LARGE family glycosyltransferase is a bifunctional glycosyltransferase containing N-terminal family 8 and C-terminal family 49 glycosyltransferase domains, similar to LARGE xylosyl- and glucuronyltransferase proteins, which exhibit both alpha-1,3-xylosyltransferase and beta-1,3-glucuronyltransferase activities and are involved in the maturation of alpha-dystroglycan; glycosyltransferase family protein
LARGE catalytic domain has closest homology to GT8 glycosyltransferase involved in ...
97-376
0e+00
LARGE catalytic domain has closest homology to GT8 glycosyltransferase involved in lipooligosaccharide synthesis; The catalytic domain of LARGE is a putative glycosyltransferase. Mutations of LARGE in mouse and human cause dystroglycanopathies, a disease associated with hypoglycosylation of the membrane protein alpha-dystroglycan (alpha-DG) and consequent loss of extracellular ligand binding. LARGE needs to both physically interact with alpha-dystroglycan and function as a glycosyltransferase in order to stimulate alpha-dystroglycan hyperglycosylation. LARGE localizes to the Golgi apparatus and contains three conserved DxD motifs. While two of the motifs are indispensible for glycosylation function, one is important for localization of th eenzyme. LARGE was originally named because it covers approximately large trunck of genomic DNA, more than 600bp long. The predicted protein structure contains an N-terminal cytoplasmic domain, a transmembrane region, a coiled-coil motif, and two putative catalytic domains. This catalytic domain has closest homology to GT8 glycosyltransferase involved in lipooligosaccharide synthesis.
:
Pssm-ID: 133053 Cd Length: 280 Bit Score: 528.20 E-value: 0e+00
Glycosyl-transferase for dystroglycan; This glycosyl-transferase brings about the ...
431-664
1.62e-49
Glycosyl-transferase for dystroglycan; This glycosyl-transferase brings about the glycosylation of the alpha-dystroglycan subunit. Dystroglycan is an integral member of the skeletal muscular dystrophin glycoprotein complex, which links dystrophin to proteins in the extracellular matrix.
The actual alignment was detected with superfamily member pfam13896:
Pssm-ID: 464027 Cd Length: 327 Bit Score: 176.67 E-value: 1.62e-49
LARGE catalytic domain has closest homology to GT8 glycosyltransferase involved in ...
97-376
0e+00
LARGE catalytic domain has closest homology to GT8 glycosyltransferase involved in lipooligosaccharide synthesis; The catalytic domain of LARGE is a putative glycosyltransferase. Mutations of LARGE in mouse and human cause dystroglycanopathies, a disease associated with hypoglycosylation of the membrane protein alpha-dystroglycan (alpha-DG) and consequent loss of extracellular ligand binding. LARGE needs to both physically interact with alpha-dystroglycan and function as a glycosyltransferase in order to stimulate alpha-dystroglycan hyperglycosylation. LARGE localizes to the Golgi apparatus and contains three conserved DxD motifs. While two of the motifs are indispensible for glycosylation function, one is important for localization of th eenzyme. LARGE was originally named because it covers approximately large trunck of genomic DNA, more than 600bp long. The predicted protein structure contains an N-terminal cytoplasmic domain, a transmembrane region, a coiled-coil motif, and two putative catalytic domains. This catalytic domain has closest homology to GT8 glycosyltransferase involved in lipooligosaccharide synthesis.
Pssm-ID: 133053 Cd Length: 280 Bit Score: 528.20 E-value: 0e+00
Glycosyl-transferase for dystroglycan; This glycosyl-transferase brings about the ...
431-664
1.62e-49
Glycosyl-transferase for dystroglycan; This glycosyl-transferase brings about the glycosylation of the alpha-dystroglycan subunit. Dystroglycan is an integral member of the skeletal muscular dystrophin glycoprotein complex, which links dystrophin to proteins in the extracellular matrix.
Pssm-ID: 464027 Cd Length: 327 Bit Score: 176.67 E-value: 1.62e-49
Glycosyl transferase family 8; This family includes enzymes that transfer sugar residues to ...
171-345
4.71e-16
Glycosyl transferase family 8; This family includes enzymes that transfer sugar residues to donor molecules. Members of this family are involved in lipopolysaccharide biosynthesis and glycogen synthesis. This family includes Lipopolysaccharide galactosyltransferase, lipopolysaccharide glucosyltransferase 1, and glycogenin glucosyltransferase.
Pssm-ID: 279798 [Multi-domain] Cd Length: 252 Bit Score: 78.52 E-value: 4.71e-16
LARGE catalytic domain has closest homology to GT8 glycosyltransferase involved in ...
97-376
0e+00
LARGE catalytic domain has closest homology to GT8 glycosyltransferase involved in lipooligosaccharide synthesis; The catalytic domain of LARGE is a putative glycosyltransferase. Mutations of LARGE in mouse and human cause dystroglycanopathies, a disease associated with hypoglycosylation of the membrane protein alpha-dystroglycan (alpha-DG) and consequent loss of extracellular ligand binding. LARGE needs to both physically interact with alpha-dystroglycan and function as a glycosyltransferase in order to stimulate alpha-dystroglycan hyperglycosylation. LARGE localizes to the Golgi apparatus and contains three conserved DxD motifs. While two of the motifs are indispensible for glycosylation function, one is important for localization of th eenzyme. LARGE was originally named because it covers approximately large trunck of genomic DNA, more than 600bp long. The predicted protein structure contains an N-terminal cytoplasmic domain, a transmembrane region, a coiled-coil motif, and two putative catalytic domains. This catalytic domain has closest homology to GT8 glycosyltransferase involved in lipooligosaccharide synthesis.
Pssm-ID: 133053 Cd Length: 280 Bit Score: 528.20 E-value: 0e+00
Members of glycosyltransferase family 8 (GT-8) are involved in lipopolysaccharide biosynthesis ...
97-349
1.36e-71
Members of glycosyltransferase family 8 (GT-8) are involved in lipopolysaccharide biosynthesis and glycogen synthesis; Members of this family are involved in lipopolysaccharide biosynthesis and glycogen synthesis. GT-8 comprises enzymes with a number of known activities: lipopolysaccharide galactosyltransferase, lipopolysaccharide glucosyltransferase 1, glycogenin glucosyltransferase, and N-acetylglucosaminyltransferase. GT-8 enzymes contains a conserved DXD motif which is essential in the coordination of a catalytic divalent cation, most commonly Mn2+.
Pssm-ID: 132996 [Multi-domain] Cd Length: 246 Bit Score: 233.10 E-value: 1.36e-71
Glycosyl-transferase for dystroglycan; This glycosyl-transferase brings about the ...
431-664
1.62e-49
Glycosyl-transferase for dystroglycan; This glycosyl-transferase brings about the glycosylation of the alpha-dystroglycan subunit. Dystroglycan is an integral member of the skeletal muscular dystrophin glycoprotein complex, which links dystrophin to proteins in the extracellular matrix.
Pssm-ID: 464027 Cd Length: 327 Bit Score: 176.67 E-value: 1.62e-49
Glycosyl transferase family 8; This family includes enzymes that transfer sugar residues to ...
171-345
4.71e-16
Glycosyl transferase family 8; This family includes enzymes that transfer sugar residues to donor molecules. Members of this family are involved in lipopolysaccharide biosynthesis and glycogen synthesis. This family includes Lipopolysaccharide galactosyltransferase, lipopolysaccharide glucosyltransferase 1, and glycogenin glucosyltransferase.
Pssm-ID: 279798 [Multi-domain] Cd Length: 252 Bit Score: 78.52 E-value: 4.71e-16
A4GalT_like proteins catalyze the addition of galactose or glucose residues to the ...
114-345
2.10e-15
A4GalT_like proteins catalyze the addition of galactose or glucose residues to the lipooligosaccharide (LOS) or lipopolysaccharide (LPS) of the bacterial cell surface; The members of this family of glycosyltransferases catalyze the addition of galactose or glucose residues to the lipooligosaccharide (LOS) or lipopolysaccharide (LPS) of the bacterial cell surface. The enzymes exhibit broad substrate specificities. The known functions found in this family include: Alpha-1,4-galactosyltransferase, LOS-alpha-1,3-D-galactosyltransferase, UDP-glucose:(galactosyl) LPS alpha1,2-glucosyltransferase, UDP-galactose: (glucosyl) LPS alpha1,2-galactosyltransferase, and UDP-glucose:(glucosyl) LPS alpha1,2-glucosyltransferase. Alpha-1,4-galactosyltransferase from N. meningitidis adds an alpha-galactose from UDP-Gal (the donor) to a terminal lactose (the acceptor) of the LOS structure of outer membrane. LOSs are virulence factors that enable the organism to evade the immune system of host cells. In E. coli, the three alpha-1,2-glycosyltransferases, that are involved in the synthesis of the outer core region of the LPS, are all members of this family. The three enzymes share 40 % of sequence identity, but have different sugar donor or acceptor specificities, representing the structural diversity of LPS.
Pssm-ID: 133037 [Multi-domain] Cd Length: 248 Bit Score: 76.48 E-value: 2.10e-15
GT8_like_2 represents a subfamily of GT8 with unknown function; A subfamily of ...
97-366
2.33e-14
GT8_like_2 represents a subfamily of GT8 with unknown function; A subfamily of glycosyltransferase family 8 with unknown function: Glycosyltransferase family 8 comprises enzymes with a number of known activities; lipopolysaccharide galactosyltransferase lipopolysaccharide glucosyltransferase 1, glycogenin glucosyltransferase and inositol 1-alpha-galactosyltransferase. It is classified as a retaining glycosyltransferase, based on the relative anomeric stereochemistry of the substrate and product in the reaction catalyzed.
Pssm-ID: 133052 Cd Length: 304 Bit Score: 74.42 E-value: 2.33e-14
GT8_like_1 represents a subfamily of GT8 with unknown function; A subfamily of ...
127-345
6.88e-05
GT8_like_1 represents a subfamily of GT8 with unknown function; A subfamily of glycosyltransferase family 8 with unknown function: Glycosyltransferase family 8 comprises enzymes with a number of known activities; lipopolysaccharide galactosyltransferase lipopolysaccharide glucosyltransferase 1, glycogenin glucosyltransferase and inositol 1-alpha-galactosyltransferase. It is classified as a retaining glycosyltransferase, based on the relative anomeric stereochemistry of the substrate and product in the reaction catalyzed.
Pssm-ID: 133051 [Multi-domain] Cd Length: 257 Bit Score: 45.07 E-value: 6.88e-05
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options