family includes Fusarium sporotrichioides trichothecene efflux pump (TRI12), which may play a role in F. sporotrichioides self-protection against trichothecenes. TRI12 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340868 [Multi-domain] Cd Length: 518 Bit Score: 41.46 E-value: 5.80e-04
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance ...
13-69
6.64e-04
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340879 [Multi-domain] Cd Length: 370 Bit Score: 41.00 E-value: 6.64e-04
Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the ...
13-95
8.87e-04
Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli multidrug resistance protein MdtG, Streptococcus pneumoniae multidrug resistance efflux pump PmrA, and similar multidrug resistance (MDR) transporters from bacteria. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtG confers resistance to fosfomycin and deoxycholate. PmrA serves as an efflux pump for various substrates and is associated with fluoroquinolone resistance. MdtG-like MDR transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340949 [Multi-domain] Cd Length: 380 Bit Score: 40.71 E-value: 8.87e-04
Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of ...
11-317
1.67e-03
Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of Streptococcus pyogenes macrolide efflux protein A (MefA) and similar transporters, many of which remain uncharacterized. Some members may be multidrug resistance (MDR) transporters, which are drug/H+ antiporters (DHAs) that mediate the efflux of a variety of drugs and toxic compounds, conferring resistance to these compounds. MefA confers resistance to 14-membered macrolides including erythromycin and to 15-membered macrolides. It functions as an efflux pump to regulate intracellular macrolide levels. The MefA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340863 [Multi-domain] Cd Length: 383 Bit Score: 39.91 E-value: 1.67e-03
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ...
13-102
5.36e-03
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 38.34 E-value: 5.36e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options