1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2 isoform X1 [Pan troglodytes]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
PI-PLCc_beta2 | cd08624 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta2; This subfamily ... |
311-649 | 0e+00 | ||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta2; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozyme 2. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-beta2 is expressed at highest levels in cells of hematopoietic origin. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. : Pssm-ID: 176561 [Multi-domain] Cd Length: 261 Bit Score: 563.91 E-value: 0e+00
|
||||||||||
EFh_PI-PLCbeta2 | cd16209 | EF-hand motif found in phosphoinositide phospholipase C beta 2 (PI-PLC-beta2); PI-PLC-beta2, ... |
149-299 | 1.26e-102 | ||||||
EF-hand motif found in phosphoinositide phospholipase C beta 2 (PI-PLC-beta2); PI-PLC-beta2, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2, or phospholipase C-beta-2 (PLC-beta2), is expressed at highest levels in cells of hematopoietic origin. It is activated by the heterotrimeric G protein alpha q subunits (G alpha(q)) through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. PI-PLC-beta2 has two cellular binding partners, alpha- and gamma-synuclein. The binding of either alpha- and gamma-synuclein inhibits PI-PLC-beta2 activity through preventing the binding of its activator G alpha(q). However, the binding of gamma-synuclein to PI-PLC-beta2 does not affect its binding to G beta(gamma) subunits or small G proteins, but enhances these signals. Meanwhile, gamma-synuclein may protect PI-PLC-beta2 from protease degradation and contribute to its over-expression in breast cancer. In leukocytes, the G beta(gamma)-mediated activation of PI-PLC-beta2 can be promoted by a scaffolding protein WDR26, which is also required for the translocation of PI-PLC-beta2 from the cytosol to the membrane in polarized leukocytes. PI-PLC-beta2 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, it has a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. : Pssm-ID: 320039 Cd Length: 151 Bit Score: 321.06 E-value: 1.26e-102
|
||||||||||
PLC-beta_C | pfam08703 | PLC-beta C terminal; This domain corresponds to the alpha helical C terminal domain of ... |
1069-1210 | 3.74e-77 | ||||||
PLC-beta C terminal; This domain corresponds to the alpha helical C terminal domain of phospholipase C beta. : Pssm-ID: 462571 [Multi-domain] Cd Length: 176 Bit Score: 251.91 E-value: 3.74e-77
|
||||||||||
PH_14 | pfam17787 | PH domain; This entry corresponds to the PH domain found at the N-terminus of phospholipase C ... |
12-141 | 4.22e-69 | ||||||
PH domain; This entry corresponds to the PH domain found at the N-terminus of phospholipase C enzymes. : Pssm-ID: 465506 Cd Length: 131 Bit Score: 227.26 E-value: 4.22e-69
|
||||||||||
C2_PLC_like | cd00275 | C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in ... |
681-802 | 9.43e-38 | ||||||
C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to d-myo-inositol-1,4,5-trisphosphate (1,4,5-IP3) and sn-1,2-diacylglycerol (DAG). 1,4,5-IP3 and DAG are second messengers in eukaryotic signal transduction cascades. PLC is composed of a N-terminal PH domain followed by a series of EF hands, a catalytic TIM barrel and a C-terminal C2 domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-II topology. : Pssm-ID: 175974 [Multi-domain] Cd Length: 128 Bit Score: 137.67 E-value: 9.43e-38
|
||||||||||
Name | Accession | Description | Interval | E-value | |||||||||
PI-PLCc_beta2 | cd08624 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta2; This subfamily ... |
311-649 | 0e+00 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta2; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozyme 2. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-beta2 is expressed at highest levels in cells of hematopoietic origin. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. Pssm-ID: 176561 [Multi-domain] Cd Length: 261 Bit Score: 563.91 E-value: 0e+00
|
|||||||||||||
EFh_PI-PLCbeta2 | cd16209 | EF-hand motif found in phosphoinositide phospholipase C beta 2 (PI-PLC-beta2); PI-PLC-beta2, ... |
149-299 | 1.26e-102 | |||||||||
EF-hand motif found in phosphoinositide phospholipase C beta 2 (PI-PLC-beta2); PI-PLC-beta2, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2, or phospholipase C-beta-2 (PLC-beta2), is expressed at highest levels in cells of hematopoietic origin. It is activated by the heterotrimeric G protein alpha q subunits (G alpha(q)) through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. PI-PLC-beta2 has two cellular binding partners, alpha- and gamma-synuclein. The binding of either alpha- and gamma-synuclein inhibits PI-PLC-beta2 activity through preventing the binding of its activator G alpha(q). However, the binding of gamma-synuclein to PI-PLC-beta2 does not affect its binding to G beta(gamma) subunits or small G proteins, but enhances these signals. Meanwhile, gamma-synuclein may protect PI-PLC-beta2 from protease degradation and contribute to its over-expression in breast cancer. In leukocytes, the G beta(gamma)-mediated activation of PI-PLC-beta2 can be promoted by a scaffolding protein WDR26, which is also required for the translocation of PI-PLC-beta2 from the cytosol to the membrane in polarized leukocytes. PI-PLC-beta2 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, it has a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Pssm-ID: 320039 Cd Length: 151 Bit Score: 321.06 E-value: 1.26e-102
|
|||||||||||||
PI-PLC-X | pfam00388 | Phosphatidylinositol-specific phospholipase C, X domain; This associates with pfam00387 to ... |
314-462 | 2.51e-79 | |||||||||
Phosphatidylinositol-specific phospholipase C, X domain; This associates with pfam00387 to form a single structural unit. Pssm-ID: 459795 [Multi-domain] Cd Length: 142 Bit Score: 256.66 E-value: 2.51e-79
|
|||||||||||||
PLC-beta_C | pfam08703 | PLC-beta C terminal; This domain corresponds to the alpha helical C terminal domain of ... |
1069-1210 | 3.74e-77 | |||||||||
PLC-beta C terminal; This domain corresponds to the alpha helical C terminal domain of phospholipase C beta. Pssm-ID: 462571 [Multi-domain] Cd Length: 176 Bit Score: 251.91 E-value: 3.74e-77
|
|||||||||||||
PH_14 | pfam17787 | PH domain; This entry corresponds to the PH domain found at the N-terminus of phospholipase C ... |
12-141 | 4.22e-69 | |||||||||
PH domain; This entry corresponds to the PH domain found at the N-terminus of phospholipase C enzymes. Pssm-ID: 465506 Cd Length: 131 Bit Score: 227.26 E-value: 4.22e-69
|
|||||||||||||
PLCXc | smart00148 | Phospholipase C, catalytic domain (part); domain X; Phosphoinositide-specific phospholipases C. ... |
314-463 | 6.79e-65 | |||||||||
Phospholipase C, catalytic domain (part); domain X; Phosphoinositide-specific phospholipases C. These enzymes contain 2 regions (X and Y) which together form a TIM barrel-like structure containing the active site residues. Phospholipase C enzymes (PI-PLC) act as signal transducers that generate two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. The bacterial enzyme appears to be a homologue of the mammalian PLCs. Pssm-ID: 197543 [Multi-domain] Cd Length: 143 Bit Score: 215.99 E-value: 6.79e-65
|
|||||||||||||
PLN02228 | PLN02228 | Phosphoinositide phospholipase C |
217-786 | 3.30e-58 | |||||||||
Phosphoinositide phospholipase C Pssm-ID: 177873 [Multi-domain] Cd Length: 567 Bit Score: 211.43 E-value: 3.30e-58
|
|||||||||||||
PH_PLC_beta | cd13361 | Phospholipase C-beta (PLC-beta) pleckstrin homology (PH) domain; PLC-beta (PLCbeta) is ... |
17-144 | 4.73e-56 | |||||||||
Phospholipase C-beta (PLC-beta) pleckstrin homology (PH) domain; PLC-beta (PLCbeta) is regulated by heterotrimeric G protein-coupled receptors through their C2 domain and long C-terminal extension which forms an autoinhibitory helix. There are four isoforms: PLC-beta1-4. The PH domain of PLC-beta2 and PLC-beta3 plays a dual role, much like PLC-delta1, by binding to the plasma membrane, as well as the interaction site for the catalytic activator. However, PLC-beta binds to the lipid surface independent of PIP2. PLC-beta1 seems to play unspecified roles in cellular proliferation and differentiation. PLC-beta consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves, a C2 domain and a C-terminal PDZ. Members of the Rho GTPase family (e.g., Rac1, Rac2, Rac3, and cdc42) have been implicated in their activation by binding to an alternate site on the N-terminal PH domain. A basic amino acid region within the enzyme's long C-terminal tail appears to function as a Nuclear Localization Signal for import into the nucleus. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.the plasma membrane, but only a few (less than 10%) display strong specificity in binding inositol phosphates. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinases, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, cytoskeletal associated molecules, and in lipid associated enzymes. Pssm-ID: 270167 Cd Length: 127 Bit Score: 190.09 E-value: 4.73e-56
|
|||||||||||||
C2_PLC_like | cd00275 | C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in ... |
681-802 | 9.43e-38 | |||||||||
C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to d-myo-inositol-1,4,5-trisphosphate (1,4,5-IP3) and sn-1,2-diacylglycerol (DAG). 1,4,5-IP3 and DAG are second messengers in eukaryotic signal transduction cascades. PLC is composed of a N-terminal PH domain followed by a series of EF hands, a catalytic TIM barrel and a C-terminal C2 domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-II topology. Pssm-ID: 175974 [Multi-domain] Cd Length: 128 Bit Score: 137.67 E-value: 9.43e-38
|
|||||||||||||
C2 | smart00239 | Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, ... |
683-779 | 7.43e-14 | |||||||||
Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. Pssm-ID: 214577 [Multi-domain] Cd Length: 101 Bit Score: 68.67 E-value: 7.43e-14
|
|||||||||||||
C2 | pfam00168 | C2 domain; |
683-776 | 3.34e-10 | |||||||||
C2 domain; Pssm-ID: 425499 [Multi-domain] Cd Length: 104 Bit Score: 58.48 E-value: 3.34e-10
|
|||||||||||||
EF-hand_like | pfam09279 | Phosphoinositide-specific phospholipase C, efhand-like; Members of this family are ... |
215-303 | 3.01e-08 | |||||||||
Phosphoinositide-specific phospholipase C, efhand-like; Members of this family are predominantly found in phosphoinositide-specific phospholipase C. They adopt a structure consisting of a core of four alpha helices, in an EF like fold, and are required for functioning of the enzyme. Pssm-ID: 401279 [Multi-domain] Cd Length: 85 Bit Score: 52.25 E-value: 3.01e-08
|
|||||||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
1076-1197 | 9.02e-06 | |||||||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 48.38 E-value: 9.02e-06
|
|||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
1057-1242 | 1.90e-05 | |||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 49.28 E-value: 1.90e-05
|
|||||||||||||
GBP_C | cd16269 | Guanylate-binding protein, C-terminal domain; Guanylate-binding protein (GBP), C-terminal ... |
1058-1180 | 5.18e-05 | |||||||||
Guanylate-binding protein, C-terminal domain; Guanylate-binding protein (GBP), C-terminal domain. Guanylate-binding proteins (GBPs) are synthesized after activation of the cell by interferons. The biochemical properties of GBPs are clearly different from those of Ras-like and heterotrimeric GTP-binding proteins. They bind guanine nucleotides with low affinity (micromolar range), are stable in their absence, and have a high turnover GTPase. In addition to binding GDP/GTP, they have the unique ability to bind GMP with equal affinity and hydrolyze GTP not only to GDP, but also to GMP. This C-terminal domain has been shown to mediate inhibition of endothelial cell proliferation by inflammatory cytokines. Pssm-ID: 293879 [Multi-domain] Cd Length: 291 Bit Score: 46.80 E-value: 5.18e-05
|
|||||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
1068-1197 | 1.17e-04 | |||||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 46.60 E-value: 1.17e-04
|
|||||||||||||
CDC37_N | smart01071 | Cdc37 N terminal kinase binding; Cdc37 is a molecular chaperone required for the activity of ... |
1078-1175 | 2.77e-03 | |||||||||
Cdc37 N terminal kinase binding; Cdc37 is a molecular chaperone required for the activity of numerous eukaryotic protein kinases. This domain corresponds to the N terminal domain which binds predominantly to protein kinases.and is found N terminal to the Hsp (Heat shocked protein) 90-binding domain. Expression of a construct consisting of only the N-terminal domain of Saccharomyces pombe Cdc37 results in cellular viability. This indicates that interactions with the cochaperone Hsp90 may not be essential for Cdc37 function. Pssm-ID: 198139 [Multi-domain] Cd Length: 154 Bit Score: 39.71 E-value: 2.77e-03
|
|||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||
PI-PLCc_beta2 | cd08624 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta2; This subfamily ... |
311-649 | 0e+00 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta2; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozyme 2. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-beta2 is expressed at highest levels in cells of hematopoietic origin. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. Pssm-ID: 176561 [Multi-domain] Cd Length: 261 Bit Score: 563.91 E-value: 0e+00
|
|||||||||||||
PI-PLCc_beta | cd08591 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta; This subfamily ... |
311-649 | 0e+00 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are four PLC-beta isozymes (1-4). They are activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. The beta-gamma subunits of heterotrimeric G proteins are known to activate the PLC-beta2 and -beta3 isozymes only. Aside from four PLC-beta isozymes identified in mammals, some eukaryotic PLC-beta homologs have been classified into this subfamily, such as NorpA and PLC-21 from Drosophila and PLC-beta from turkey, Xenopus, sponge, and hydra. Pssm-ID: 176533 [Multi-domain] Cd Length: 257 Bit Score: 546.55 E-value: 0e+00
|
|||||||||||||
PI-PLCc_beta3 | cd08625 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta3; This subfamily ... |
313-649 | 1.27e-148 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta3; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozyme 3. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-beta3 is widely expressed at highest levels in brain, liver, and parotid gland. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. Pssm-ID: 176562 [Multi-domain] Cd Length: 258 Bit Score: 447.96 E-value: 1.27e-148
|
|||||||||||||
PI-PLCc_eukaryota | cd08558 | Catalytic domain of eukaryotic phosphoinositide-specific phospholipase C and similar proteins; ... |
311-649 | 2.85e-135 | |||||||||
Catalytic domain of eukaryotic phosphoinositide-specific phospholipase C and similar proteins; This family corresponds to the catalytic domain present in eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) and similar proteins. The higher eukaryotic PI-PLCs play a critical role in most signal transduction pathways, controlling numerous cellular events such as cell growth, proliferation, excitation and secretion. They strictly require Ca2+ for the catalytic activity. They display a clear preference towards the hydrolysis of the more highly phosphorylated membrane phospholipids PI-analogues, phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol-4-phosphate (PIP), to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. The eukaryotic PI-PLCs have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains, such as the pleckstrin homology (PH) domain, EF-hand motif, and C2 domain. The catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a linker region. The catalytic mechanism of eukaryotic PI-PLCs is based on general base and acid catalysis utilizing two well conserved histidines and consists of two steps, a phosphotransfer and a phosphodiesterase reaction. The mammalian PI-PLCs consist of 13 isozymes, which are classified into six-subfamilies, PI-PLC-delta (1,3 and 4), -beta(1-4), -gamma(1,2), -epsilon, -zeta, and -eta (1,2). Ca2+ is required for the activation of all forms of mammalian PI-PLCs, and the concentration of calcium influences substrate specificity. This family also includes metazoan phospholipase C related but catalytically inactive proteins (PRIP), which belong to a group of novel inositol trisphosphate binding proteins. Due to the replacement of critical catalytic residues, PRIP does not have PLC enzymatic activity. Pssm-ID: 176501 [Multi-domain] Cd Length: 226 Bit Score: 411.07 E-value: 2.85e-135
|
|||||||||||||
PI-PLCc_beta1 | cd08623 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta1; This subfamily ... |
313-649 | 1.21e-132 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta1; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozyme 1. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-beta1 is expressed at highest levels in specific regions of the brain. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. Pssm-ID: 176560 [Multi-domain] Cd Length: 258 Bit Score: 405.62 E-value: 1.21e-132
|
|||||||||||||
PI-PLCc_beta4 | cd08626 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta4; This subfamily ... |
311-649 | 1.53e-130 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta4; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozyme 4. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-beta4 is expressed in high concentrations in cerebellar Purkinje and granule cells, the median geniculate body, and the lateral geniculate nucleus. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. Pssm-ID: 176563 [Multi-domain] Cd Length: 257 Bit Score: 400.29 E-value: 1.53e-130
|
|||||||||||||
PI-PLCc_delta | cd08593 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta; This subfamily ... |
311-649 | 4.52e-112 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-delta isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-delta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C-terminal C2 domain. This CD corresponds to the catalytic domain which is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are three PI-PLC-delta isozymes (1,3 and 4). PI-PLC-delta1 is relatively well characterized. It is activated by high calcium levels generated by other PI-PLC family members, and therefore functions as a calcium amplifier within the cell. Different PI-PLC-delta isozymes have different tissue distribution and different subcellular locations. PI-PLC-delta1 is mostly a cytoplasmic protein, PI-PLC-delta3 is located in the membrane, and PI-PLC-delta4 is predominantly detected in the cell nucleus. Aside from three PI-PLC-delta isozymes identified in mammals, some eukaryotic PI-PLC-delta homologs have been classified to this CD. Pssm-ID: 176535 [Multi-domain] Cd Length: 257 Bit Score: 350.87 E-value: 4.52e-112
|
|||||||||||||
PI-PLCc | cd00137 | Catalytic domain of prokaryotic and eukaryotic phosphoinositide-specific phospholipase C; This ... |
311-649 | 1.33e-110 | |||||||||
Catalytic domain of prokaryotic and eukaryotic phosphoinositide-specific phospholipase C; This subfamily corresponds to the catalytic domain present in prokaryotic and eukaryotic phosphoinositide-specific phospholipase C (PI-PLC), which is a ubiquitous enzyme catalyzing the cleavage of the sn3-phosphodiester bond in the membrane phosphoinositides (phosphatidylinositol, PI; Phosphatidylinositol-4-phosphate, PIP; phosphatidylinositol 4,5-bisphosphate, PIP2) to yield inositol phosphates (inositol monosphosphate, InsP; inositol diphosphate, InsP2; inositol trisphosphate, InsP3) and diacylglycerol (DAG). The higher eukaryotic PI-PLCs (EC 3.1.4.11) have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. They play a critical role in most signal transduction pathways, controlling numerous cellular events, such as cell growth, proliferation, excitation and secretion. These PI-PLCs strictly require Ca2+ for their catalytic activity. They display a clear preference towards the hydrolysis of the more highly phosphorylated PI-analogues, PIP2 and PIP, to generate two important second messengers, InsP3 and DAG. InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. In contrast, bacterial PI-PLCs contain a single catalytic domain. Although their precise physiological function remains unclear, bacterial PI-PLCs may function as virulence factors in some pathogenic bacteria. They participate in Ca2+-independent PI metabolism. They are characterized as phosphatidylinositol-specific phospholipase C (EC 4.6.1.13) that selectively hydrolyze PI, not PIP or PIP2. The TIM-barrel type catalytic domain in bacterial PI-PLCs is very similar to the one in eukaryotic PI-PLCs, in which the catalytic domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. The catalytic mechanism of both prokaryotic and eukaryotic PI-PLCs is based on general base and acid catalysis utilizing two well conserved histidines, and consists of two steps, a phosphotransfer and a phosphodiesterase reaction. This superfamily also includes a distinctly different type of eukaryotic PLC, glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC), an integral membrane protein characterized in the protozoan parasite Trypanosoma brucei. T. brucei GPI-PLC hydrolyzes the GPI-anchor on the variant specific glycoprotein (VSG), releasing dimyristyl glycerol (DMG), which may facilitate the evasion of the protozoan to the host#s immune system. It does not require Ca2+ for its activity and is more closely related to bacterial PI-PLCs, but not mammalian PI-PLCs. Pssm-ID: 176497 [Multi-domain] Cd Length: 274 Bit Score: 347.71 E-value: 1.33e-110
|
|||||||||||||
EFh_PI-PLCbeta2 | cd16209 | EF-hand motif found in phosphoinositide phospholipase C beta 2 (PI-PLC-beta2); PI-PLC-beta2, ... |
149-299 | 1.26e-102 | |||||||||
EF-hand motif found in phosphoinositide phospholipase C beta 2 (PI-PLC-beta2); PI-PLC-beta2, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2, or phospholipase C-beta-2 (PLC-beta2), is expressed at highest levels in cells of hematopoietic origin. It is activated by the heterotrimeric G protein alpha q subunits (G alpha(q)) through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. PI-PLC-beta2 has two cellular binding partners, alpha- and gamma-synuclein. The binding of either alpha- and gamma-synuclein inhibits PI-PLC-beta2 activity through preventing the binding of its activator G alpha(q). However, the binding of gamma-synuclein to PI-PLC-beta2 does not affect its binding to G beta(gamma) subunits or small G proteins, but enhances these signals. Meanwhile, gamma-synuclein may protect PI-PLC-beta2 from protease degradation and contribute to its over-expression in breast cancer. In leukocytes, the G beta(gamma)-mediated activation of PI-PLC-beta2 can be promoted by a scaffolding protein WDR26, which is also required for the translocation of PI-PLC-beta2 from the cytosol to the membrane in polarized leukocytes. PI-PLC-beta2 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, it has a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Pssm-ID: 320039 Cd Length: 151 Bit Score: 321.06 E-value: 1.26e-102
|
|||||||||||||
PI-PLCc_PRIP_metazoa | cd08597 | Catalytic domain of metazoan phospholipase C related, but catalytically inactive protein; This ... |
311-649 | 1.34e-91 | |||||||||
Catalytic domain of metazoan phospholipase C related, but catalytically inactive protein; This family corresponds to the catalytic domain present in metazoan phospholipase C related, but catalytically inactive proteins (PRIP), which belong to a group of novel Inositol 1,4,5-trisphosphate (InsP3) binding protein. PRIP has a primary structure and domain architecture, incorporating a pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain with highly conserved X- and Y-regions split by a linker sequence, and a C-terminal C2 domain, similar to phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11)-delta isoforms. Due to replacement of critical catalytic residues, PRIP do not have PLC enzymatic activity. PRIP consists of two subfamilies, PRIP-1(previously known as p130 or PLC-1), which is predominantly expressed in the brain, and PRIP-2 (previously known as PLC-2), which exhibits a relatively ubiquitous expression. Experiments show both, PRIP-1 and PRIP-2, are involved in InsP3-mediated calcium signaling pathway and GABA(A)receptor-mediated signaling pathway. In addition, PRIP-2 acts as a negative regulator of B-cell receptor signaling and immune responses. Pssm-ID: 176539 [Multi-domain] Cd Length: 260 Bit Score: 295.48 E-value: 1.34e-91
|
|||||||||||||
PI-PLC1c_yeast | cd08598 | Catalytic domain of putative yeast phosphatidylinositide-specific phospholipases C; This ... |
312-646 | 5.41e-88 | |||||||||
Catalytic domain of putative yeast phosphatidylinositide-specific phospholipases C; This family corresponds to the catalytic domain present in a group of putative phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) encoded by PLC1 genes from yeasts, which are homologs of the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain organization. Mammalian PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. The prototype of this CD is protein Plc1p encoded by PLC1 genes from Saccharomyces cerevisiae. Plc1p contains both highly conserved X- and Y- regions of PLC catalytic core domain, as well as a presumptive EF-hand like calcium binding motif. Experiments show that Plc1p displays calcium dependent catalytic properties with high similarity to those of the mammalian PLCs, and plays multiple roles in modulating the membrane/protein interactions in filamentation control. CaPlc1p encoded by CAPLC1 from the closely related yeast Candida albicans, an orthologue of S. cerevisiae Plc1p, is also included in this group. Like Plc1p, CaPlc1p has conserved presumptive catalytic domain, shows PLC activity when expressed in E. coli, and is involved in multiple cellular processes. There are two other gene copies of CAPLC1 in C. albicans, CAPLC2 (also named as PIPLC) and CAPLC3. Experiments show CaPlc1p is the only enzyme in C. albicans which functions as PLC. The biological functions of CAPLC2 and CAPLC3 gene products must be clearly different from CaPlc1p, but their exact roles remain unclear. Moreover, CAPLC2 and CAPLC3 gene products are more similar to extracellular bacterial PI-PLC than to the eukaryotic PI-PLC, and they are not included in this subfamily. Pssm-ID: 176540 [Multi-domain] Cd Length: 231 Bit Score: 284.52 E-value: 5.41e-88
|
|||||||||||||
PI-PLCc_gamma | cd08592 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-gamma; This family ... |
312-649 | 8.92e-88 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-gamma; This family corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-gamma isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-gamma represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C2 domain.The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Unique to PI-PLC-gamma, a second PH domain, two SH2 (Src homology 2) regions, and one SH3 (Src homology 3) region is present within this linker region. There are two PI-PLC-gamma isozymes (1-2). They are activated by receptor and non-receptor tyrosine kinases due to the presence of two SH2 and a single SH3 domain within the linker region. Aside from the two PI-PLC-gamma isozymes identified in mammals, some eukaryotic PI-PLC-gamma homologs have been classified with this subfamily. Pssm-ID: 176534 [Multi-domain] Cd Length: 229 Bit Score: 283.93 E-value: 8.92e-88
|
|||||||||||||
PI-PLCc_delta3 | cd08630 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta3; This subfamily ... |
311-649 | 3.52e-86 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta3; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-delta3 isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-delta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C-terminal C2 domain. This family corresponds to the catalytic domain which is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are three PI-PLC-delta isozymes (1,3 and 4). Unlike PI-PLC-delta 4, PI-PLC-delta1 and 3 possess a putative nuclear export sequence (NES) located in the EF-hand domain, which may be responsible transporting PI-PLC-delta1 and 3 from the cell nucleus. Pssm-ID: 176567 [Multi-domain] Cd Length: 258 Bit Score: 280.37 E-value: 3.52e-86
|
|||||||||||||
PI-PLCc_zeta | cd08595 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-zeta; This family ... |
311-649 | 4.40e-83 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-zeta; This family corresponds to the catalytic domain presenting in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-zeta isozyme. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-zeta represents a class of sperm-specific PI-PLC that has an N-terminal EF-hand domain, a PLC catalytic core domain, and a C-terminal C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There is one PLC-zeta isozyme (1). PLC-zeta plays a fundamental role in vertebrate fertilization by initiating intracellular calcium oscillations that trigger the embryo development. However, the mechanism of its activation still remains unclear. Aside from PI-PLC-zeta identified in mammals, its eukaryotic homologs have been classified with this family. Pssm-ID: 176537 [Multi-domain] Cd Length: 257 Bit Score: 271.81 E-value: 4.40e-83
|
|||||||||||||
PI-PLCc_delta1 | cd08629 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta1; This subfamily ... |
311-649 | 2.38e-82 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta1; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-delta1 isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-delta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C-terminal C2 domain. This subfamily corresponds to the catalytic domain which is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are three PI-PLC-delta isozymes (1,3 and 4). PI-PLC-delta1 is relatively well characterized. It is activated by high calcium levels generated by other PI-PLC family members, and therefore functions as a calcium amplifier within the cell. Unlike PI-PLC-delta 4, PI-PLC-delta1 and 3 possess a putative nuclear export sequence (NES) located in the EF-hand domain, which may be responsible transporting PI-PLC-delta1and 3 from the cell nucleus. Experiments show PI-PLC-delta1 is essential for normal hair formation. Pssm-ID: 176566 [Multi-domain] Cd Length: 258 Bit Score: 269.98 E-value: 2.38e-82
|
|||||||||||||
PI-PLCc_delta4 | cd08631 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta4; This subfamily ... |
311-649 | 3.48e-82 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta4; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-delta4 isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-delta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C-terminal C2 domain. This CD corresponds to the catalytic domain which is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are three PI-PLC-delta isozymes (1,3 and 4). Unlike PI-PLC-delta 1 and 3, a putative nuclear export sequence (NES) located in the EF-hand domain, which may be responsible transporting PI-PLC-delta1 and 3 from the cell nucleus, is not present in PI-PLC-delta4. Experiments show PI-PLC-delta4 is required for the acrosome reaction in fertilization. Pssm-ID: 176568 [Multi-domain] Cd Length: 258 Bit Score: 269.51 E-value: 3.48e-82
|
|||||||||||||
PI-PLCc_epsilon | cd08596 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-epsilon; This family ... |
313-649 | 2.61e-80 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-epsilon; This family corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-epsilon isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-epsilon represents a class of mammalian PI-PLC that has an N-terminal CDC25 homology domain with a guanyl-nucleotide exchange factor (GFF) activity, a pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and two predicted RA (Ras association) domains that are implicated in the binding of small GTPases, such as Ras or Rap, from the Ras family. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There is one PI-PLC-epsilon isozyme (1). PI-PLC-epsilon is activated by G alpha(12/13), G beta gamma, and activated members of Ras and Rho small GTPases. Aside from PI-PLC-epsilon identified in mammals, its eukaryotic homologs have been classified with this family. Pssm-ID: 176538 [Multi-domain] Cd Length: 254 Bit Score: 264.02 E-value: 2.61e-80
|
|||||||||||||
PI-PLC-X | pfam00388 | Phosphatidylinositol-specific phospholipase C, X domain; This associates with pfam00387 to ... |
314-462 | 2.51e-79 | |||||||||
Phosphatidylinositol-specific phospholipase C, X domain; This associates with pfam00387 to form a single structural unit. Pssm-ID: 459795 [Multi-domain] Cd Length: 142 Bit Score: 256.66 E-value: 2.51e-79
|
|||||||||||||
PI-PLCc_eta | cd08594 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-eta; This family ... |
311-649 | 1.24e-77 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-eta; This family corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-eta isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-eta represents a class of neuron-speific PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal tail that terminates with a PDZ-binding motif, a potential interaction site for other signaling proteins. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are two PI-PLC-eta isozymes (1-2), both neuron-specific enzymes. They function as calcium sensors that are activated by small increases in intracellular calcium concentrations. The PI-PLC-eta isozymes are also activated through GPCR stimulation. Aside from the PI-PLC-eta isozymes identified in mammals, their eukaryotic homologs are also present in this family. Pssm-ID: 176536 [Multi-domain] Cd Length: 227 Bit Score: 255.50 E-value: 1.24e-77
|
|||||||||||||
PLC-beta_C | pfam08703 | PLC-beta C terminal; This domain corresponds to the alpha helical C terminal domain of ... |
1069-1210 | 3.74e-77 | |||||||||
PLC-beta C terminal; This domain corresponds to the alpha helical C terminal domain of phospholipase C beta. Pssm-ID: 462571 [Multi-domain] Cd Length: 176 Bit Score: 251.91 E-value: 3.74e-77
|
|||||||||||||
PI-PLCc_eta2 | cd08633 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-eta2; This subfamily ... |
311-649 | 6.71e-76 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-eta2; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-eta isozyme 2. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-eta represents a class of neuron-speific PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal tail that terminates with a PDZ-binding motif, a potential interaction site for other signaling proteins. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-eta2 is a neuron-specific enzyme and expressed in the brain. It may in part function downstream of G-protein-coupled receptors and play an important role in the formation and maintenance of the neuronal network in the postnatal brain. Pssm-ID: 176570 [Multi-domain] Cd Length: 254 Bit Score: 251.88 E-value: 6.71e-76
|
|||||||||||||
PI-PLCc_gamma2 | cd08628 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-gamma2; This subfamily ... |
313-649 | 1.08e-73 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-gamma2; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-gamma isozyme 2. PI-PLC is a signaling enzyme that hydrolyze the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-gamma represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Unique to PI-PLC-gamma2, a second PH domain, two SH2 (Src homology 2) regions, and one SH3 (Src homology 3) region is present within this linker region. PI-PLC-gamma2 is highly expressed in cells of hematopoietic origin. It is activated by receptor and non-receptor tyrosine kinases due to the presence of two SH2 and a single SH3 domain within the linker region. Unlike PI-PLC-gamma1, the activation of PI-PLC-gamma2 may require concurrent stimulation of PI 3-kinase. Pssm-ID: 176565 [Multi-domain] Cd Length: 254 Bit Score: 245.35 E-value: 1.08e-73
|
|||||||||||||
PH_14 | pfam17787 | PH domain; This entry corresponds to the PH domain found at the N-terminus of phospholipase C ... |
12-141 | 4.22e-69 | |||||||||
PH domain; This entry corresponds to the PH domain found at the N-terminus of phospholipase C enzymes. Pssm-ID: 465506 Cd Length: 131 Bit Score: 227.26 E-value: 4.22e-69
|
|||||||||||||
PI-PLCc_eta1 | cd08632 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-eta1; This subfamily ... |
311-649 | 4.35e-69 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-eta1; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-eta isozyme 1. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-eta represents a class of neuron-speific PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal tail that terminates with a PDZ-binding motif, a potential interaction site for other signaling proteins. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-eta1 is a neuron-specific enzyme and expressed in only nerve tissues such as the brain and spinal cord. It may perform a fundamental role in the brain. Pssm-ID: 176569 [Multi-domain] Cd Length: 253 Bit Score: 232.61 E-value: 4.35e-69
|
|||||||||||||
PI-PLCc_gamma1 | cd08627 | Catalytic domain of metazoan phosphoinositide-specific phospholipase C-gamma1; This subfamily ... |
313-649 | 3.40e-68 | |||||||||
Catalytic domain of metazoan phosphoinositide-specific phospholipase C-gamma1; This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-gamma isozyme 1. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-gamma represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Unique to PI-PLC-gamma1, a second PH domain, two SH2 (Src homology 2) regions, and one SH3 (Src homology 3) region is present within this linker region. PI-PLC-gamma1 is ubiquitously expressed. It is activated by receptor and non-receptor tyrosine kinases due to the presence of two SH2 and a single SH3 domain within the linker region. Pssm-ID: 176564 [Multi-domain] Cd Length: 229 Bit Score: 228.76 E-value: 3.40e-68
|
|||||||||||||
EFh_PI-PLCbeta | cd16200 | EF-hand motif found in metazoan phosphoinositide-specific phospholipase C (PI-PLC)-beta ... |
149-299 | 7.27e-66 | |||||||||
EF-hand motif found in metazoan phosphoinositide-specific phospholipase C (PI-PLC)-beta isozymes; PI-PLC-beta isozymes represent a class of metazoan PI-PLCs that hydrolyze the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to propagate diverse intracellular responses that underlie the physiological action of many hormones, neurotransmitters, and growth factors (EC 3.1.4.11). They have been implicated in numerous processes relevant to central nervous system (CNS), including chemotaxis, cardiovascular function, neuronal signaling, and opioid sensitivity. Like other PI-PLC isozymes, PI-PLC-beta isozymes contain a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, they have a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are four PI-PLC-beta isozymes (1-4). PI-PLC-beta1 and PI-PLC-beta3 are expressed in a wide range of tissues and cell types, whereas PI-PLC-beta2 and PI-PLC-beta4 have been found only in hematopoietic and neuronal tissues, respectively. All PI-PLC-beta isozymes are activated by the heterotrimeric G protein alpha subunits of the Gq class through their C2 domain and long C-terminal extension. They are GTPase-activating proteins (GAPs) for these G alpha(q) proteins. PI-PLC-beta2 and PI-PLC-beta3 can also be activated by beta-gamma subunits of the G alpha(i/o) family of heterotrimeric G proteins and the small GTPases such as Rac and Cdc42. This family also includes two invertebrate homologs of PI-PLC-beta, PLC21 from cephalopod retina and No receptor potential A protein (NorpA) from Drosophila melanogaster. Pssm-ID: 320030 [Multi-domain] Cd Length: 153 Bit Score: 219.04 E-value: 7.27e-66
|
|||||||||||||
PLCXc | smart00148 | Phospholipase C, catalytic domain (part); domain X; Phosphoinositide-specific phospholipases C. ... |
314-463 | 6.79e-65 | |||||||||
Phospholipase C, catalytic domain (part); domain X; Phosphoinositide-specific phospholipases C. These enzymes contain 2 regions (X and Y) which together form a TIM barrel-like structure containing the active site residues. Phospholipase C enzymes (PI-PLC) act as signal transducers that generate two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. The bacterial enzyme appears to be a homologue of the mammalian PLCs. Pssm-ID: 197543 [Multi-domain] Cd Length: 143 Bit Score: 215.99 E-value: 6.79e-65
|
|||||||||||||
PLCYc | smart00149 | Phospholipase C, catalytic domain (part); domain Y; Phosphoinositide-specific phospholipases C. ... |
547-661 | 6.52e-63 | |||||||||
Phospholipase C, catalytic domain (part); domain Y; Phosphoinositide-specific phospholipases C. These enzymes contain 2 regions (X and Y) which together form a TIM barrel-like structure containing the active site residues. Phospholipase C enzymes (PI-PLC) act as signal transducers that generate two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. The bacterial enzyme appears to be a homologue of the mammalian PLCs. Pssm-ID: 128454 [Multi-domain] Cd Length: 115 Bit Score: 209.02 E-value: 6.52e-63
|
|||||||||||||
PI-PLCc_plant | cd08599 | Catalytic domain of plant phosphatidylinositide-specific phospholipases C; This family ... |
311-649 | 5.59e-60 | |||||||||
Catalytic domain of plant phosphatidylinositide-specific phospholipases C; This family corresponds to the catalytic domain present in a group of phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11) encoded by PLC genes from higher plants, which are homologs of mammalian PI-PLC in terms of overall sequence similarity and domain organization. Mammalian PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. The domain arrangement of plant PI-PLCs is structurally similar to the mammalian PLC-zeta isoform, which lacks the N-terminal pleckstrin homology (PH) domain, but contains EF-hand like motifs (which are absent in a few plant PLCs), a PLC catalytic core domain with X- and Y- highly conserved regions split by a linker sequence, and a C2 domain. However, at the sequence level, the plant PI-PLCs are closely related to the mammalian PLC-delta isoform. Experiments show that plant PLCs display calcium dependent PLC catalytic properties, although they lack some of the N-terminal motifs found in their mammalian counterparts. A putative calcium binding site may be located at the region spanning the X- and Y- domains. Pssm-ID: 176541 [Multi-domain] Cd Length: 228 Bit Score: 205.30 E-value: 5.59e-60
|
|||||||||||||
EFh_PI-PLCbeta1 | cd16208 | EF-hand motif found in phosphoinositide phospholipase C beta 1 (PI-PLC-beta1); PI-PLC-beta1, ... |
149-299 | 3.67e-59 | |||||||||
EF-hand motif found in phosphoinositide phospholipase C beta 1 (PI-PLC-beta1); PI-PLC-beta1, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1, or PLC-154, or phospholipase C-I (PLC-I), or phospholipase C-beta-1 (PLC-beta1), is expressed at highest levels in specific regions of the brain, as well as in the cardiovascular system. It has two splice variants, PI-PLC-beta1a and PI-PLC-beta1b, both of which are present within the nucleus. Nuclear PI-PLC-beta1 is a key molecule for nuclear inositide signaling, where it plays a role in cell cycle progression, proliferation and differentiation. It also contributes to generate cell-specific Ca2+ signals evoked by G protein-coupled receptor stimulation. PI-PLC-beta1 acts as an effector and a GTPase activating protein (GAP) specifically activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It regulates neuronal activity in the cerebral cortex and hippocampus, and has been implicated for participations in diverse critical functions related to forebrain diseases such as schizophrenia. It may play an important role in maintenance of the status epilepticus, and in osteosarcoma-related signal transduction pathways. PI-PLC-beta1 also functions as a regulator of erythropoiesis in kinamycin F, a potent inducer of gamma-globin production in K562 cells. The G protein activation and the degradation of PI-PLC-beta1 can be regulated by the interaction of alpha-synuclein. As a result, it may reduce cell damage under oxidative stress. Moreover, PI-PLC-beta1 works as a new intermediate in the HIV-1 gp120-triggered phosphatidylcholine-specific phospholipase C (PC-PLC)-driven signal transduction pathway leading to cytoplasmic CCL2 secretion in macrophages. PI-PLC-beta1 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, it has a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Pssm-ID: 320038 Cd Length: 151 Bit Score: 200.10 E-value: 3.67e-59
|
|||||||||||||
PLN02228 | PLN02228 | Phosphoinositide phospholipase C |
217-786 | 3.30e-58 | |||||||||
Phosphoinositide phospholipase C Pssm-ID: 177873 [Multi-domain] Cd Length: 567 Bit Score: 211.43 E-value: 3.30e-58
|
|||||||||||||
PLN02952 | PLN02952 | phosphoinositide phospholipase C |
310-783 | 3.39e-58 | |||||||||
phosphoinositide phospholipase C Pssm-ID: 178538 [Multi-domain] Cd Length: 599 Bit Score: 212.17 E-value: 3.39e-58
|
|||||||||||||
PLN02222 | PLN02222 | phosphoinositide phospholipase C 2 |
219-800 | 4.64e-58 | |||||||||
phosphoinositide phospholipase C 2 Pssm-ID: 177868 [Multi-domain] Cd Length: 581 Bit Score: 211.43 E-value: 4.64e-58
|
|||||||||||||
PI-PLC-Y | pfam00387 | Phosphatidylinositol-specific phospholipase C, Y domain; This associates with pfam00388 to ... |
546-660 | 1.37e-56 | |||||||||
Phosphatidylinositol-specific phospholipase C, Y domain; This associates with pfam00388 to form a single structural unit. Pssm-ID: 459794 Cd Length: 114 Bit Score: 191.14 E-value: 1.37e-56
|
|||||||||||||
PH_PLC_beta | cd13361 | Phospholipase C-beta (PLC-beta) pleckstrin homology (PH) domain; PLC-beta (PLCbeta) is ... |
17-144 | 4.73e-56 | |||||||||
Phospholipase C-beta (PLC-beta) pleckstrin homology (PH) domain; PLC-beta (PLCbeta) is regulated by heterotrimeric G protein-coupled receptors through their C2 domain and long C-terminal extension which forms an autoinhibitory helix. There are four isoforms: PLC-beta1-4. The PH domain of PLC-beta2 and PLC-beta3 plays a dual role, much like PLC-delta1, by binding to the plasma membrane, as well as the interaction site for the catalytic activator. However, PLC-beta binds to the lipid surface independent of PIP2. PLC-beta1 seems to play unspecified roles in cellular proliferation and differentiation. PLC-beta consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves, a C2 domain and a C-terminal PDZ. Members of the Rho GTPase family (e.g., Rac1, Rac2, Rac3, and cdc42) have been implicated in their activation by binding to an alternate site on the N-terminal PH domain. A basic amino acid region within the enzyme's long C-terminal tail appears to function as a Nuclear Localization Signal for import into the nucleus. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.the plasma membrane, but only a few (less than 10%) display strong specificity in binding inositol phosphates. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinases, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, cytoskeletal associated molecules, and in lipid associated enzymes. Pssm-ID: 270167 Cd Length: 127 Bit Score: 190.09 E-value: 4.73e-56
|
|||||||||||||
EFh_PI-PLCbeta3 | cd16210 | EF-hand motif found in phosphoinositide phospholipase C beta 3 (PI-PLC-beta3); PI-PLC-beta3, ... |
150-299 | 2.71e-50 | |||||||||
EF-hand motif found in phosphoinositide phospholipase C beta 3 (PI-PLC-beta3); PI-PLC-beta3, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3, or phospholipase C-beta-3 (PLC-beta3), is widely expressed at highest levels in brain, liver, and parotid gland. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. PI-PLC-beta3 associates with CXC chemokine receptor 2 (CXCR2) and Na+/H+ exchanger regulatory factor-1 (NHERF1) to form macromolecular complexes at the plasma membrane of pancreatic cancer cells, which functionally couple chemokine signaling to PI-PLC-beta3-mediated signaling cascade. Moreover, PI-PLC-beta3 directly interacts with the M3 muscarinic receptor (M3R), a prototypical G alpha-q-coupled receptor that promotes PI-PLC-beta3 localization to the plasma membrane. This binding can alter G alpha-q-dependent PLC activation. Furthermore, PI-PLC-beta3 inhibits the proliferation of hematopoietic stem cells (HSCs) and myeloid cells through the interaction of SH2-domain-containing protein phosphatase 1 (SHP-1) and signal transducer and activator of transcription 5 (Stat5), and the augment of the dephosphorylating activity of SHP-1 toward Stat5, leading to the inactivation of Stat5. It is also involved in atopic dermatitis (AD) pathogenesis via regulating the expression of periostin in fibroblasts and thymic stromal lymphopoietin (TSLP) in keratinocytes. In addition, PI-PLC-beta3 mediates the thrombin-induced Ca2+ response in glial cells. PI-PLC-beta3 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, it has a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Pssm-ID: 320040 Cd Length: 151 Bit Score: 174.72 E-value: 2.71e-50
|
|||||||||||||
PLN02230 | PLN02230 | phosphoinositide phospholipase C 4 |
217-800 | 3.53e-49 | |||||||||
phosphoinositide phospholipase C 4 Pssm-ID: 177875 [Multi-domain] Cd Length: 598 Bit Score: 185.29 E-value: 3.53e-49
|
|||||||||||||
EFh_PI-PLC21 | cd16213 | EF-hand motif found in phosphoinositide phospholipase PLC21 and similar proteins; The family ... |
150-295 | 2.00e-48 | |||||||||
EF-hand motif found in phosphoinositide phospholipase PLC21 and similar proteins; The family includes invertebrate homologs of phosphoinositide phospholipase C beta (PI-PLC-beta) named PLC21 from cephalopod retina. It also includes PLC21 encoded by plc-21 gene, which is expressed in the central nervous system of Drosophila. Like beta-class of vertebrate PI-PLCs, PLC21 contains an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Pssm-ID: 320043 Cd Length: 154 Bit Score: 169.40 E-value: 2.00e-48
|
|||||||||||||
C2_PLC_like | cd00275 | C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in ... |
681-802 | 9.43e-38 | |||||||||
C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to d-myo-inositol-1,4,5-trisphosphate (1,4,5-IP3) and sn-1,2-diacylglycerol (DAG). 1,4,5-IP3 and DAG are second messengers in eukaryotic signal transduction cascades. PLC is composed of a N-terminal PH domain followed by a series of EF hands, a catalytic TIM barrel and a C-terminal C2 domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-II topology. Pssm-ID: 175974 [Multi-domain] Cd Length: 128 Bit Score: 137.67 E-value: 9.43e-38
|
|||||||||||||
EFh_PI-PLCbeta4 | cd16211 | EF-hand motif found in phosphoinositide phospholipase C beta 4 (PI-PLC-beta4); PI-PLC-beta4, ... |
154-295 | 1.72e-28 | |||||||||
EF-hand motif found in phosphoinositide phospholipase C beta 4 (PI-PLC-beta4); PI-PLC-beta4, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4, or phospholipase C-beta-4 (PLC-beta4), is expressed in high concentrations in cerebellar Purkinje and granule cells, the median geniculate body, and the lateral geniculate nucleus. It may play a critical role in linking anxiety behaviors and theta rhythm heterogeneity. PI-PLC-beta4 is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It contributes to generate cell-specific Ca2+ signals evoked by G protein-coupled receptor stimulation. PI-PLC-beta4 functions as a downstream signaling molecule of type 1 metabotropic glutamate receptors (mGluR1s). The thalamic mGluR1-PI-PLC-beta4 cascade is essential for formalin-induced inflammatory pain by regulating the response of ventral posterolateral thalamic nucleus (VPL) neurons. Moreover, PI-PLC-beta4 is essential for long-term depression (LTD) in the rostral cerebellum, which may be required for the acquisition of the conditioned eyeblink response. Besides, PI-PLC-beta4 may play an important role in maintenance of the status epilepticus. The mutations of PI-PLC-beta4 has been identified as the major cause of autosomal dominant auriculocondylar syndrome (ACS). PI-PLC-beta4 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, it has a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Pssm-ID: 320041 Cd Length: 153 Bit Score: 112.13 E-value: 1.72e-28
|
|||||||||||||
PLN02223 | PLN02223 | phosphoinositide phospholipase C |
311-791 | 9.60e-27 | |||||||||
phosphoinositide phospholipase C Pssm-ID: 165867 [Multi-domain] Cd Length: 537 Bit Score: 116.28 E-value: 9.60e-27
|
|||||||||||||
PI-PLCc_GDPD_SF | cd08555 | Catalytic domain of phosphoinositide-specific phospholipase C-like phosphodiesterases ... |
324-632 | 2.13e-26 | |||||||||
Catalytic domain of phosphoinositide-specific phospholipase C-like phosphodiesterases superfamily; The PI-PLC-like phosphodiesterases superfamily represents the catalytic domains of bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13), eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11), glycerophosphodiester phosphodiesterases (GP-GDE, EC 3.1.4.46), sphingomyelinases D (SMases D) (sphingomyelin phosphodiesterase D, EC 3.1.4.41) from spider venom, SMases D-like proteins, and phospholipase D (PLD) from several pathogenic bacteria, as well as their uncharacterized homologs found in organisms ranging from bacteria and archaea to metazoans, plants, and fungi. PI-PLCs are ubiquitous enzymes hydrolyzing the membrane lipid phosphoinositides to yield two important second messengers, inositol phosphates and diacylglycerol (DAG). GP-GDEs play essential roles in glycerol metabolism and catalyze the hydrolysis of glycerophosphodiesters to sn-glycerol-3-phosphate (G3P) and the corresponding alcohols that are major sources of carbon and phosphate. Both, PI-PLCs and GP-GDEs, can hydrolyze the 3'-5' phosphodiester bonds in different substrates, and utilize a similar mechanism of general base and acid catalysis with conserved histidine residues, which consists of two steps, a phosphotransfer and a phosphodiesterase reaction. This superfamily also includes Neurospora crassa ankyrin repeat protein NUC-2 and its Saccharomyces cerevisiae counterpart, Phosphate system positive regulatory protein PHO81, glycerophosphodiester phosphodiesterase (GP-GDE)-like protein SHV3 and SHV3-like proteins (SVLs). The residues essential for enzyme activities and metal binding are not conserved in these sequence homologs, which might suggest that the function of catalytic domains in these proteins might be distinct from those in typical PLC-like phosphodiesterases. Pssm-ID: 176498 [Multi-domain] Cd Length: 179 Bit Score: 107.14 E-value: 2.13e-26
|
|||||||||||||
EFh_NorpA_like | cd16212 | EF-hand motif found in Drosophila melanogaster No receptor potential A protein (NorpA) and ... |
153-299 | 2.15e-23 | |||||||||
EF-hand motif found in Drosophila melanogaster No receptor potential A protein (NorpA) and similar proteins; NorpA, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase, is an eye-specific phosphoinositide phospholipase C (PI-PLC) encoded by norpA gene in Drosophila. It is expressed predominantly in photoreceptors and plays an essential role in the phototransduction pathway of Drosophila. A mutation within the norpA gene can render the fly blind without affecting any of the obvious structures of the eye. Like beta-class of vertebrate PI-PLCs, NorpA contains an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Pssm-ID: 320042 [Multi-domain] Cd Length: 153 Bit Score: 97.62 E-value: 2.15e-23
|
|||||||||||||
C2 | smart00239 | Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, ... |
683-779 | 7.43e-14 | |||||||||
Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. Pssm-ID: 214577 [Multi-domain] Cd Length: 101 Bit Score: 68.67 E-value: 7.43e-14
|
|||||||||||||
EFh_PI-PLCdelta | cd16202 | EF-hand motif found in phosphoinositide phospholipase C delta (PI-PLC-delta); PI-PLC-delta ... |
195-299 | 1.01e-12 | |||||||||
EF-hand motif found in phosphoinositide phospholipase C delta (PI-PLC-delta); PI-PLC-delta isozymes represent a class of metazoan PI-PLCs that are some of the most sensitive to calcium among all PLCs. Their activation is modulated by intracellular calcium ion concentration, phospholipids, polyamines, and other proteins, such as RhoAGAP. Like other PI-PLC isozymes, PI-PLC-delta isozymes contain a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C-terminal C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are three PI-PLC-delta isozymes (1, 3 and 4). PI-PLC-delta1 is relatively well characterized. It is activated by high calcium levels generated by other PI-PLC family members, and therefore functions as a calcium amplifier within the cell. Different PI-PLC-delta isozymes have different tissue distribution and different subcellular locations. PI-PLC-delta1 is mostly a cytoplasmic protein, PI-PLC-delta3 is located in the membrane, and PI-PLC-delta4 is predominantly detected in the cell nucleus. PI-PLC-delta isozymes is evolutionarily conserved even in non-mammalian species, such as yeast, slime molds and plants. Pssm-ID: 320032 [Multi-domain] Cd Length: 140 Bit Score: 66.48 E-value: 1.01e-12
|
|||||||||||||
EFh_PI-PLC | cd15898 | EF-hand motif found in eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4. ... |
155-299 | 5.72e-12 | |||||||||
EF-hand motif found in eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) isozymes; PI-PLC isozymes are signaling enzymes that hydrolyze the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. This family corresponds to the four EF-hand motifs containing PI-PLC isozymes, including PI-PLC-beta (1-4), -gamma (1-2), -delta (1,3,4), -epsilon (1), -zeta (1), eta (1-2). Lower eukaryotes such as yeast and slime molds contain only delta-type isozymes. In contrast, other types of isoforms present in higher eukaryotes. This family also includes 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase 1 (PLC1) from fungi. Some homologs from plants contain only two atypical EF-hand motifs and they are not included. All PI-PLC isozymes except sperm-specific PI-PLC-zeta share a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. PI-PLC-zeta lacks the PH domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Most of EF-hand motifs found in PI-PLCs consist of a helix-loop-helix structure, but lack residues critical to metal binding. Moreover, the EF-hand region of most of PI-PLCs may have an important regulatory function, but it has yet to be identified. However, PI-PLC-zeta is a key exception. It is responsible for Ca2+ oscillations in fertilized oocytes and exhibits a high sensitivity to Ca2+ mediated through its EF-hand domain. In addition, PI-PLC-eta2 shows a canonical EF-loop directing Ca2+-sensitivity and thus can amplify transient Ca2+ signals. Also it appears that PI-PLC-delta1 can regulate the binding of PH domain to PIP2 in a Ca2+-dependent manner through its functionally important EF-hand domains. PI-PLCs can be activated by a variety of extracellular ligands, such as growth factors, hormones, cytokines and lipids. Their activation has been implicated in tumorigenesis and/or metastasis linked to migration, proliferation, growth, inflammation, angiogenesis and actin cytoskeleton reorganization. PI-PLC-beta isozymes are activated by G-protein coupled receptor (GPCR) through different mechanisms. However, PI-PLC-gamma isozymes are activated by receptor tyrosine kinase (RTK), such as Rho and Ras GTPases. In contrast, PI-PLC-epsilon are activated by both GPCR and RTK. PI-PLC-delta1 and PLC-eta 1 are activated by GPCR-mediated calcium mobilization. The activation mechanism for PI-PLC-zeta remains unclear. Pssm-ID: 320029 [Multi-domain] Cd Length: 137 Bit Score: 64.23 E-value: 5.72e-12
|
|||||||||||||
C2 | pfam00168 | C2 domain; |
683-776 | 3.34e-10 | |||||||||
C2 domain; Pssm-ID: 425499 [Multi-domain] Cd Length: 104 Bit Score: 58.48 E-value: 3.34e-10
|
|||||||||||||
EF-hand_like | pfam09279 | Phosphoinositide-specific phospholipase C, efhand-like; Members of this family are ... |
215-303 | 3.01e-08 | |||||||||
Phosphoinositide-specific phospholipase C, efhand-like; Members of this family are predominantly found in phosphoinositide-specific phospholipase C. They adopt a structure consisting of a core of four alpha helices, in an EF like fold, and are required for functioning of the enzyme. Pssm-ID: 401279 [Multi-domain] Cd Length: 85 Bit Score: 52.25 E-value: 3.01e-08
|
|||||||||||||
C2 | cd00030 | C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed ... |
684-773 | 7.69e-07 | |||||||||
C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175973 [Multi-domain] Cd Length: 102 Bit Score: 48.60 E-value: 7.69e-07
|
|||||||||||||
EFh_PI-PLCdelta1 | cd16217 | EF-hand motif found in phosphoinositide phospholipase C delta 1 (PI-PLC-delta1); PI-PLC-delta1, ... |
209-299 | 1.88e-06 | |||||||||
EF-hand motif found in phosphoinositide phospholipase C delta 1 (PI-PLC-delta1); PI-PLC-delta1, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-1 (PLCD1), or phospholipase C-III (PLC-III), or phospholipase C-delta-1 (PLC-delta-1), is present in high abundancy in the brain, heart, lung, skeletal muscle and testis. It is activated by high calcium levels generated by other PI-PLC family members, and therefore functions as a calcium amplifier within the cell. PI-PLC-delta1 is required for maintenance of homeostasis in skin and metabolic tissues. Moreover, it is essential in trophoblasts for placental development. Simultaneous loss of PI-PLC-delta1 may cause placental vascular defects, leading to embryonic lethality. PI-PLC-delta1 can be positively or negatively regulated by several binding partners, including p122/Rho GTPase activating protein (RhoGAP), Gha/Transglutaminase II, RalA, and calmodulin. It is involved in Alzheimer's disease and hypertension. Furthermore, PI-PLC-delta1 regulates cell proliferation and cell-cycle progression from G1- to S-phase by control of cyclin E-CDK2 activity and p27 levels. It can be activated by alpha1-adrenoreceptors (AR) in a calcium-dependent manner and may be important for G protein-coupled receptors (GPCR) responses in vascular smooth muscle (VSM). PI-PLC-delta1 may also be involved in noradrenaline (NA)-induced phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis and modulate sustained contraction of mesenteric small arteries. In addition, it inhibits thermogenesis and induces lipid accumulation, and therefore contributes to the development of obesity. PI-PLC-delta1 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C-terminal C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-delta1 can regulate the binding of PH domain to PIP2 in a Ca2+-dependent manner through its functionally important EF-hand domains. In addition, PI-PLC-delta1 possesses a classical leucine-rich nuclear export sequence (NES) located in the EF hand motifs, as well as a nuclear localization signal within its linker region, both of which may be responsible for translocating PI-PLC-delta1 into and out of the cell nucleus. Pssm-ID: 320047 [Multi-domain] Cd Length: 139 Bit Score: 48.58 E-value: 1.88e-06
|
|||||||||||||
TPH | pfam13868 | Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ... |
1058-1197 | 8.43e-06 | |||||||||
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain. Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 49.53 E-value: 8.43e-06
|
|||||||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
1076-1197 | 9.02e-06 | |||||||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 48.38 E-value: 9.02e-06
|
|||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
1057-1242 | 1.90e-05 | |||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 49.28 E-value: 1.90e-05
|
|||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
1055-1201 | 2.32e-05 | |||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 48.78 E-value: 2.32e-05
|
|||||||||||||
Mitofilin | pfam09731 | Mitochondrial inner membrane protein; Mitofilin controls mitochondrial cristae morphology. ... |
1055-1238 | 2.75e-05 | |||||||||
Mitochondrial inner membrane protein; Mitofilin controls mitochondrial cristae morphology. Mitofilin is enriched in the narrow space between the inner boundary and the outer membranes, where it forms a homotypic interaction and assembles into a large multimeric protein complex. The first 78 amino acids contain a typical amino-terminal-cleavable mitochondrial presequence rich in positive-charged and hydroxylated residues and a membrane anchor domain. In addition, it has three centrally located coiled coil domains. Pssm-ID: 430783 [Multi-domain] Cd Length: 618 Bit Score: 48.60 E-value: 2.75e-05
|
|||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
1077-1202 | 2.79e-05 | |||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 48.51 E-value: 2.79e-05
|
|||||||||||||
EFh_PI-PLCdelta4 | cd16219 | EF-hand motif found in phosphoinositide phospholipase C delta 4 (PI-PLC-delta4); PI-PLC-delta4, ... |
211-299 | 3.34e-05 | |||||||||
EF-hand motif found in phosphoinositide phospholipase C delta 4 (PI-PLC-delta4); PI-PLC-delta4, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-4 (PLCD4), or phospholipase C-delta-4 (PLC-delta-4), is expressed in various tissues with the highest levels detected selectively in the brain, skeletal muscle, testis and kidney. It plays a significant role in cell growth, cell proliferation, tumorigenesis, and in an early stage of fertilization. PI-PLC-delta4 may function as a key enzyme in the regulation of PtdIns(4,5)P2 levels and Ca2+ metabolism in nuclei in response to growth factors, and its expression may be partially regulated by an increase in cytoplasmic Ca2+. Moreover, PI-PLC-delta4 binds glutamate receptor-interacting protein1 (GRIP1) in testis and is required for calcium mobilization essential for the zona pellucida-induced acrosome reaction in sperm. Overexpression or dysregulated expression of PLCdelta4 may initiate oncogenesis in certain tissues through upregulating erbB1/2 expression, extracellular signal-regulated kinase (ERK) signaling pathway, and proliferation in MCF-7 cells. PI-PLC-delta4 contains an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain, and a C-terminal C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Unlike PI-PLC-delta 1 and 3, a putative nuclear export sequence (NES) located in the EF-hand domain, which may be responsible transporting PI-PLC-delta1 and 3 from the cell nucleus, is not present in PI-PLC-delta4. Pssm-ID: 320049 [Multi-domain] Cd Length: 140 Bit Score: 45.22 E-value: 3.34e-05
|
|||||||||||||
Apolipoprotein | pfam01442 | Apolipoprotein A1/A4/E domain; These proteins contain several 22 residue repeats which form a ... |
1068-1199 | 3.37e-05 | |||||||||
Apolipoprotein A1/A4/E domain; These proteins contain several 22 residue repeats which form a pair of alpha helices. This family includes: Apolipoprotein A-I. Apolipoprotein A-IV. Apolipoprotein E. Pssm-ID: 460211 [Multi-domain] Cd Length: 175 Bit Score: 45.72 E-value: 3.37e-05
|
|||||||||||||
HEC1 | COG5185 | Chromosome segregation protein NDC80, interacts with SMC proteins [Cell cycle control, cell ... |
1064-1201 | 3.67e-05 | |||||||||
Chromosome segregation protein NDC80, interacts with SMC proteins [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 444066 [Multi-domain] Cd Length: 594 Bit Score: 48.03 E-value: 3.67e-05
|
|||||||||||||
FAM184 | pfam15665 | Family with sequence similarity 184, A and B; The function of FAM184 is not known. |
1062-1193 | 4.78e-05 | |||||||||
Family with sequence similarity 184, A and B; The function of FAM184 is not known. Pssm-ID: 464788 [Multi-domain] Cd Length: 211 Bit Score: 45.81 E-value: 4.78e-05
|
|||||||||||||
GBP_C | cd16269 | Guanylate-binding protein, C-terminal domain; Guanylate-binding protein (GBP), C-terminal ... |
1058-1180 | 5.18e-05 | |||||||||
Guanylate-binding protein, C-terminal domain; Guanylate-binding protein (GBP), C-terminal domain. Guanylate-binding proteins (GBPs) are synthesized after activation of the cell by interferons. The biochemical properties of GBPs are clearly different from those of Ras-like and heterotrimeric GTP-binding proteins. They bind guanine nucleotides with low affinity (micromolar range), are stable in their absence, and have a high turnover GTPase. In addition to binding GDP/GTP, they have the unique ability to bind GMP with equal affinity and hydrolyze GTP not only to GDP, but also to GMP. This C-terminal domain has been shown to mediate inhibition of endothelial cell proliferation by inflammatory cytokines. Pssm-ID: 293879 [Multi-domain] Cd Length: 291 Bit Score: 46.80 E-value: 5.18e-05
|
|||||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
1060-1203 | 5.18e-05 | |||||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 47.43 E-value: 5.18e-05
|
|||||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
1068-1197 | 1.17e-04 | |||||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 46.60 E-value: 1.17e-04
|
|||||||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
1062-1199 | 1.36e-04 | |||||||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 45.66 E-value: 1.36e-04
|
|||||||||||||
BBP1_C | pfam15272 | Spindle pole body component BBP1, C-terminal; This C-terminal domain of BBP1, a spindle pole ... |
1055-1197 | 2.13e-04 | |||||||||
Spindle pole body component BBP1, C-terminal; This C-terminal domain of BBP1, a spindle pole body component, carries coiled-coils that are necessary for the localization of BBP1 to the spindle pole body (SPB). Although not a membrane protein itself, BBP1 binds to Mps2 as well as to Spc29 and the half-bridge protein Kar1, thus providing a model for how the SPB core is tethered within the nuclear envelope and to the half-bridge Pssm-ID: 405864 [Multi-domain] Cd Length: 183 Bit Score: 43.53 E-value: 2.13e-04
|
|||||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
1058-1214 | 2.26e-04 | |||||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 45.50 E-value: 2.26e-04
|
|||||||||||||
YscO-like | pfam16789 | YscO-like protein; This family of proteins is similar to the type III secretion protein YscO. ... |
1059-1188 | 2.36e-04 | |||||||||
YscO-like protein; This family of proteins is similar to the type III secretion protein YscO. The family includes Chlamydia trachomatis CT670 which is found in a type III secretion gene cluster. CT670 interacts with CT671, a putative YscP homolog and CT670 and CT671 may form a chaperone-effector pair. Pssm-ID: 435583 [Multi-domain] Cd Length: 160 Bit Score: 42.90 E-value: 2.36e-04
|
|||||||||||||
PI-PLCc_bacteria_like | cd08557 | Catalytic domain of bacterial phosphatidylinositol-specific phospholipase C and similar ... |
312-460 | 2.41e-04 | |||||||||
Catalytic domain of bacterial phosphatidylinositol-specific phospholipase C and similar proteins; This subfamily corresponds to the catalytic domain present in bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13) and their sequence homologs found in eukaryota. Bacterial PI-PLCs participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although their precise physiological function remains unclear, bacterial PI-PLCs may function as virulence factors in some pathogenic bacteria. Bacterial PI-PLCs contain a single TIM-barrel type catalytic domain. Its catalytic mechanism is based on general base and acid catalysis utilizing two well conserved histidines, and consists of two steps, a phosphotransfer and a phosphodiesterase reaction. Eukaryotic homologs in this family are named as phosphatidylinositol-specific phospholipase C X domain containing proteins (PI-PLCXD). They are distinct from the typical eukaryotic phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11), which have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, eukaryotic PI-PLCXDs contain a single TIM-barrel type catalytic domain, X domain, which is closely related to that of bacterial PI-PLCs. Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may be distinct from that of typical eukaryotic PI-PLCs. This family also includes a distinctly different type of eukaryotic PLC, glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC), an integral membrane protein characterized in the protozoan parasite Trypanosoma brucei. T. brucei GPI-PLC hydrolyzes the GPI-anchor on the variant specific glycoprotein (VSG), releasing dimyristyl glycerol (DMG), which may facilitate the evasion of the protozoan to the host's immune system. It does not require Ca2+ for its activity and is more closely related to bacterial PI-PLCs, but not mammalian PI-PLCs. Pssm-ID: 176500 [Multi-domain] Cd Length: 271 Bit Score: 44.39 E-value: 2.41e-04
|
|||||||||||||
TPH | pfam13868 | Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ... |
1058-1197 | 2.64e-04 | |||||||||
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain. Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 44.52 E-value: 2.64e-04
|
|||||||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
1068-1197 | 3.02e-04 | |||||||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 44.77 E-value: 3.02e-04
|
|||||||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
1077-1197 | 4.83e-04 | |||||||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 44.38 E-value: 4.83e-04
|
|||||||||||||
EFh_PRIP | cd16206 | EF-hand motif found in phospholipase C-related but catalytically inactive proteins (PRIP); ... |
197-299 | 5.16e-04 | |||||||||
EF-hand motif found in phospholipase C-related but catalytically inactive proteins (PRIP); This family represents a class of metazoan phospholipase C related, but catalytically inactive proteins (PRIP), which belong to a group of novel inositol 1,4,5-trisphosphate (InsP3) binding protein. PRIP has a primary structure and domain architecture, incorporating a pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain with highly conserved X- and Y-regions split by a linker sequence, and a C-terminal C2 domain, similar to phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11)-delta isoforms. Due to replacement of critical catalytic residues, PRIP do not have PLC enzymatic activity. PRIP consists of two subfamilies, PRIP-1(also known as p130 or PLC-L1), which is predominantly expressed in the brain, and PRIP-2 (also known as PLC-L2), which exhibits a relatively ubiquitous expression. Experiments show both, PRIP-1 and PRIP-2, are involved in InsP3-mediated calcium signaling pathway and GABA(A)receptor-mediated signaling pathway. In addition, PRIP-2 acts as a negative regulator of B-cell receptor signaling and immune responses. Pssm-ID: 320036 [Multi-domain] Cd Length: 143 Bit Score: 41.81 E-value: 5.16e-04
|
|||||||||||||
C2B_Synaptotagmin | cd00276 | C2 domain second repeat present in Synaptotagmin; Synaptotagmin is a membrane-trafficking ... |
684-779 | 5.62e-04 | |||||||||
C2 domain second repeat present in Synaptotagmin; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. There are several classes of Synaptotagmins. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175975 [Multi-domain] Cd Length: 134 Bit Score: 41.41 E-value: 5.62e-04
|
|||||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
1058-1201 | 5.65e-04 | |||||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 44.34 E-value: 5.65e-04
|
|||||||||||||
EFh_ScPlc1p_like | cd16207 | EF-hand motif found in Saccharomyces cerevisiae phospholipase C-1 (ScPlc1p) and similar ... |
202-295 | 5.76e-04 | |||||||||
EF-hand motif found in Saccharomyces cerevisiae phospholipase C-1 (ScPlc1p) and similar proteins; This family represents a group of putative phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) encoded by PLC1 genes from yeasts, which are homologs of the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain organization. Mammalian PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. The prototype of this family is protein Plc1p (also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase 1) encoded by PLC1 genes from Saccharomyces cerevisiae. ScPlc1p contains both highly conserved X- and Y- regions of PLC catalytic core domain, as well as a presumptive EF-hand like calcium binding motif. Experiments show that ScPlc1p displays calcium dependent catalytic properties with high similarity to those of the mammalian PLCs, and plays multiple roles in modulating the membrane/protein interactions in filamentation control. CaPlc1p encoded by CAPLC1 from the closely related yeast Candida albicans, an orthologue of S. cerevisiae Plc1p, is also included in this group. Like SCPlc1p, CaPlc1p has conserved presumptive catalytic domain, shows PLC activity when expressed in E. coli, and is involved in multiple cellular processes. There are two other gene copies of CAPLC1 in C. albicans, CAPLC2 (also named as PIPLC) and CAPLC3. Experiments show CaPlc1p is the only enzyme in C. albicans which functions as PLC. The biological functions of CAPLC2 and CAPLC3 gene products must be clearly different from CaPlc1p, but their exact roles remain unclear. Moreover, CAPLC2 and CAPLC3 gene products are more similar to extracellular bacterial PI-PLC than to the eukaryotic PI-PLC, and they are not included in this subfamily. Pssm-ID: 320037 [Multi-domain] Cd Length: 142 Bit Score: 41.47 E-value: 5.76e-04
|
|||||||||||||
C2_C21orf25-like | cd08678 | C2 domain found in the Human chromosome 21 open reading frame 25 (C21orf25) protein; The ... |
684-776 | 5.95e-04 | |||||||||
C2 domain found in the Human chromosome 21 open reading frame 25 (C21orf25) protein; The members in this cd are named after the Human C21orf25 which contains a single C2 domain. Several other members contain a C1 domain downstream of the C2 domain. No other information on this protein is currently known. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176060 [Multi-domain] Cd Length: 126 Bit Score: 41.20 E-value: 5.95e-04
|
|||||||||||||
APP_E2 | pfam12925 | E2 domain of amyloid precursor protein; The E2 domain is the largest of the conserved domains ... |
1086-1228 | 6.10e-04 | |||||||||
E2 domain of amyloid precursor protein; The E2 domain is the largest of the conserved domains of the amyloid precursor protein. The structure of E2 consists of two coiled-coil sub-structures connected through a continuous helix, and bears an unexpected resemblance to the spectrin family of protein structures.E 2 can reversibly dimerize in solution, and the dimerization occurs along the longest dimension of the molecule in an antiparallel orientation, which enables the N-terminal substructure of one monomer to pack against the C-terminal substructure of a second monomer. The high degree of conservation of residues at the putative dimer interface suggests that the E2 dimer observed in the crystal could be physiologically relevant. Heparin sulfate proteoglycans, the putative ligands for the precursor present in extracellular matrix, bind to E2 at a conserved and positively charged site near the dimer interface. Pssm-ID: 463752 Cd Length: 190 Bit Score: 42.33 E-value: 6.10e-04
|
|||||||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
1078-1191 | 6.75e-04 | |||||||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 42.60 E-value: 6.75e-04
|
|||||||||||||
C2_Rab11-FIP_classI | cd08682 | C2 domain found in Rab11-family interacting proteins (FIP) class I; Rab GTPases recruit ... |
715-779 | 7.00e-04 | |||||||||
C2 domain found in Rab11-family interacting proteins (FIP) class I; Rab GTPases recruit various effector proteins to organelles and vesicles. Rab11-family interacting proteins (FIPs) are involved in mediating the role of Rab11. FIPs can be divided into three classes: class I FIPs (Rip11a, Rip11b, RCP, and FIP2) which contain a C2 domain after N-terminus of the protein, class II FIPs (FIP3 and FIP4) which contain two EF-hands and a proline rich region, and class III FIPs (FIP1) which exhibits no homology to known protein domains. All FIP proteins contain a highly conserved, 20-amino acid motif at the C-terminus of the protein, known as Rab11/25 binding domain (RBD). Class I FIPs are thought to bind to endocytic membranes via their C2 domain, which interacts directly with phospholipids. Class II FIPs do not have any membrane binding domains leaving much to speculate about the mechanism involving FIP3 and FIP4 interactions with endocytic membranes. The members in this CD are class I FIPs. The exact function of the Rab11 and FIP interaction is unknown, but there is speculation that it involves the role of forming a targeting complex that recruits a group of proteins involved in membrane transport to organelles. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176064 [Multi-domain] Cd Length: 126 Bit Score: 40.90 E-value: 7.00e-04
|
|||||||||||||
TPH | pfam13868 | Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ... |
1062-1192 | 7.34e-04 | |||||||||
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain. Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 43.37 E-value: 7.34e-04
|
|||||||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
1060-1195 | 8.68e-04 | |||||||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 43.63 E-value: 8.68e-04
|
|||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
1064-1197 | 9.40e-04 | |||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 43.51 E-value: 9.40e-04
|
|||||||||||||
RNase_Y_N | pfam12072 | RNase Y N-terminal region; |
1057-1157 | 9.90e-04 | |||||||||
RNase Y N-terminal region; Pssm-ID: 463456 [Multi-domain] Cd Length: 201 Bit Score: 41.80 E-value: 9.90e-04
|
|||||||||||||
DUF1978 | pfam09321 | Domain of unknown function (DUF1978); Members of this family are found in various hypothetical ... |
1054-1199 | 1.04e-03 | |||||||||
Domain of unknown function (DUF1978); Members of this family are found in various hypothetical proteins produced by the bacterium Chlamydia pneumoniae. Their exact function has not, as yet, been identified. Pssm-ID: 312723 [Multi-domain] Cd Length: 244 Bit Score: 42.22 E-value: 1.04e-03
|
|||||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
1071-1197 | 1.09e-03 | |||||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 43.51 E-value: 1.09e-03
|
|||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1058-1241 | 1.23e-03 | |||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 43.21 E-value: 1.23e-03
|
|||||||||||||
COG1340 | COG1340 | Uncharacterized coiled-coil protein, contains DUF342 domain [Function unknown]; |
1069-1197 | 1.48e-03 | |||||||||
Uncharacterized coiled-coil protein, contains DUF342 domain [Function unknown]; Pssm-ID: 440951 [Multi-domain] Cd Length: 297 Bit Score: 42.21 E-value: 1.48e-03
|
|||||||||||||
TPR_MLP1_2 | pfam07926 | TPR/MLP1/MLP2-like protein; The sequences featured in this family are similar to a region of ... |
1080-1193 | 1.54e-03 | |||||||||
TPR/MLP1/MLP2-like protein; The sequences featured in this family are similar to a region of human TPR protein and to yeast myosin-like proteins 1 (MLP1) and 2 (MLP2). These proteins share a number of features; for example, they all have coiled-coil regions and all three are associated with nuclear pores. TPR is thought to be a component of nuclear pore complex- attached intra-nuclear filaments, and is implicated in nuclear protein import. Moreover, its N-terminal region is involved in the activation of oncogenic kinases, possibly by mediating the dimerization of kinase domains or by targeting these kinases to the nuclear pore complex. MLP1 and MLP2 are involved in the process of telomere length regulation, where they are thought to interact with proteins such as Tel1p and modulate their activity. Pssm-ID: 462316 [Multi-domain] Cd Length: 129 Bit Score: 39.93 E-value: 1.54e-03
|
|||||||||||||
MAD | pfam05557 | Mitotic checkpoint protein; This family consists of several eukaryotic mitotic checkpoint ... |
1058-1195 | 1.77e-03 | |||||||||
Mitotic checkpoint protein; This family consists of several eukaryotic mitotic checkpoint (Mitotic arrest deficient or MAD) proteins. The mitotic spindle checkpoint monitors proper attachment of the bipolar spindle to the kinetochores of aligned sister chromatids and causes a cell cycle arrest in prometaphase when failures occur. Multiple components of the mitotic spindle checkpoint have been identified in yeast and higher eukaryotes. In S.cerevisiae, the existence of a Mad1-dependent complex containing Mad2, Mad3, Bub3 and Cdc20 has been demonstrated. Pssm-ID: 461677 [Multi-domain] Cd Length: 660 Bit Score: 42.42 E-value: 1.77e-03
|
|||||||||||||
CR6_interact | pfam10147 | Growth arrest and DNA-damage-inducible proteins-interacting protein 1; Members of this family ... |
1067-1188 | 2.00e-03 | |||||||||
Growth arrest and DNA-damage-inducible proteins-interacting protein 1; Members of this family of proteins act as negative regulators of G1 to S cell cycle phase progression by inhibiting cyclin-dependent kinases. Inhibitory effects are additive with GADD45 proteins but occur also in the absence of GADD45 proteins. Furthermore, they act as a repressor of the orphan nuclear receptor NR4A1 by inhibiting AB domain-mediated transcriptional activity. Pssm-ID: 431088 [Multi-domain] Cd Length: 204 Bit Score: 40.99 E-value: 2.00e-03
|
|||||||||||||
ERM_helical | pfam20492 | Ezrin/radixin/moesin, alpha-helical domain; The ERM family consists of three closely-related ... |
1075-1197 | 2.12e-03 | |||||||||
Ezrin/radixin/moesin, alpha-helical domain; The ERM family consists of three closely-related proteins, ezrin, radixin and moesin. Ezrin was first identified as a constituent of microvilli, radixin as a barbed, end-capping actin-modulating protein from isolated junctional fractions, and moesin as a heparin binding protein. A tumour suppressor molecule responsible for neurofibromatosis type 2 (NF2) is highly similar to ERM proteins and has been designated merlin (moesin-ezrin-radixin-like protein). ERM molecules contain 3 domains, an N-terminal globular domain, an extended alpha-helical domain and a charged C-terminal domain (pfam00769). Ezrin, radixin and merlin also contain a polyproline linker region between the helical and C-terminal domains. The N-terminal domain is highly conserved and is also found in merlin, band 4.1 proteins and members of the band 4.1 superfamily, designated the FERM domain. ERM proteins crosslink actin filaments with plasma membranes. They co-localize with CD44 at actin filament plasma membrane interaction sites, associating with CD44 via their N-terminal domains and with actin filaments via their C-terminal domains. This is the alpha-helical domain, which is involved in intramolecular masking of protein-protein interaction sites, regulating the activity of this proteins. Pssm-ID: 466641 [Multi-domain] Cd Length: 120 Bit Score: 39.13 E-value: 2.12e-03
|
|||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
1058-1197 | 2.17e-03 | |||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 42.23 E-value: 2.17e-03
|
|||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
1058-1217 | 2.21e-03 | |||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 42.36 E-value: 2.21e-03
|
|||||||||||||
RNase_Y_N | pfam12072 | RNase Y N-terminal region; |
1068-1197 | 2.60e-03 | |||||||||
RNase Y N-terminal region; Pssm-ID: 463456 [Multi-domain] Cd Length: 201 Bit Score: 40.64 E-value: 2.60e-03
|
|||||||||||||
TPH | pfam13868 | Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ... |
1058-1197 | 2.62e-03 | |||||||||
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain. Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 41.44 E-value: 2.62e-03
|
|||||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
1076-1194 | 2.64e-03 | |||||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 42.21 E-value: 2.64e-03
|
|||||||||||||
Nuf2_DHR10-like | pfam18595 | Nuf2, DHR10-like domain; This domain is found at the C-terminal region of Nuf2 proteins. This ... |
1054-1173 | 2.64e-03 | |||||||||
Nuf2, DHR10-like domain; This domain is found at the C-terminal region of Nuf2 proteins. This domain was identified as MazG related domain also designated as Designed helical repeat protein 10 (DHR10) that actually adopts a coiled-coil structure. Nuf2 is part of the Ndc80 complex, which binds to the spindle and is required for chromosome segregation and spindle checkpoint activity. Pssm-ID: 465814 [Multi-domain] Cd Length: 117 Bit Score: 39.10 E-value: 2.64e-03
|
|||||||||||||
CDC37_N | smart01071 | Cdc37 N terminal kinase binding; Cdc37 is a molecular chaperone required for the activity of ... |
1078-1175 | 2.77e-03 | |||||||||
Cdc37 N terminal kinase binding; Cdc37 is a molecular chaperone required for the activity of numerous eukaryotic protein kinases. This domain corresponds to the N terminal domain which binds predominantly to protein kinases.and is found N terminal to the Hsp (Heat shocked protein) 90-binding domain. Expression of a construct consisting of only the N-terminal domain of Saccharomyces pombe Cdc37 results in cellular viability. This indicates that interactions with the cochaperone Hsp90 may not be essential for Cdc37 function. Pssm-ID: 198139 [Multi-domain] Cd Length: 154 Bit Score: 39.71 E-value: 2.77e-03
|
|||||||||||||
C2_cPLA2 | cd04036 | C2 domain present in cytosolic PhosphoLipase A2 (cPLA2); A single copy of the C2 domain is ... |
684-758 | 2.79e-03 | |||||||||
C2 domain present in cytosolic PhosphoLipase A2 (cPLA2); A single copy of the C2 domain is present in cPLA2 which releases arachidonic acid from membranes initiating the biosynthesis of potent inflammatory mediators such as prostaglandins, leukotrienes, and platelet-activating factor. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members of this cd have a type-II topology. Pssm-ID: 176001 [Multi-domain] Cd Length: 119 Bit Score: 38.78 E-value: 2.79e-03
|
|||||||||||||
MAP7 | pfam05672 | MAP7 (E-MAP-115) family; The organization of microtubules varies with the cell type and is ... |
1060-1196 | 3.00e-03 | |||||||||
MAP7 (E-MAP-115) family; The organization of microtubules varies with the cell type and is presumably controlled by tissue-specific microtubule-associated proteins (MAPs). The 115-kDa epithelial MAP (E-MAP-115/MAP7) has been identified as a microtubule-stabilising protein predominantly expressed in cell lines of epithelial origin. The binding of this microtubule associated protein is nucleotide independent. Pssm-ID: 461709 [Multi-domain] Cd Length: 153 Bit Score: 39.64 E-value: 3.00e-03
|
|||||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
1065-1197 | 3.25e-03 | |||||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 41.68 E-value: 3.25e-03
|
|||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
1066-1193 | 3.92e-03 | |||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 41.58 E-value: 3.92e-03
|
|||||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
1057-1241 | 3.93e-03 | |||||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 40.90 E-value: 3.93e-03
|
|||||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
1072-1201 | 4.61e-03 | |||||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 41.20 E-value: 4.61e-03
|
|||||||||||||
PH_PLC_ELMO1 | cd01248 | Phospholipase C and Engulfment and cell motility protein 1 pleckstrin homology domain; The ... |
17-134 | 5.42e-03 | |||||||||
Phospholipase C and Engulfment and cell motility protein 1 pleckstrin homology domain; The C-terminal region of ELMO1, the PH domain and Pro-rich sequences, binds the SH3-containing region of DOCK2 forming a intermolecular five-helix bundle allowing for DOCK mediated Rac1 activation. ELMO1, a mammalian homolog of C. elegans CED-12, contains an N-terminal RhoG-binding region, a ELMO domain, a PH domain, and a C-terminal sequence with three PxxP motifs. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). All PLCs, except for PLCzeta, have a PH domain which is for most part N-terminally located, though lipid binding specificity is not conserved between them. In addition PLC gamma contains a split PH domain within its catalytic domain that is separated by 2 SH2 domains and a single SH3 domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269952 Cd Length: 108 Bit Score: 37.69 E-value: 5.42e-03
|
|||||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
1062-1184 | 5.61e-03 | |||||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 40.91 E-value: 5.61e-03
|
|||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
1057-1194 | 5.95e-03 | |||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 41.08 E-value: 5.95e-03
|
|||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
1068-1197 | 6.64e-03 | |||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 40.69 E-value: 6.64e-03
|
|||||||||||||
DUF4670 | pfam15709 | Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins ... |
1061-1197 | 7.04e-03 | |||||||||
Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins in this family are typically between 373 and 763 amino acids in length. Pssm-ID: 464815 [Multi-domain] Cd Length: 522 Bit Score: 40.32 E-value: 7.04e-03
|
|||||||||||||
Mplasa_alph_rch | TIGR04523 | helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of ... |
1084-1194 | 7.61e-03 | |||||||||
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of Mycoplasma species. Members average 750 amino acids in length, including signal peptide. Sequences are predicted (Jpred 3) to be almost entirely alpha-helical. These sequences show strong periodicity (consistent with long alpha helical structures) and low complexity rich in D,E,N,Q, and K. Genes encoding these proteins are often found in tandem. The function is unknown. Pssm-ID: 275316 [Multi-domain] Cd Length: 745 Bit Score: 40.39 E-value: 7.61e-03
|
|||||||||||||
CAF-1_p150 | pfam11600 | Chromatin assembly factor 1 complex p150 subunit, N-terminal; CAF-1_p150 is a polypeptide ... |
1060-1195 | 7.73e-03 | |||||||||
Chromatin assembly factor 1 complex p150 subunit, N-terminal; CAF-1_p150 is a polypeptide subunit of CAF-1, which functions in depositing newly synthesized and acetylated histones H3/H4 into chromatin during DNA replication and repair. CAF-1_p150 includes the HP1 interaction site, the PEST, KER and ED interacting sites. CAF-1_p150 interacts directly with newly synthesized and acetylated histones through the acidic KER and ED domains. The PEST domain is associated with proteins that undergo rapid proteolysis. Pssm-ID: 402959 [Multi-domain] Cd Length: 164 Bit Score: 38.52 E-value: 7.73e-03
|
|||||||||||||
TPH | pfam13868 | Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ... |
1098-1189 | 7.92e-03 | |||||||||
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain. Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 39.90 E-value: 7.92e-03
|
|||||||||||||
Mplasa_alph_rch | TIGR04523 | helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of ... |
1068-1198 | 8.94e-03 | |||||||||
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of Mycoplasma species. Members average 750 amino acids in length, including signal peptide. Sequences are predicted (Jpred 3) to be almost entirely alpha-helical. These sequences show strong periodicity (consistent with long alpha helical structures) and low complexity rich in D,E,N,Q, and K. Genes encoding these proteins are often found in tandem. The function is unknown. Pssm-ID: 275316 [Multi-domain] Cd Length: 745 Bit Score: 40.39 E-value: 8.94e-03
|
|||||||||||||
Blast search parameters | ||||
|