Phosphoserine phosphatase (serB, PSPH) [uncultured marine group II/III euryarchaeote KM3_14_H03]
HAD family hydrolase( domain architecture ID 10001729)
haloacid dehalogenase (HAD) family hydrolase uses a nucleophilic aspartate in the phosphoryl transfer reaction; the HAD family includes phosphoesterases, ATPases, phosphonatases, dehalogenases, and sugar phosphomutases acting on a remarkably diverse set of substrates
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
SerB | COG0560 | Phosphoserine phosphatase [Amino acid transport and metabolism]; Phosphoserine phosphatase is ... |
5-206 | 6.64e-33 | ||||
Phosphoserine phosphatase [Amino acid transport and metabolism]; Phosphoserine phosphatase is part of the Pathway/BioSystem: Serine biosynthesis : Pssm-ID: 440326 [Multi-domain] Cd Length: 221 Bit Score: 118.40 E-value: 6.64e-33
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
SerB | COG0560 | Phosphoserine phosphatase [Amino acid transport and metabolism]; Phosphoserine phosphatase is ... |
5-206 | 6.64e-33 | ||||
Phosphoserine phosphatase [Amino acid transport and metabolism]; Phosphoserine phosphatase is part of the Pathway/BioSystem: Serine biosynthesis Pssm-ID: 440326 [Multi-domain] Cd Length: 221 Bit Score: 118.40 E-value: 6.64e-33
|
||||||||
HAD-SF-IB | TIGR01488 | Haloacid Dehalogenase superfamily, subfamily IB, phosphoserine phosphatase-like; This model ... |
6-177 | 1.44e-26 | ||||
Haloacid Dehalogenase superfamily, subfamily IB, phosphoserine phosphatase-like; This model represents a subfamily of the Haloacid Dehalogenase superfamily of aspartate-nucleophile hydrolases. Subfamily IA, B, C and D are distinguished from the rest of the superfamily by the presence of a variable domain between the first and second conserved catalytic motifs. In subfamilies IA and IB, this domain consists of an alpha-helical bundle. It was necessary to model these two subfamilies separately, breaking them at a an apparent phylogenetic bifurcation, so that the resulting model(s) are not so broadly defined that members of subfamily III (which lack the variable domain) are included. Subfamily IA includes the enzyme phosphoserine phosphatase (TIGR00338) as well as three hypothetical equivalogs. Many members of these hypothetical equivalogs have been annotated as PSPase-like or PSPase-family proteins. In particular, the hypothetical equivalog which appears to be most closely related to PSPase contains only Archaea (while TIGR00338 contains only eukaryotes and bacteria) of which some are annotated as PSPases. Although this is a reasonable conjecture, none of these sequences has sufficient evidence for this assignment. If such should be found, this model should be retired while the PSPase model should be broadened to include these sequences. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273653 [Multi-domain] Cd Length: 177 Bit Score: 100.89 E-value: 1.44e-26
|
||||||||
HAD_PSP | cd07500 | phosphoserine phosphatase (PSP), similar to Methanococcus Jannaschii PSP and Saccharomyces ... |
73-177 | 1.03e-15 | ||||
phosphoserine phosphatase (PSP), similar to Methanococcus Jannaschii PSP and Saccharomyces cerevisiae SER2p; This family includes Methanococcus jannaschii PSP, and Saccharomyces cerevisiae phosphoserine phosphatase SER2p, EC 3.1.3.3, which participates in a pathway whereby serine and glycine are synthesized from the glycolytic intermediate 3-phosphoglycerate; phosphoserine phosphatase catalyzes the hydrolysis of phospho-L-serine to L-serine and inorganic phosphate, the third reaction in this pathway. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319803 [Multi-domain] Cd Length: 180 Bit Score: 72.20 E-value: 1.03e-15
|
||||||||
HAD | pfam12710 | haloacid dehalogenase-like hydrolase; |
7-177 | 2.45e-13 | ||||
haloacid dehalogenase-like hydrolase; Pssm-ID: 432733 [Multi-domain] Cd Length: 188 Bit Score: 66.02 E-value: 2.45e-13
|
||||||||
PLN02954 | PLN02954 | phosphoserine phosphatase |
82-213 | 5.12e-09 | ||||
phosphoserine phosphatase Pssm-ID: 215514 [Multi-domain] Cd Length: 224 Bit Score: 54.70 E-value: 5.12e-09
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
SerB | COG0560 | Phosphoserine phosphatase [Amino acid transport and metabolism]; Phosphoserine phosphatase is ... |
5-206 | 6.64e-33 | ||||
Phosphoserine phosphatase [Amino acid transport and metabolism]; Phosphoserine phosphatase is part of the Pathway/BioSystem: Serine biosynthesis Pssm-ID: 440326 [Multi-domain] Cd Length: 221 Bit Score: 118.40 E-value: 6.64e-33
|
||||||||
HAD-SF-IB | TIGR01488 | Haloacid Dehalogenase superfamily, subfamily IB, phosphoserine phosphatase-like; This model ... |
6-177 | 1.44e-26 | ||||
Haloacid Dehalogenase superfamily, subfamily IB, phosphoserine phosphatase-like; This model represents a subfamily of the Haloacid Dehalogenase superfamily of aspartate-nucleophile hydrolases. Subfamily IA, B, C and D are distinguished from the rest of the superfamily by the presence of a variable domain between the first and second conserved catalytic motifs. In subfamilies IA and IB, this domain consists of an alpha-helical bundle. It was necessary to model these two subfamilies separately, breaking them at a an apparent phylogenetic bifurcation, so that the resulting model(s) are not so broadly defined that members of subfamily III (which lack the variable domain) are included. Subfamily IA includes the enzyme phosphoserine phosphatase (TIGR00338) as well as three hypothetical equivalogs. Many members of these hypothetical equivalogs have been annotated as PSPase-like or PSPase-family proteins. In particular, the hypothetical equivalog which appears to be most closely related to PSPase contains only Archaea (while TIGR00338 contains only eukaryotes and bacteria) of which some are annotated as PSPases. Although this is a reasonable conjecture, none of these sequences has sufficient evidence for this assignment. If such should be found, this model should be retired while the PSPase model should be broadened to include these sequences. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273653 [Multi-domain] Cd Length: 177 Bit Score: 100.89 E-value: 1.44e-26
|
||||||||
serB | TIGR00338 | phosphoserine phosphatase SerB; Phosphoserine phosphatase catalyzes the reaction ... |
5-217 | 2.80e-24 | ||||
phosphoserine phosphatase SerB; Phosphoserine phosphatase catalyzes the reaction 3-phospho-serine + H2O = L-serine + phosphate. It catalyzes the last of three steps in the biosynthesis of serine from D-3-phosphoglycerate. Note that this enzyme acts on free phosphoserine, not on phosphoserine residues of phosphoproteins. [Amino acid biosynthesis, Serine family] Pssm-ID: 273022 [Multi-domain] Cd Length: 219 Bit Score: 95.89 E-value: 2.80e-24
|
||||||||
HAD_PSP | cd07500 | phosphoserine phosphatase (PSP), similar to Methanococcus Jannaschii PSP and Saccharomyces ... |
73-177 | 1.03e-15 | ||||
phosphoserine phosphatase (PSP), similar to Methanococcus Jannaschii PSP and Saccharomyces cerevisiae SER2p; This family includes Methanococcus jannaschii PSP, and Saccharomyces cerevisiae phosphoserine phosphatase SER2p, EC 3.1.3.3, which participates in a pathway whereby serine and glycine are synthesized from the glycolytic intermediate 3-phosphoglycerate; phosphoserine phosphatase catalyzes the hydrolysis of phospho-L-serine to L-serine and inorganic phosphate, the third reaction in this pathway. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319803 [Multi-domain] Cd Length: 180 Bit Score: 72.20 E-value: 1.03e-15
|
||||||||
HAD | pfam12710 | haloacid dehalogenase-like hydrolase; |
7-177 | 2.45e-13 | ||||
haloacid dehalogenase-like hydrolase; Pssm-ID: 432733 [Multi-domain] Cd Length: 188 Bit Score: 66.02 E-value: 2.45e-13
|
||||||||
Gph | COG0546 | Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; |
4-174 | 4.57e-13 | ||||
Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; Pssm-ID: 440312 [Multi-domain] Cd Length: 214 Bit Score: 65.72 E-value: 4.57e-13
|
||||||||
Hydrolase | pfam00702 | haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha ... |
4-177 | 5.05e-11 | ||||
haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha/beta hydrolase family (pfam00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain. Those members with the characteriztic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria. Pssm-ID: 459910 [Multi-domain] Cd Length: 191 Bit Score: 59.91 E-value: 5.05e-11
|
||||||||
HAD_PSP_eu | cd04309 | phosphoserine phosphatase eukaryotic-like, similar to human phosphoserine phosphatase; Human ... |
6-192 | 1.07e-10 | ||||
phosphoserine phosphatase eukaryotic-like, similar to human phosphoserine phosphatase; Human PSP, EC 3.1.3.3, catalyzes the third and final of the L-serine biosynthesis pathway, the Mg2+-dependent hydrolysis of phospho-L-serine to L-serine and inorganic phosphate, L-serine is a precursor for the biosynthesis of glycine. HPSP regulates the levels of glycine and D-serine (converted from L-serine), the putative co-agonists for the glycine site of the NMDA receptor in the brain. Plant 3-PSP catalyzes the conversion of 3-phosphoserine to serine in the last step of the plastidic pathway of serine biosynthesis. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319801 [Multi-domain] Cd Length: 202 Bit Score: 58.83 E-value: 1.07e-10
|
||||||||
YigB | COG1011 | FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily ... |
4-170 | 4.19e-09 | ||||
FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily (riboflavin biosynthesis) [Coenzyme transport and metabolism]; Pssm-ID: 440635 [Multi-domain] Cd Length: 220 Bit Score: 54.65 E-value: 4.19e-09
|
||||||||
PLN02954 | PLN02954 | phosphoserine phosphatase |
82-213 | 5.12e-09 | ||||
phosphoserine phosphatase Pssm-ID: 215514 [Multi-domain] Cd Length: 224 Bit Score: 54.70 E-value: 5.12e-09
|
||||||||
YcjU | COG0637 | Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; |
4-120 | 5.69e-09 | ||||
Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; Pssm-ID: 440402 [Multi-domain] Cd Length: 208 Bit Score: 54.06 E-value: 5.69e-09
|
||||||||
HAD-SF-IB-hyp1 | TIGR01490 | HAD-superfamily subfamily IB hydrolase, TIGR01490; This hypothetical equivalog is a member of ... |
6-177 | 1.18e-07 | ||||
HAD-superfamily subfamily IB hydrolase, TIGR01490; This hypothetical equivalog is a member of the IB subfamily (TIGR01488) of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The sequences modelled here are all bacterial. The IB subfamily includes the enzyme phosphoserine phosphatase (TIGR00338). Due to this relationship, several of these sequences have been annotated as "phosphoserine phosphatase related proteins," or "Phosphoserine phosphatase-family enzymes." There is presently no evidence that any of the enzymes in this model possess PSPase activity. OMNI|NTL01ML1250 is annotated as a "possible transferase," however this is due to the C-terminal domain found on this sequence which is homologous to a group of glycerol-phosphate acyltransferases (between trusted and noise to TIGR00530). A subset of these sequences including OMNI|CC1962, the Caulobacter crescentus CicA protein cluster together and may represent a separate equivalog. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273654 [Multi-domain] Cd Length: 202 Bit Score: 50.42 E-value: 1.18e-07
|
||||||||
HAD_like | cd07533 | uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar ... |
7-185 | 1.69e-06 | ||||
uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar to Parvibaculum lavamentivorans HAD-superfamily hydrolase, subfamily IA, variant 1; This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319835 [Multi-domain] Cd Length: 207 Bit Score: 47.01 E-value: 1.69e-06
|
||||||||
HAD_like | cd01427 | Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily ... |
83-177 | 4.76e-06 | ||||
Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily includes L-2-haloacid dehalogenase, epoxide hydrolase, phosphoserine phosphatase, phosphomannomutase, phosphoglycolate phosphatase, P-type ATPase, and many others. This superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All of which use a nucleophilic aspartate in their phosphoryl transfer reaction. They catalyze nucleophilic substitution reactions at phosphorus or carbon centers, using a conserved Asp carboxylate in covalent catalysis. All members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. Members of this superfamily are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319763 [Multi-domain] Cd Length: 106 Bit Score: 43.92 E-value: 4.76e-06
|
||||||||
HAD_Pase | cd07514 | phosphatase, similar to Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PCPase), ... |
78-177 | 4.98e-06 | ||||
phosphatase, similar to Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PCPase), and Pyrococcus horikoshii PH1421, a magnesium-dependent phosphatase; belongs to the haloacid dehalogenase-like superfamily; Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PGPase) catalyzes the magnesium-dependent dephosphorylation of phosphoglycolate. This family also includes Pyrococcus horikoshii OT3 PH1421, a magnesium-dependent phosphatase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319816 [Multi-domain] Cd Length: 139 Bit Score: 44.89 E-value: 4.98e-06
|
||||||||
HAD-SF-IA-v3 | TIGR01509 | haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; ... |
6-103 | 8.86e-06 | ||||
haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions. The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)D, (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 3 (this model) is found in the enzymes beta-phosphoglucomutase (TIGR01990) and deoxyglucose-6-phosphatase, while many other enzymes of subfamily IA exhibit this variant as well as variant 1 (TIGR01549). These three variant models were created with the knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly related HAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273662 [Multi-domain] Cd Length: 178 Bit Score: 44.72 E-value: 8.86e-06
|
||||||||
HAD_PGPPase | cd02612 | phosphatidylglycerol-phosphate phosphatase, similar to Escherichia coli K-12 ... |
6-177 | 9.29e-06 | ||||
phosphatidylglycerol-phosphate phosphatase, similar to Escherichia coli K-12 phosphatidylglycerol-phosphate phosphatase C; This family includes Escherichia coli K-12 phosphatidylglycerol-phosphate phosphatase C, PgpC (previously named yfhB) which catalyzes the dephosphorylation of phosphatidylglycerol-phosphate (PGP) to phosphatidylglycerol (PG). This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319796 [Multi-domain] Cd Length: 195 Bit Score: 44.99 E-value: 9.29e-06
|
||||||||
HAD_Pase | cd07524 | phosphatase, similar to Bacillus subtilis MtnX; belongs to the haloacid dehalogenase-like ... |
77-176 | 3.33e-05 | ||||
phosphatase, similar to Bacillus subtilis MtnX; belongs to the haloacid dehalogenase-like superfamily; Bacillus subtilis recycles two toxic byproducts of polyamine metabolism, methylthioadenosine and methylthioribose, into methionine by a salvage pathway. The sixth reaction in this pathway is catalyzed by B. subtilis MtnX: the dephosphorylation of 2- hydroxy-3-keto-5-methylthiopentenyl-1-phosphate (HKMTP- 1-P) into 1,2-dihydroxy-3-keto-5-methylthiopentene. The hydrolysis of HK-MTP-1-P is a two-step mechanism involving the formation of a transiently phosphorylated aspartyl intermediate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319826 [Multi-domain] Cd Length: 211 Bit Score: 43.47 E-value: 3.33e-05
|
||||||||
HAD_sEH-N_like | cd02603 | N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX ... |
4-101 | 3.53e-05 | ||||
N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX/HAD4 alpha-D-glucose 1-phosphate phosphatase, and related domains, may be inactive; This family includes the N-terminal phosphatase domain of human soluble epoxide hydrolase (sEH). sEH is a bifunctional enzyme with two distinct enzyme activities, the C-terminal domain has epoxide hydrolysis activity and the N-terminal domain (Ntermphos), which belongs to this family, has lipid phosphatase activity. The latter prefers mono-phosphate esters, and lysophosphatidic acids (LPAs) are the best natural substrates found to date. In addition this family includes Gallus gallus sEH and Xenopus sEH which appears to lack phosphatase activity, and Escherichia coli YihX/HAD4 which selectively hydrolyzes alpha-Glucose-1-P, phosphatase, has significant phosphatase activity against pyridoxal phosphate, and has low beta phosphoglucomutase activity. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319790 [Multi-domain] Cd Length: 195 Bit Score: 43.10 E-value: 3.53e-05
|
||||||||
HAD_BPGM-like | cd07505 | beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase ... |
6-103 | 5.84e-05 | ||||
beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase superfamily; This family represents the beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase superfamily. Family members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate, and Escherichia coli 6-phosphogluconate phosphatase YieH. It belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319808 [Multi-domain] Cd Length: 143 Bit Score: 41.83 E-value: 5.84e-05
|
||||||||
serB | PRK11133 | phosphoserine phosphatase; Provisional |
79-177 | 4.74e-04 | ||||
phosphoserine phosphatase; Provisional Pssm-ID: 182988 [Multi-domain] Cd Length: 322 Bit Score: 40.32 E-value: 4.74e-04
|
||||||||
HAD_2 | pfam13419 | Haloacid dehalogenase-like hydrolase; |
7-174 | 7.40e-04 | ||||
Haloacid dehalogenase-like hydrolase; Pssm-ID: 404323 [Multi-domain] Cd Length: 178 Bit Score: 39.10 E-value: 7.40e-04
|
||||||||
P-type_ATPase_FixI-like | cd02092 | Rhizobium meliloti FixI and related proteins; belongs to P-type heavy metal-transporting ... |
68-123 | 7.55e-04 | ||||
Rhizobium meliloti FixI and related proteins; belongs to P-type heavy metal-transporting ATPase subfamily; FixI may be a pump of a specific cation involved in symbiotic nitrogen fixation. The Rhizobium fixI gene is part of an operon conserved among rhizobia, fixGHIS. FixG, FixH, FixI, and FixS may participate in a membrane-bound complex coupling the FixI cation pump with a redox process catalyzed by FixG, an iron-sulfur protein. This subclass of P-type ATPase is also referred to as CPx-type ATPases because their amino acid sequences contain a characteristic CPC or CPH motif associated with a stretch of hydrophobic amino acids and N-terminal ion-binding sequences. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. Pssm-ID: 319782 [Multi-domain] Cd Length: 605 Bit Score: 40.03 E-value: 7.55e-04
|
||||||||
thrH | PRK13582 | bifunctional phosphoserine phosphatase/homoserine phosphotransferase ThrH; |
10-199 | 1.14e-03 | ||||
bifunctional phosphoserine phosphatase/homoserine phosphotransferase ThrH; Pssm-ID: 237437 [Multi-domain] Cd Length: 205 Bit Score: 38.75 E-value: 1.14e-03
|
||||||||
HAD_5NT | cd04302 | haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; ... |
6-174 | 2.92e-03 | ||||
haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; 5'-nucleotidases dephosphorylate nucleoside 5'-monophosphates to nucleosides and inorganic phosphate. Purified Pseudomonas aeruginosa PA0065 displayed high activity toward 5'-UMP and 5'-IMP, significant activity against 5'-XMP and 5'-TMP, and low activity against 5'-CMP. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319798 [Multi-domain] Cd Length: 209 Bit Score: 37.57 E-value: 2.92e-03
|
||||||||
PRK01158 | PRK01158 | phosphoglycolate phosphatase; Provisional |
145-177 | 2.95e-03 | ||||
phosphoglycolate phosphatase; Provisional Pssm-ID: 234910 [Multi-domain] Cd Length: 230 Bit Score: 37.65 E-value: 2.95e-03
|
||||||||
HAD_PGPase | cd04303 | phosphoglycolate phosphatase, similar to Synechococcus elongates phosphoglycolate phosphatase ... |
6-173 | 3.20e-03 | ||||
phosphoglycolate phosphatase, similar to Synechococcus elongates phosphoglycolate phosphatase PGP/CbbZ; Phosphoglycolate phosphatase catalyzes the dephosphorylation of phosphoglycolate; its activity requires divalent cations, especially Mg++. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319799 [Multi-domain] Cd Length: 201 Bit Score: 37.34 E-value: 3.20e-03
|
||||||||
SPP-subfamily | TIGR01482 | sucrose-phosphate phosphatase subfamily; This model includes both the members of the SPP ... |
99-219 | 5.89e-03 | ||||
sucrose-phosphate phosphatase subfamily; This model includes both the members of the SPP equivalog model (TIGR01485), encompassing plants and cyanobacteria, as well as those archaeal sequences which are the closest relatives (TIGR01487). It remains to be shown whether these archaeal sequences catalyze the same reaction as SPP. Pssm-ID: 273650 [Multi-domain] Cd Length: 225 Bit Score: 36.67 E-value: 5.89e-03
|
||||||||
KdsC | COG1778 | 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase KdsC and related HAD superfamily ... |
1-177 | 8.64e-03 | ||||
3-deoxy-D-manno-octulosonate 8-phosphate phosphatase KdsC and related HAD superfamily phosphatases [Cell wall/membrane/envelope biogenesis, General function prediction only]; Pssm-ID: 441384 [Multi-domain] Cd Length: 170 Bit Score: 35.80 E-value: 8.64e-03
|
||||||||
HAD_PPase | cd02616 | pyrophosphatase similar to Bacillus subtilis PpaX; This family includes Bacillus subtilis PpaX ... |
4-101 | 9.09e-03 | ||||
pyrophosphatase similar to Bacillus subtilis PpaX; This family includes Bacillus subtilis PpaX which hydrolyzes pyrophosphate formed during serine-46-phosphorylated HPr (P-Ser-HPr) dephosphorylation by the bifunctional enzyme HPr kinase/phosphorylase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319797 [Multi-domain] Cd Length: 207 Bit Score: 36.10 E-value: 9.09e-03
|
||||||||
Blast search parameters | ||||
|