Adenylation domain of GTP-dependent mRNA capping enzymes; RNA capping enzymes transfer GMP ...
22-244
1.99e-86
Adenylation domain of GTP-dependent mRNA capping enzymes; RNA capping enzymes transfer GMP from GTP to the 5'-diphosphate end of nascent mRNAs to form a G(5')ppp(5')RNA cap structure. The RNA cap is found only in eukarya. RNA capping is chemically analogous to the first two steps of polynucleotide ligation. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation of nicked nucleic acid substrates using the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. Structural studies reveal a shared structure for DNA ligases and capping enzymes, with a common catalytic core composed of an adenylation or nucleotidyltransferase domain and a C-terminal OB-fold domain containing conserved sequence motifs. The adenylation domain binds ATP and contains many active site residues.
Pssm-ID: 185706 [Multi-domain] Cd Length: 215 Bit Score: 261.41 E-value: 1.99e-86
Adenylation domain of GTP-dependent mRNA capping enzymes; RNA capping enzymes transfer GMP ...
22-244
1.99e-86
Adenylation domain of GTP-dependent mRNA capping enzymes; RNA capping enzymes transfer GMP from GTP to the 5'-diphosphate end of nascent mRNAs to form a G(5')ppp(5')RNA cap structure. The RNA cap is found only in eukarya. RNA capping is chemically analogous to the first two steps of polynucleotide ligation. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation of nicked nucleic acid substrates using the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. Structural studies reveal a shared structure for DNA ligases and capping enzymes, with a common catalytic core composed of an adenylation or nucleotidyltransferase domain and a C-terminal OB-fold domain containing conserved sequence motifs. The adenylation domain binds ATP and contains many active site residues.
Pssm-ID: 185706 [Multi-domain] Cd Length: 215 Bit Score: 261.41 E-value: 1.99e-86
Adenylation domain of proteins similar to ATP-dependent polynucleotide ligases; ATP-dependent ...
43-244
6.52e-18
Adenylation domain of proteins similar to ATP-dependent polynucleotide ligases; ATP-dependent polynucleotide ligases catalyze the phosphodiester bond formation of nicked nucleic acid substrates using ATP as a cofactor in a three step reaction mechanism. This family includes ATP-dependent DNA and RNA ligases. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent DNA ligases have a highly modular architecture, consisting of a unique arrangement of two or more discrete domains, including a DNA-binding domain, an adenylation or nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The adenylation domain binds ATP and contains many active site residues. Together with the C-terminal OB-fold domain, it comprises a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases including eukaryotic GRP-dependent mRNA-capping enzymes. The catalytic core contains both the active site as well as many DNA-binding residues. The RNA circularization protein from archaea and bacteria contains the minimal catalytic unit, the adenylation domain, but does not contain an OB-fold domain. This family also includes the m3G-cap binding domain of snurportin, a nuclear import adaptor that binds m3G-capped spliceosomal U small nucleoproteins (snRNPs), but doesn't have enzymatic activity.
Pssm-ID: 185704 [Multi-domain] Cd Length: 182 Bit Score: 80.93 E-value: 6.52e-18
Adenylation domain of DNA Ligase IV; ATP-dependent polynucleotide ligases catalyze ...
57-244
7.54e-03
Adenylation domain of DNA Ligase IV; ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriophages, eukarya, archaea and bacteria. There are three classes of ATP-dependent DNA ligase in eukaryotic cells (I, III and IV). DNA ligase IV is required for DNA non-homologous end joining pathways, including recombination of the V(D)J immunoglobulin gene segments in cells of the mammalian immune system. DNA ligase IV is stabilized by forming a complex with XRCC4, a nuclear phosphoprotein, which is phosphorylated by DNA-dependent protein kinase. DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains. The adenylation and C-terminal oligonucleotide/oligosaccharide binding (OB)-fold domains comprise a catalytic core unit that is common to all members of the ATP-dependent DNA ligase family. The adenylation domain binds ATP and contains many of the active-site residues. The common catalytic unit comprises six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases.
Pssm-ID: 185713 [Multi-domain] Cd Length: 225 Bit Score: 37.56 E-value: 7.54e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options