NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|472744|gb|AAA80997|]
View 

tyrosine kinase, partial [Xiphophorus evelynae]

Protein Classification

protein kinase family protein( domain architecture ID 229378)

protein kinase family protein may catalyze the transfer of the gamma-phosphoryl group from ATP to substrates such as serine/threonine and/or tyrosine residues on proteins, or may be a pseudokinase

CATH:  1.10.510.10
PubMed:  16244704
SCOP:  4003661

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PKc_like super family cl21453
Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the ...
1-103 3.53e-70

Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the catalytic domains of serine/threonine-specific and tyrosine-specific protein kinases. It also includes RIO kinases, which are atypical serine protein kinases, aminoglycoside phosphotransferases, and choline kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to hydroxyl groups in specific substrates such as serine, threonine, or tyrosine residues of proteins.


The actual alignment was detected with superfamily member cd14203:

Pssm-ID: 473864 [Multi-domain]  Cd Length: 248  Bit Score: 209.39  E-value: 3.53e-70
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd14203  28 KPGTMSPEAFLEEAQIMKKLRHDKLVQLYAVVSEEPIYIVTEFMSKGSLLDFLKDGEGKYLKLPQLVDMAAQIASGMAYI 107
                        90       100
                ....*....|....*....|...
gi 472744    81 ERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd14203 108 ERMNYIHRDLRAANILVGDNLVC 130
 
Name Accession Description Interval E-value
PTKc_Src_Fyn_like cd14203
Catalytic domain of a subset of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the ...
1-103 3.53e-70

Catalytic domain of a subset of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily includes a subset of Src-like PTKs including Src, Fyn, Yrk, and Yes, which are all widely expressed. Yrk has been detected only in chickens. It is primarily found in neuronal and epithelial cells and in macrophages. It may play a role in inflammation and in response to injury. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. They are also implicated in acute inflammatory responses and osteoclast function. The Src/Fyn-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271105 [Multi-domain]  Cd Length: 248  Bit Score: 209.39  E-value: 3.53e-70
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd14203  28 KPGTMSPEAFLEEAQIMKKLRHDKLVQLYAVVSEEPIYIVTEFMSKGSLLDFLKDGEGKYLKLPQLVDMAAQIASGMAYI 107
                        90       100
                ....*....|....*....|...
gi 472744    81 ERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd14203 108 ERMNYIHRDLRAANILVGDNLVC 130
PK_Tyr_Ser-Thr pfam07714
Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role ...
1-103 1.93e-44

Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyze the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyze the reverse process. Protein kinases fall into three broad classes, characterized with respect to substrate specificity; Serine/threonine-protein kinases, tyrosine-protein kinases, and dual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins). This entry represents the catalytic domain found in a number of serine/threonine- and tyrosine-protein kinases. It does not include the catalytic domain of dual specificity kinases.


Pssm-ID: 462242 [Multi-domain]  Cd Length: 258  Bit Score: 144.18  E-value: 1.93e-44
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744       1 KPGTMSP--EAFLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFLKGQYSTmLRLPQLVDFASQIASGM 77
Cdd:pfam07714  37 KEGADEEerEDFLEEASIMKKLDHPNIVKLLGVCTqGEPLYIVTEYMPGGDLLDFLRKHKRK-LTLKDLLSMALQIAKGM 115
                          90       100
                  ....*....|....*....|....*.
gi 472744      78 AYVERMNYVHRDLRAANILVGDNLVC 103
Cdd:pfam07714 116 EYLESKNFVHRDLAARNCLVSENLVV 141
STYKc smart00221
Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class ...
8-103 2.61e-41

Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class of kinases can not be predicted. Possible dual-specificity Ser/Thr/Tyr kinase.


Pssm-ID: 214568 [Multi-domain]  Cd Length: 258  Bit Score: 136.14  E-value: 2.61e-41
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744        8 EAFLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:smart00221  46 EEFLREARIMRKLDHPNIVKLLGVCTEeEPLMIVMEYMPGGDLLDYLRKNRPKELSLSDLLSFALQIARGMEYLESKNFI 125
                           90
                   ....*....|....*..
gi 472744       87 HRDLRAANILVGDNLVC 103
Cdd:smart00221 126 HRDLAARNCLVGENLVV 142
SPS1 COG0515
Serine/threonine protein kinase [Signal transduction mechanisms];
8-100 5.45e-20

Serine/threonine protein kinase [Signal transduction mechanisms];


Pssm-ID: 440281 [Multi-domain]  Cd Length: 482  Bit Score: 83.14  E-value: 5.45e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPI-YIVTEFMDQGSLLEFLKGQysTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:COG0515  52 ERFRREARALARLNHPNIVRVYDVGEEDGRpYLVMEYVEGESLADLLRRR--GPLPPAEALRILAQLAEALAAAHAAGIV 129
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:COG0515 130 HRDIKPANILLTPD 143
PknB_PASTA_kin NF033483
Stk1 family PASTA domain-containing Ser/Thr kinase;
10-100 6.40e-12

Stk1 family PASTA domain-containing Ser/Thr kinase;


Pssm-ID: 468045 [Multi-domain]  Cd Length: 563  Bit Score: 59.81  E-value: 6.40e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     10 FLQEAQVMKKLRHEKLVQLYAVVSEEPI-YIVTEFMDQGSLLEFLKGQYstmlRLP--QLVDFASQIASGMAYVERMNYV 86
Cdd:NF033483  54 FRREAQSAASLSHPNIVSVYDVGEDGGIpYIVMEYVDGRTLKDYIREHG----PLSpeEAVEIMIQILSALEHAHRNGIV 129
                         90
                 ....*....|....
gi 472744     87 HRDLRAANILVGDN 100
Cdd:NF033483 130 HRDIKPQNILITKD 143
PLN00034 PLN00034
mitogen-activated protein kinase kinase; Provisional
37-97 2.77e-09

mitogen-activated protein kinase kinase; Provisional


Pssm-ID: 215036 [Multi-domain]  Cd Length: 353  Bit Score: 52.52  E-value: 2.77e-09
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 472744     37 IYIVTEFMDQGSLleflkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:PLN00034 147 IQVLLEFMDGGSL------EGTHIADEQFLADVARQILSGIAYLHRRHIVHRDIKPSNLLI 201
 
Name Accession Description Interval E-value
PTKc_Src_Fyn_like cd14203
Catalytic domain of a subset of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the ...
1-103 3.53e-70

Catalytic domain of a subset of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily includes a subset of Src-like PTKs including Src, Fyn, Yrk, and Yes, which are all widely expressed. Yrk has been detected only in chickens. It is primarily found in neuronal and epithelial cells and in macrophages. It may play a role in inflammation and in response to injury. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. They are also implicated in acute inflammatory responses and osteoclast function. The Src/Fyn-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271105 [Multi-domain]  Cd Length: 248  Bit Score: 209.39  E-value: 3.53e-70
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd14203  28 KPGTMSPEAFLEEAQIMKKLRHDKLVQLYAVVSEEPIYIVTEFMSKGSLLDFLKDGEGKYLKLPQLVDMAAQIASGMAYI 107
                        90       100
                ....*....|....*....|...
gi 472744    81 ERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd14203 108 ERMNYIHRDLRAANILVGDNLVC 130
PTKc_Src cd05071
Catalytic domain of the Protein Tyrosine Kinase, Src; PTKs catalyze the transfer of the ...
1-103 2.65e-69

Catalytic domain of the Protein Tyrosine Kinase, Src; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Src (or c-Src) is a cytoplasmic (or non-receptor) PTK, containing an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region with a conserved tyr. It is activated by autophosphorylation at the tyr kinase domain, and is negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). c-Src is the vertebrate homolog of the oncogenic protein (v-Src) from Rous sarcoma virus. Together with other Src subfamily proteins, it is involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. Src also play a role in regulating cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. Elevated levels of Src kinase activity have been reported in a variety of human cancers. Several inhibitors of Src have been developed as anti-cancer drugs. Src is also implicated in acute inflammatory responses and osteoclast function. The Src subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270656 [Multi-domain]  Cd Length: 277  Bit Score: 208.39  E-value: 2.65e-69
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd05071  42 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEYMSKGSLLDFLKGEMGKYLRLPQLVDMAAQIASGMAYV 121
                        90       100
                ....*....|....*....|...
gi 472744    81 ERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05071 122 ERMNYVHRDLRAANILVGENLVC 144
PTKc_Src_like cd05034
Catalytic domain of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of ...
1-103 6.95e-69

Catalytic domain of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Src subfamily members include Src, Lck, Hck, Blk, Lyn, Fgr, Fyn, Yrk, and Yes. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. Src kinases are overexpressed in a variety of human cancers, making them attractive targets for therapy. They are also implicated in acute inflammatory responses and osteoclast function. Src, Fyn, Yes, and Yrk are widely expressed, while Blk, Lck, Hck, Fgr, and Lyn show a limited expression pattern. The Src-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270630 [Multi-domain]  Cd Length: 248  Bit Score: 205.98  E-value: 6.95e-69
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAY 79
Cdd:cd05034  28 KPGTMSPEAFLQEAQIMKKLRHDKLVQLYAVCSdEEPIYIVTELMSKGSLLDYLRTGEGRALRLPQLIDMAAQIASGMAY 107
                        90       100
                ....*....|....*....|....
gi 472744    80 VERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05034 108 LESRNYIHRDLAARNILVGENNVC 131
PTKc_Frk_like cd05068
Catalytic domain of Fyn-related kinase-like Protein Tyrosine Kinases; PTKs catalyze the ...
1-103 9.63e-60

Catalytic domain of Fyn-related kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Frk and Srk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Frk, also known as Rak, is specifically expressed in liver, lung, kidney, intestine, mammary glands, and the islets of Langerhans. Rodent homologs were previously referred to as GTK (gastrointestinal tyr kinase), BSK (beta-cell Src-like kinase), or IYK (intestinal tyr kinase). Studies in mice reveal that Frk is not essential for viability. It plays a role in the signaling that leads to cytokine-induced beta-cell death in Type I diabetes. It also regulates beta-cell number during embryogenesis and early in life. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Frk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270653 [Multi-domain]  Cd Length: 267  Bit Score: 183.76  E-value: 9.63e-60
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAY 79
Cdd:cd05068  41 KPGTMDPEDFLREAQIMKKLRHPKLIQLYAVCTlEEPIYIITELMKHGSLLEYLQGK-GRSLQLPQLIDMAAQVASGMAY 119
                        90       100
                ....*....|....*....|....
gi 472744    80 VERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05068 120 LESQNYIHRDLAARNVLVGENNIC 143
PTKc_Yes cd05069
Catalytic domain of the Protein Tyrosine Kinase, Yes; PTKs catalyze the transfer of the ...
1-103 9.57e-59

Catalytic domain of the Protein Tyrosine Kinase, Yes; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Yes (or c-Yes) is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. c-Yes kinase is the cellular homolog of the oncogenic protein (v-Yes) encoded by the Yamaguchi 73 and Esh sarcoma viruses. It displays functional overlap with other Src subfamily members, particularly Src. It also shows some unique functions such as binding to occludins, transmembrane proteins that regulate extracellular interactions in tight junctions. Yes also associates with a number of proteins in different cell types that Src does not interact with, like JAK2 and gp130 in pre-adipocytes, and Pyk2 in treated pulmonary vein endothelial cells. Although the biological function of Yes remains unclear, it appears to have a role in regulating cell-cell interactions and vesicle trafficking in polarized cells. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Yes subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K).


Pssm-ID: 270654 [Multi-domain]  Cd Length: 279  Bit Score: 181.42  E-value: 9.57e-59
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd05069  45 KPGTMMPEAFLQEAQIMKKLRHDKLVPLYAVVSEEPIYIVTEFMGKGSLLDFLKEGDGKYLKLPQLVDMAAQIADGMAYI 124
                        90       100
                ....*....|....*....|...
gi 472744    81 ERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05069 125 ERMNYIHRDLRAANILVGDNLVC 147
PTKc_Fyn cd05070
Catalytic domain of the Protein Tyrosine Kinase, Fyn; PTKs catalyze the transfer of the ...
1-103 1.18e-54

Catalytic domain of the Protein Tyrosine Kinase, Fyn; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fyn and Yrk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Fyn, together with Lck, plays a critical role in T-cell signal transduction by phosphorylating ITAM (immunoreceptor tyr activation motif) sequences on T-cell receptors, ultimately leading to the proliferation and differentiation of T-cells. In addition, Fyn is involved in the myelination of neurons, and is implicated in Alzheimer's and Parkinson's diseases. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Fyn/Yrk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase.


Pssm-ID: 270655 [Multi-domain]  Cd Length: 274  Bit Score: 171.02  E-value: 1.18e-54
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd05070  42 KPGTMSPESFLEEAQIMKKLKHDKLVQLYAVVSEEPIYIVTEYMSKGSLLDFLKDGEGRALKLPNLVDMAAQVAAGMAYI 121
                        90       100
                ....*....|....*....|...
gi 472744    81 ERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05070 122 ERMNYIHRDLRSANILVGNGLIC 144
PTKc_Lyn cd05072
Catalytic domain of the Protein Tyrosine Kinase, Lyn; PTKs catalyze the transfer of the ...
1-103 2.33e-52

Catalytic domain of the Protein Tyrosine Kinase, Lyn; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Lyn is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Lyn is expressed in B lymphocytes and myeloid cells. It exhibits both positive and negative regulatory roles in B cell receptor (BCR) signaling. Lyn, as well as Fyn and Blk, promotes B cell activation by phosphorylating ITAMs (immunoreceptor tyr activation motifs) in CD19 and in Ig components of BCR. It negatively regulates signaling by its unique ability to phosphorylate ITIMs (immunoreceptor tyr inhibition motifs) in cell surface receptors like CD22 and CD5. Lyn also plays an important role in G-CSF receptor signaling by phosphorylating a variety of adaptor molecules. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Lyn subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270657 [Multi-domain]  Cd Length: 272  Bit Score: 164.83  E-value: 2.33e-52
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAY 79
Cdd:cd05072  40 KPGTMSVQAFLEEANLMKTLQHDKLVRLYAVVTkEEPIYIITEYMAKGSLLDFLKSDEGGKVLLPKLIDFSAQIAEGMAY 119
                        90       100
                ....*....|....*....|....
gi 472744    80 VERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05072 120 IERKNYIHRDLRAANVLVSESLMC 143
PTKc_Lck_Blk cd05067
Catalytic domain of the Protein Tyrosine Kinases, Lymphocyte-specific kinase and Blk; PTKs ...
1-103 1.64e-50

Catalytic domain of the Protein Tyrosine Kinases, Lymphocyte-specific kinase and Blk; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Lck and Blk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Lck is expressed in T-cells and natural killer cells. It plays a critical role in T-cell maturation, activation, and T-cell receptor (TCR) signaling. Lck phosphorylates ITAM (immunoreceptor tyr activation motif) sequences on several subunits of TCRs, leading to the activation of different second messenger cascades. Phosphorylated ITAMs serve as binding sites for other signaling factor such as Syk and ZAP-70, leading to their activation and propagation of downstream events. In addition, Lck regulates drug-induced apoptosis by interfering with the mitochondrial death pathway. The apototic role of Lck is independent of its primary function in T-cell signaling. Blk is expressed specifically in B-cells. It is involved in pre-BCR (B-cell receptor) signaling. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Lck/Blk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270652 [Multi-domain]  Cd Length: 264  Bit Score: 160.05  E-value: 1.64e-50
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd05067  40 KQGSMSPDAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMENGSLVDFLKTPSGIKLTINKLLDMAAQIAEGMAFI 119
                        90       100
                ....*....|....*....|...
gi 472744    81 ERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05067 120 EERNYIHRDLRAANILVSDTLSC 142
PTKc_Hck cd05073
Catalytic domain of the Protein Tyrosine Kinase, Hematopoietic cell kinase; PTKs catalyze the ...
1-103 1.15e-48

Catalytic domain of the Protein Tyrosine Kinase, Hematopoietic cell kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Hck is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Hck is present in myeloid and lymphoid cells that play a role in the development of cancer. It may be important in the oncogenic signaling of the protein Tel-Abl, which induces a chronic myelogenous leukemia (CML)-like disease. Hck also acts as a negative regulator of G-CSF-induced proliferation of granulocytic precursors, suggesting a possible role in the development of acute myeloid leukemia (AML). In addition, Hck is essential in regulating the degranulation of polymorphonuclear leukocytes. Genetic polymorphisms affect the expression level of Hck, which affects PMN mediator release and influences the development of chronic obstructive pulmonary disease (COPD). Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Hck subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270658 [Multi-domain]  Cd Length: 265  Bit Score: 155.18  E-value: 1.15e-48
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd05073  44 KPGSMSVEAFLAEANVMKTLQHDKLVKLHAVVTKEPIYIITEFMAKGSLLDFLKSDEGSKQPLPKLIDFSAQIAEGMAFI 123
                        90       100
                ....*....|....*....|...
gi 472744    81 ERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05073 124 EQRNYIHRDLRAANILVSASLVC 146
PK_Tyr_Ser-Thr pfam07714
Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role ...
1-103 1.93e-44

Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyze the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyze the reverse process. Protein kinases fall into three broad classes, characterized with respect to substrate specificity; Serine/threonine-protein kinases, tyrosine-protein kinases, and dual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins). This entry represents the catalytic domain found in a number of serine/threonine- and tyrosine-protein kinases. It does not include the catalytic domain of dual specificity kinases.


Pssm-ID: 462242 [Multi-domain]  Cd Length: 258  Bit Score: 144.18  E-value: 1.93e-44
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744       1 KPGTMSP--EAFLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFLKGQYSTmLRLPQLVDFASQIASGM 77
Cdd:pfam07714  37 KEGADEEerEDFLEEASIMKKLDHPNIVKLLGVCTqGEPLYIVTEYMPGGDLLDFLRKHKRK-LTLKDLLSMALQIAKGM 115
                          90       100
                  ....*....|....*....|....*.
gi 472744      78 AYVERMNYVHRDLRAANILVGDNLVC 103
Cdd:pfam07714 116 EYLESKNFVHRDLAARNCLVSENLVV 141
STYKc smart00221
Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class ...
8-103 2.61e-41

Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class of kinases can not be predicted. Possible dual-specificity Ser/Thr/Tyr kinase.


Pssm-ID: 214568 [Multi-domain]  Cd Length: 258  Bit Score: 136.14  E-value: 2.61e-41
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744        8 EAFLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:smart00221  46 EEFLREARIMRKLDHPNIVKLLGVCTEeEPLMIVMEYMPGGDLLDYLRKNRPKELSLSDLLSFALQIARGMEYLESKNFI 125
                           90
                   ....*....|....*..
gi 472744       87 HRDLRAANILVGDNLVC 103
Cdd:smart00221 126 HRDLAARNCLVGENLVV 142
TyrKc smart00219
Tyrosine kinase, catalytic domain; Phosphotransferases. Tyrosine-specific kinase subfamily.
8-103 5.93e-40

Tyrosine kinase, catalytic domain; Phosphotransferases. Tyrosine-specific kinase subfamily.


Pssm-ID: 197581 [Multi-domain]  Cd Length: 257  Bit Score: 132.65  E-value: 5.93e-40
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744        8 EAFLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:smart00219  46 EEFLREARIMRKLDHPNVVKLLGVCTEeEPLYIVMEYMEGGDLLSYLR-KNRPKLSLSDLLSFALQIARGMEYLESKNFI 124
                           90
                   ....*....|....*..
gi 472744       87 HRDLRAANILVGDNLVC 103
Cdd:smart00219 125 HRDLAARNCLVGENLVV 141
PTKc_Srm_Brk cd05148
Catalytic domain of the Protein Tyrosine Kinases, Src-related kinase lacking C-terminal ...
10-103 3.59e-39

Catalytic domain of the Protein Tyrosine Kinases, Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (Srm) and Breast tumor kinase (Brk); PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Srm and Brk (also called protein tyrosine kinase 6) are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Brk has been found to be overexpressed in a majority of breast tumors. Src kinases in general contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr; they are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Srm and Brk however, lack the N-terminal myristylation sites. Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. The Srm/Brk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133248 [Multi-domain]  Cd Length: 261  Bit Score: 131.02  E-value: 3.59e-39
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd05148  49 FQKEVQALKRLRHKHLISLFAVCSVgEPVYIITELMEKGSLLAFLRSPEGQVLPVASLIDMACQVAEGMAYLEEQNSIHR 128
                        90
                ....*....|....*
gi 472744    89 DLRAANILVGDNLVC 103
Cdd:cd05148 129 DLAARNILVGEDLVC 143
PTKc cd00192
Catalytic domain of Protein Tyrosine Kinases; PTKs catalyze the transfer of the ...
8-103 8.10e-39

Catalytic domain of Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. They can be classified into receptor and non-receptor tyr kinases. PTKs play important roles in many cellular processes including, lymphocyte activation, epithelium growth and maintenance, metabolism control, organogenesis regulation, survival, proliferation, differentiation, migration, adhesion, motility, and morphogenesis. Receptor tyr kinases (RTKs) are integral membrane proteins which contain an extracellular ligand-binding region, a transmembrane segment, and an intracellular tyr kinase domain. RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain, leading to intracellular signaling. Some RTKs are orphan receptors with no known ligands. Non-receptor (or cytoplasmic) tyr kinases are distributed in different intracellular compartments and are usually multi-domain proteins containing a catalytic tyr kinase domain as well as various regulatory domains such as SH3 and SH2. PTKs are usually autoinhibited and require a mechanism for activation. In many PTKs, the phosphorylation of tyr residues in the activation loop is essential for optimal activity. Aberrant expression of PTKs is associated with many development abnormalities and cancers.The PTK family is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270623 [Multi-domain]  Cd Length: 262  Bit Score: 129.97  E-value: 8.10e-39
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQ-------YSTMLRLPQLVDFASQIASGMAY 79
Cdd:cd00192  41 KDFLKEARVMKKLGHPNVVRLLGVcTEEEPLYLVMEYMEGGDLLDFLRKSrpvfpspEPSTLSLKDLLSFAIQIAKGMEY 120
                        90       100
                ....*....|....*....|....
gi 472744    80 VERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd00192 121 LASKKFVHRDLAARNCLVGEDLVV 144
PTKc_Tec_like cd05059
Catalytic domain of Tec-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the ...
1-102 3.27e-35

Catalytic domain of Tec-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Tec-like subfamily is composed of Tec, Btk, Bmx (Etk), Itk (Tsk, Emt), Rlk (Txk), and similar proteins. They are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. In addition, some members contain the Tec homology (TH) domain, which contains proline-rich and zinc-binding regions. Tec kinases form the second largest subfamily of nonreceptor PTKs and are expressed mainly by haematopoietic cells, although Tec and Bmx are also found in endothelial cells. B-cells express Btk and Tec, while T-cells express Itk, Txk, and Tec. Collectively, Tec kinases are expressed in a variety of myeloid cells such as mast cells, platelets, macrophages, and dendritic cells. Each Tec kinase shows a distinct cell-type pattern of expression. Tec kinases play important roles in the development, differentiation, maturation, regulation, survival, and function of B-cells and T-cells. Mutations in Btk cause the severe B-cell immunodeficiency, X-linked agammaglobulinaemia (XLA). The Tec-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173637 [Multi-domain]  Cd Length: 256  Bit Score: 120.63  E-value: 3.27e-35
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAY 79
Cdd:cd05059  37 KEGSMSEDDFIEEAKVMMKLSHPKLVQLYGVCTKQrPIFIVTEYMANGCLLNYLR-ERRGKFQTEQLLEMCKDVCEAMEY 115
                        90       100
                ....*....|....*....|...
gi 472744    80 VERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05059 116 LESNGFIHRDLAARNCLVGEQNV 138
PTKc_Csk_like cd05039
Catalytic domain of C-terminal Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the ...
8-102 2.03e-33

Catalytic domain of C-terminal Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of Csk, Chk, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. They negatively regulate the activity of Src kinases that are anchored to the plasma membrane. To inhibit Src kinases, Csk and Chk are translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. Csk catalyzes the tyr phosphorylation of the regulatory C-terminal tail of Src kinases, resulting in their inactivation. Chk inhibit Src kinases using a noncatalytic mechanism by simply binding to them. As negative regulators of Src kinases, Csk and Chk play important roles in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. The Csk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270635 [Multi-domain]  Cd Length: 256  Bit Score: 115.91  E-value: 2.03e-33
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd05039  45 QAFLAEASVMTTLRHPNLVQLLGVVLEGnGLYIVTEYMAKGSLVDYLRSRGRAVITRKDQLGFALDVCEGMEYLESKKFV 124
                        90
                ....*....|....*.
gi 472744    87 HRDLRAANILVGDNLV 102
Cdd:cd05039 125 HRDLAARNVLVSEDNV 140
PTKc_Abl cd05052
Catalytic domain of the Protein Tyrosine Kinase, Abelson kinase; PTKs catalyze the transfer of ...
1-100 1.21e-32

Catalytic domain of the Protein Tyrosine Kinase, Abelson kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Abl (or c-Abl) is a ubiquitously-expressed cytoplasmic (or nonreceptor) PTK that contains SH3, SH2, and tyr kinase domains in its N-terminal region, as well as nuclear localization motifs, a putative DNA-binding domain, and F- and G-actin binding domains in its C-terminal tail. It also contains a short autoinhibitory cap region in its N-terminus. Abl function depends on its subcellular localization. In the cytoplasm, Abl plays a role in cell proliferation and survival. In response to DNA damage or oxidative stress, Abl is transported to the nucleus where it induces apoptosis. In chronic myelogenous leukemia (CML) patients, an aberrant translocation results in the replacement of the first exon of Abl with the BCR (breakpoint cluster region) gene. The resulting BCR-Abl fusion protein is constitutively active and associates into tetramers, resulting in a hyperactive kinase sending a continuous signal. This leads to uncontrolled proliferation, morphological transformation and anti-apoptotic effects. BCR-Abl is the target of selective inhibitors, such as imatinib (Gleevec), used in the treatment of CML. Abl2, also known as ARG (Abelson-related gene), is thought to play a cooperative role with Abl in the proper development of the nervous system. The Tel-ARG fusion protein, resulting from reciprocal translocation between chromosomes 1 and 12, is associated with acute myeloid leukemia (AML). The TEL gene is a frequent fusion partner of other tyr kinase oncogenes, including Tel/Abl, Tel/PDGFRbeta, and Tel/Jak2, found in patients with leukemia and myeloproliferative disorders. The Abl subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270645 [Multi-domain]  Cd Length: 263  Bit Score: 114.06  E-value: 1.21e-32
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAY 79
Cdd:cd05052  40 KEDTMEVEEFLKEAAVMKEIKHPNLVQLLGVCTREpPFYIITEFMPYGNLLDYLRECNREELNAVVLLYMATQIASAMEY 119
                        90       100
                ....*....|....*....|.
gi 472744    80 VERMNYVHRDLRAANILVGDN 100
Cdd:cd05052 120 LEKKNFIHRDLAARNCLVGEN 140
STKc_MAP3K-like cd13999
Catalytic domain of Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase-like Serine ...
8-103 4.92e-29

Catalytic domain of Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed mainly of MAP3Ks and similar proteins, including TGF-beta Activated Kinase-1 (TAK1, also called MAP3K7), MAP3K12, MAP3K13, Mixed lineage kinase (MLK), MLK-Like mitogen-activated protein Triple Kinase (MLTK), and Raf (Rapidly Accelerated Fibrosarcoma) kinases. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Also included in this subfamily is the pseudokinase Kinase Suppressor of Ras (KSR), which is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway.


Pssm-ID: 270901 [Multi-domain]  Cd Length: 245  Bit Score: 104.16  E-value: 4.92e-29
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd13999  35 KEFRREVSILSKLRHPNIVQFIGACLSPPpLCIVTEYMPGGSLYDLLHKK-KIPLSWSLRLKIALDIARGMNYLHSPPII 113
                        90
                ....*....|....*..
gi 472744    87 HRDLRAANILVGDNLVC 103
Cdd:cd13999 114 HRDLKSLNILLDENFTV 130
PTKc_Itk cd05112
Catalytic domain of the Protein Tyrosine Kinase, Interleukin-2-inducible T-cell Kinase; PTKs ...
1-102 6.43e-29

Catalytic domain of the Protein Tyrosine Kinase, Interleukin-2-inducible T-cell Kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Itk, also known as Tsk or Emt, is a member of the Tec-like subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. In addition, Itk contains the Tec homology (TH) domain containing one proline-rich region and a zinc-binding region. Itk is expressed in T-cells and mast cells, and is important in their development and differentiation. Of the three Tec kinases expressed in T-cells, Itk plays the predominant role in T-cell receptor (TCR) signaling. It is activated by phosphorylation upon TCR crosslinking and is involved in the pathway resulting in phospholipase C-gamma1 activation and actin polymerization. It also plays a role in the downstream signaling of the T-cell costimulatory receptor CD28, the T-cell surface receptor CD2, and the chemokine receptor CXCR4. In addition, Itk is crucial for the development of T-helper(Th)2 effector responses. The Itk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133243 [Multi-domain]  Cd Length: 256  Bit Score: 104.26  E-value: 6.43e-29
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQYStMLRLPQLVDFASQIASGMAY 79
Cdd:cd05112  37 REGAMSEEDFIEEAEVMMKLSHPKLVQLYGVCLEQaPICLVFEFMEHGCLSDYLRTQRG-LFSAETLLGMCLDVCEGMAY 115
                        90       100
                ....*....|....*....|...
gi 472744    80 VERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05112 116 LEEASVIHRDLAARNCLVGENQV 138
PTKc_Btk_Bmx cd05113
Catalytic domain of the Protein Tyrosine Kinases, Bruton's tyrosine kinase and Bone marrow ...
1-102 7.33e-28

Catalytic domain of the Protein Tyrosine Kinases, Bruton's tyrosine kinase and Bone marrow kinase on the X chromosome; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Btk and Bmx (also named Etk) are members of the Tec-like subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. In addition, Btk contains the Tec homology (TH) domain with proline-rich and zinc-binding regions. Btk is expressed in B-cells, and a variety of myeloid cells including mast cells, platelets, neutrophils, and dendrictic cells. It interacts with a variety of partners, from cytosolic proteins to nuclear transcription factors, suggesting a diversity of functions. Stimulation of a diverse array of cell surface receptors, including antigen engagement of the B-cell receptor, leads to PH-mediated membrane translocation of Btk and subsequent phosphorylation by Src kinase and activation. Btk plays an important role in the life cycle of B-cells including their development, differentiation, proliferation, survival, and apoptosis. Mutations in Btk cause the primary immunodeficiency disease, X-linked agammaglobulinaemia (XLA) in humans. Bmx is primarily expressed in bone marrow and the arterial endothelium, and plays an important role in ischemia-induced angiogenesis. It facilitates arterial growth, capillary formation, vessel maturation, and bone marrow-derived endothelial progenitor cell mobilization. The Btk/Bmx subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173657 [Multi-domain]  Cd Length: 256  Bit Score: 101.50  E-value: 7.33e-28
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAY 79
Cdd:cd05113  37 KEGSMSEDEFIEEAKVMMNLSHEKLVQLYGVCTKQrPIFIITEYMANGCLLNYLR-EMRKRFQTQQLLEMCKDVCEAMEY 115
                        90       100
                ....*....|....*....|...
gi 472744    80 VERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05113 116 LESKQFLHRDLAARNCLVNDQGV 138
PTKc_EphR cd05033
Catalytic domain of Ephrin Receptor Protein Tyrosine Kinases; PTKs catalyze the transfer of ...
10-103 2.10e-27

Catalytic domain of Ephrin Receptor Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EphRs comprise the largest subfamily of receptor PTKs (RTKs). They can be classified into two classes (EphA and EphB), according to their extracellular sequences, which largely correspond to binding preferences for either GPI-anchored ephrin-A ligands or transmembrane ephrin-B ligands. Vertebrates have ten EphA and six EphB receptors, which display promiscuous ligand interactions within each class. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. This allows ephrin/EphR dimers to form, leading to the activation of the intracellular tyr kinase domain. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). The main effect of ephrin/EphR interaction is cell-cell repulsion or adhesion. Ephrin/EphR signaling is important in neural development and plasticity, cell morphogenesis and proliferation, cell-fate determination, embryonic development, tissue patterning, and angiogenesis.The EphR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270629 [Multi-domain]  Cd Length: 266  Bit Score: 100.52  E-value: 2.10e-27
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLK---GQYSTMlrlpQLVDFASQIASGMAYVERMNY 85
Cdd:cd05033  52 FLTEASIMGQFDHPNVIRLEGVVTKsRPVMIVTEYMENGSLDKFLRendGKFTVT----QLVGMLRGIASGMKYLSEMNY 127
                        90
                ....*....|....*...
gi 472744    86 VHRDLRAANILVGDNLVC 103
Cdd:cd05033 128 VHRDLAARNILVNSDLVC 145
PTKc_Ack_like cd05040
Catalytic domain of the Protein Tyrosine Kinase, Activated Cdc42-associated kinase; PTKs ...
7-102 9.57e-27

Catalytic domain of the Protein Tyrosine Kinase, Activated Cdc42-associated kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily includes Ack1, thirty-eight-negative kinase 1 (Tnk1), and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing an N-terminal catalytic domain, an SH3 domain, a Cdc42-binding CRIB domain, and a proline-rich region. They are mainly expressed in brain and skeletal tissues and are involved in the regulation of cell adhesion and growth, receptor degradation, and axonal guidance. Ack1 is also associated with androgen-independent prostate cancer progression. Tnk1 regulates TNFalpha signaling and may play an important role in cell death. The Ack-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270636 [Multi-domain]  Cd Length: 258  Bit Score: 98.57  E-value: 9.57e-27
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLrLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd05040  42 MDDFLKEVNAMHSLDHPNLIRLYGVVLSSPLMMVTELAPLGSLLDRLRKDQGHFL-ISTLCDYAVQIANGMAYLESKRFI 120
                        90
                ....*....|....*..
gi 472744    87 HRDLRAANILV-GDNLV 102
Cdd:cd05040 121 HRDLAARNILLaSKDKV 137
PTKc_Tec_Rlk cd05114
Catalytic domain of the Protein Tyrosine Kinases, Tyrosine kinase expressed in hepatocellular ...
3-99 1.39e-26

Catalytic domain of the Protein Tyrosine Kinases, Tyrosine kinase expressed in hepatocellular carcinoma and Resting lymphocyte kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tec and Rlk (also named Txk) are members of the Tec-like subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. Instead of PH, Rlk contains an N-terminal cysteine-rich region. In addition to PH, Tec also contains the Tec homology (TH) domain with proline-rich and zinc-binding regions. Tec kinases are expressed mainly by haematopoietic cells. Tec is more widely-expressed than other Tec-like subfamily kinases. It is found in endothelial cells, both B- and T-cells, and a variety of myeloid cells including mast cells, erythroid cells, platelets, macrophages and neutrophils. Rlk is expressed in T-cells and mast cell lines. Tec and Rlk are both key components of T-cell receptor (TCR) signaling. They are important in TCR-stimulated proliferation, IL-2 production and phopholipase C-gamma1 activation. The Tec/Rlk subfamily is part of a larger superfamily, that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270685 [Multi-domain]  Cd Length: 260  Bit Score: 98.40  E-value: 1.39e-26
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     3 GTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQYStMLRLPQLVDFASQIASGMAYVE 81
Cdd:cd05114  39 GAMSEEDFIEEAKVMMKLTHPKLVQLYGVCTQQkPIYIVTEFMENGCLLNYLRQRRG-KLSRDMLLSMCQDVCEGMEYLE 117
                        90
                ....*....|....*...
gi 472744    82 RMNYVHRDLRAANILVGD 99
Cdd:cd05114 118 RNNFIHRDLAARNCLVND 135
PTKc_Csk cd05082
Catalytic domain of the Protein Tyrosine Kinase, C-terminal Src kinase; PTKs catalyze the ...
6-100 6.64e-26

Catalytic domain of the Protein Tyrosine Kinase, C-terminal Src kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Csk catalyzes the tyr phosphorylation of the regulatory C-terminal tail of Src kinases, resulting in their inactivation. Csk is expressed in a wide variety of tissues. As a negative regulator of Src, Csk plays a role in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. Csk is a cytoplasmic (or nonreceptor) PTK containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. To inhibit Src kinases, Csk is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. In addition, Csk also shows Src-independent functions. It is a critical component in G-protein signaling, and plays a role in cytoskeletal reorganization and cell migration. The Csk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133213 [Multi-domain]  Cd Length: 256  Bit Score: 96.59  E-value: 6.64e-26
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQVMKKLRHEKLVQLYAVVSEEP--IYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERM 83
Cdd:cd05082  42 TAQAFLAEASVMTQLRHSNLVQLLGVIVEEKggLYIVTEYMAKGSLVDYLRSRGRSVLGGDCLLKFSLDVCEAMEYLEGN 121
                        90
                ....*....|....*..
gi 472744    84 NYVHRDLRAANILVGDN 100
Cdd:cd05082 122 NFVHRDLAARNVLVSED 138
PTKc_EphR_B cd05065
Catalytic domain of the Protein Tyrosine Kinases, Class EphB Ephrin Receptors; PTKs catalyze ...
10-103 1.40e-25

Catalytic domain of the Protein Tyrosine Kinases, Class EphB Ephrin Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Class EphB receptors bind to transmembrane ephrin-B ligands. There are six vertebrate EphB receptors (EphB1-6), which display promiscuous interactions with three ephrin-B ligands. One exception is EphB2, which also interacts with ephrin A5. EphB receptors play important roles in synapse formation and plasticity, spine morphogenesis, axon guidance, and angiogenesis. In the intestinal epithelium, EphBs are Wnt signaling target genes that control cell compartmentalization. They function as suppressors of colon cancer progression. EphRs comprise the largest subfamily of receptor PTKs (RTKs). They contain an ephrin-binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion. The EphB subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173638 [Multi-domain]  Cd Length: 269  Bit Score: 96.09  E-value: 1.40e-25
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLK---GQYSTMlrlpQLVDFASQIASGMAYVERMNY 85
Cdd:cd05065  52 FLSEASIMGQFDHPNIIHLEGVVTKSrPVMIITEFMENGALDSFLRqndGQFTVI----QLVGMLRGIAAGMKYLSEMNY 127
                        90
                ....*....|....*...
gi 472744    86 VHRDLRAANILVGDNLVC 103
Cdd:cd05065 128 VHRDLAARNILVNSNLVC 145
PTKc_FAK cd05056
Catalytic domain of the Protein Tyrosine Kinase, Focal Adhesion Kinase; PTKs catalyze the ...
8-100 2.27e-25

Catalytic domain of the Protein Tyrosine Kinase, Focal Adhesion Kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. FAK is a cytoplasmic (or nonreceptor) PTK that contains an autophosphorylation site and a FERM domain at the N-terminus, a central tyr kinase domain, proline-rich regions, and a C-terminal FAT (focal adhesion targeting) domain. FAK activity is dependent on integrin-mediated cell adhesion, which facilitates N-terminal autophosphorylation. Full activation is achieved by the phosphorylation of its two adjacent A-loop tyrosines. FAK is important in mediating signaling initiated at sites of cell adhesions and at growth factor receptors. Through diverse molecular interactions, FAK functions as a biosensor or integrator to control cell motility. It is a key regulator of cell survival, proliferation, migration and invasion, and thus plays an important role in the development and progression of cancer. Src binds to autophosphorylated FAK forming the FAK-Src dual kinase complex, which is activated in a wide variety of tumor cells and generates signals promoting growth and metastasis. FAK is being developed as a target for cancer therapy. The FAK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133187 [Multi-domain]  Cd Length: 270  Bit Score: 95.57  E-value: 2.27e-25
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd05056  52 EKFLQEAYIMRQFDHPHIVKLIGVITENPVWIVMELAPLGELRSYLQ-VNKYSLDLASLILYAYQLSTALAYLESKRFVH 130
                        90
                ....*....|...
gi 472744    88 RDLRAANILVGDN 100
Cdd:cd05056 131 RDIAARNVLVSSP 143
PTKc_Fes_like cd05041
Catalytic domain of Fes-like Protein Tyrosine Kinases; Protein Tyrosine Kinase (PTK) family; ...
4-100 4.92e-25

Catalytic domain of Fes-like Protein Tyrosine Kinases; Protein Tyrosine Kinase (PTK) family; Fes subfamily; catalytic (c) domain. Fes subfamily members include Fes (or Fps), Fer, and similar proteins. The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fes subfamily proteins are cytoplasmic (or nonreceptor) tyr kinases containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. The genes for Fes (feline sarcoma) and Fps (Fujinami poultry sarcoma) were first isolated from tumor-causing retroviruses. The viral oncogenes encode chimeric Fes proteins consisting of Gag sequences at the N-termini, resulting in unregulated tyr kinase activity. Fes and Fer kinases play roles in haematopoiesis, inflammation and immunity, growth factor signaling, cytoskeletal regulation, cell migration and adhesion, and the regulation of cell-cell interactions. Fes and Fer show redundancy in their biological functions.


Pssm-ID: 270637 [Multi-domain]  Cd Length: 251  Bit Score: 94.05  E-value: 4.92e-25
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPE---AFLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAY 79
Cdd:cd05041  31 TLPPDlkrKFLQEARILKQYDHPNIVKLIGVcVQKQPIMIVMELVPGGSLLTFLRKK-GARLTVKQLLQMCLDAAAGMEY 109
                        90       100
                ....*....|....*....|.
gi 472744    80 VERMNYVHRDLRAANILVGDN 100
Cdd:cd05041 110 LESKNCIHRDLAARNCLVGEN 130
PTKc_Chk cd05083
Catalytic domain of the Protein Tyrosine Kinase, Csk homologous kinase; PTKs catalyze the ...
5-102 7.88e-25

Catalytic domain of the Protein Tyrosine Kinase, Csk homologous kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Chk is also referred to as megakaryocyte-associated tyrosine kinase (Matk). Chk inhibits Src kinases using a noncatalytic mechanism by simply binding to them. As a negative regulator of Src kinases, Chk may play important roles in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. Chk is expressed in brain and hematopoietic cells. Like Csk, it is a cytoplasmic (or nonreceptor) tyr kinase containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. To inhibit Src kinases that are anchored to the plasma membrane, Chk is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. Studies in mice reveal that Chk is not functionally redundant with Csk and that it plays an important role as a regulator of immune responses. Chk also plays a role in neural differentiation in a manner independent of Src by enhancing Mapk activation via Ras-mediated signaling. The Chk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270666 [Multi-domain]  Cd Length: 254  Bit Score: 93.78  E-value: 7.88e-25
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     5 MSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMN 84
Cdd:cd05083  41 VTAQAFLEETAVMTKLQHKNLVRLLGVILHNGLYIVMELMSKGNLVNFLRSRGRALVPVIQLLQFSLDVAEGMEYLESKK 120
                        90
                ....*....|....*...
gi 472744    85 YVHRDLRAANILVGDNLV 102
Cdd:cd05083 121 LVHRDLAARNILVSEDGV 138
PTKc_EphR_A cd05066
Catalytic domain of the Protein Tyrosine Kinases, Class EphA Ephrin Receptors; PTKs catalyze ...
10-103 1.00e-24

Catalytic domain of the Protein Tyrosine Kinases, Class EphA Ephrin Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of most class EphA receptors including EphA3, EphA4, EphA5, and EphA7, but excluding EphA1, EphA2 and EphA10. Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. One exception is EphA4, which also binds ephrins-B2/B3. EphA receptors and ephrin-A ligands are expressed in multiple areas of the developing brain, especially in the retina and tectum. They are part of a system controlling retinotectal mapping. EphRs comprise the largest subfamily of receptor PTKs (RTKs). EphRs contain an ephrin-binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. The EphA subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270651 [Multi-domain]  Cd Length: 267  Bit Score: 93.78  E-value: 1.00e-24
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLK---GQYSTMlrlpQLVDFASQIASGMAYVERMNY 85
Cdd:cd05066  52 FLSEASIMGQFDHPNIIHLEGVVTRsKPVMIVTEYMENGSLDAFLRkhdGQFTVI----QLVGMLRGIASGMKYLSDMGY 127
                        90
                ....*....|....*...
gi 472744    86 VHRDLRAANILVGDNLVC 103
Cdd:cd05066 128 VHRDLAARNILVNSNLVC 145
PKc cd00180
Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group ...
7-103 1.58e-24

Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. PKs make up a large family of serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins. Majority of protein phosphorylation occurs on serine residues while only 1% occurs on tyrosine residues. Protein phosphorylation is a mechanism by which a wide variety of cellular proteins, such as enzymes and membrane channels, are reversibly regulated in response to certain stimuli. PKs often function as components of signal transduction pathways in which one kinase activates a second kinase, which in turn, may act on other kinases; this sequential action transmits a signal from the cell surface to target proteins, which results in cellular responses. The PK family is one of the largest known protein families with more than 100 homologous yeast enzymes and more than 500 human proteins. A fraction of PK family members are pseudokinases that lack crucial residues for catalytic activity. The mutiplicity of kinases allows for specific regulation according to substrate, tissue distribution, and cellular localization. PKs regulate many cellular processes including proliferation, division, differentiation, motility, survival, metabolism, cell-cycle progression, cytoskeletal rearrangement, immunity, and neuronal functions. Many kinases are implicated in the development of various human diseases including different types of cancer. The PK family is part of a larger superfamily that includes the catalytic domains of RIO kinases, aminoglycoside phosphotransferase, choline kinase, phosphoinositide 3-kinase (PI3K), and actin-fragmin kinase.


Pssm-ID: 270622 [Multi-domain]  Cd Length: 215  Bit Score: 91.95  E-value: 1.58e-24
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:cd00180  35 LEELLREIEILKKLNHPNIVKLYDVFETENfLYLVMEYCEGGSLKDLLK-ENKGPLSEEEALSILRQLLSALEYLHSNGI 113
                        90
                ....*....|....*...
gi 472744    86 VHRDLRAANILVGDNLVC 103
Cdd:cd00180 114 IHRDLKPENILLDSDGTV 131
PTKc_EphR_A2 cd05063
Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A2; PTKs catalyze the ...
1-103 2.65e-24

Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The EphA2 receptor is overexpressed in tumor cells and tumor blood vessels in a variety of cancers including breast, prostate, lung, and colon. As a result, it is an attractive target for drug design since its inhibition could affect several aspects of tumor progression. EphRs comprise the largest subfamily of receptor PTKs (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. The EphA2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K).


Pssm-ID: 133194 [Multi-domain]  Cd Length: 268  Bit Score: 92.73  E-value: 2.65e-24
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEA--FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLK---GQYSTMlrlpQLVDFASQIA 74
Cdd:cd05063  42 KPGYTEKQRqdFLSEASIMGQFSHHNIIRLEGVVTKfKPAMIITEYMENGALDKYLRdhdGEFSSY----QLVGMLRGIA 117
                        90       100
                ....*....|....*....|....*....
gi 472744    75 SGMAYVERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05063 118 AGMKYLSDMNYVHRDLAARNILVNSNLEC 146
S_TKc smart00220
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ...
7-100 4.82e-24

Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily.


Pssm-ID: 214567 [Multi-domain]  Cd Length: 254  Bit Score: 91.44  E-value: 4.82e-24
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744        7 PEAFLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:smart00220  41 RERILREIKILKKLKHPNIVRLYDVfEDEDKLYLVMEYCEGGDLFDLLKKRGR--LSEDEARFYLRQILSALEYLHSKGI 118
                           90
                   ....*....|....*
gi 472744       86 VHRDLRAANILVGDN 100
Cdd:smart00220 119 VHRDLKPENILLDED 133
PTKc_DDR cd05051
Catalytic domain of the Protein Tyrosine Kinases, Discoidin Domain Receptors; PTKs catalyze ...
8-100 1.09e-23

Catalytic domain of the Protein Tyrosine Kinases, Discoidin Domain Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The DDR subfamily consists of homologs of mammalian DDR1, DDR2, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDRs results in a slow but sustained receptor activation. DDRs regulate cell adhesion, proliferation, and extracellular matrix remodeling. They have been linked to a variety of human cancers including breast, colon, ovarian, brain, and lung. There is no evidence showing that DDRs act as transforming oncogenes. They are more likely to play a role in the regulation of tumor growth and metastasis. The DDR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270644 [Multi-domain]  Cd Length: 297  Bit Score: 91.63  E-value: 1.09e-23
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFL----------KGQYSTMLRLPQLVDFASQIASG 76
Cdd:cd05051  64 EDFLKEVKIMSQLKDPNIVRLLGVcTRDEPLCMIVEYMENGDLNQFLqkheaetqgaSATNSKTLSYGTLLYMATQIASG 143
                        90       100
                ....*....|....*....|....
gi 472744    77 MAYVERMNYVHRDLRAANILVGDN 100
Cdd:cd05051 144 MKYLESLNFVHRDLATRNCLVGPN 167
STKc_PknB_like cd14014
Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs ...
8-100 2.60e-22

Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270916 [Multi-domain]  Cd Length: 260  Bit Score: 87.26  E-value: 2.60e-22
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd14014  45 ERFLREARALARLSHPNIVRVYDVGEDDgRPYIVMEYVEGGSLADLLRERGP--LPPREALRILAQIADALAAAHRAGIV 122
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:cd14014 123 HRDIKPANILLTED 136
PTKc_Fer cd05085
Catalytic domain of the Protein Tyrosine Kinase, Fer; Protein Tyrosine Kinase (PTK) family; ...
10-100 3.24e-22

Catalytic domain of the Protein Tyrosine Kinase, Fer; Protein Tyrosine Kinase (PTK) family; Fer kinase; catalytic (c) domain. The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fer kinase is a member of the Fes subfamily of proteins which are cytoplasmic (or nonreceptor) tyr kinases containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. Fer kinase is expressed in a wide variety of tissues, and is found to reside in both the cytoplasm and the nucleus. It plays important roles in neuronal polarization and neurite development, cytoskeletal reorganization, cell migration, growth factor signaling, and the regulation of cell-cell interactions mediated by adherens junctions and focal adhesions. Fer kinase also regulates cell cycle progression in malignant cells.


Pssm-ID: 270668 [Multi-domain]  Cd Length: 251  Bit Score: 86.98  E-value: 3.24e-22
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQYSTmLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd05085  40 FLSEARILKQYDHPNIVKLIGVCTQrQPIYIVMELVPGGDFLSFLRKKKDE-LKTKQLVKFSLDAAAGMAYLESKNCIHR 118
                        90
                ....*....|..
gi 472744    89 DLRAANILVGDN 100
Cdd:cd05085 119 DLAARNCLVGEN 130
PTKc_c-ros cd05044
Catalytic domain of the Protein Tyrosine Kinase, C-ros; PTKs catalyze the transfer of the ...
8-97 9.11e-22

Catalytic domain of the Protein Tyrosine Kinase, C-ros; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily contains c-ros, Sevenless, and similar proteins. The proto-oncogene c-ros encodes an orphan receptor PTK (RTK) with an unknown ligand. RTKs contain an extracellular ligand-binding domain, a transmembrane region, and an intracellular tyr kinase domain. RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. C-ros is expressed in embryonic cells of the kidney, intestine and lung, but disappears soon after birth. It persists only in the adult epididymis. Male mice bearing inactive mutations of c-ros lack the initial segment of the epididymis and are infertile. The Drosophila protein, Sevenless, is required for the specification of the R7 photoreceptor cell during eye development. The c-ros subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270640 [Multi-domain]  Cd Length: 268  Bit Score: 85.93  E-value: 9.11e-22
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQ-----YSTMLRLPQLVDFASQIASGMAYVE 81
Cdd:cd05044  44 AEFLKEAHLMSNFKHPNILKLLGVcLDNDPQYIILELMEGGDLLSYLRAArptafTPPLLTLKDLLSICVDVAKGCVYLE 123
                        90
                ....*....|....*.
gi 472744    82 RMNYVHRDLRAANILV 97
Cdd:cd05044 124 DMHFVHRDLAARNCLV 139
PTKc_TrkA cd05092
Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase A; PTKs catalyze ...
10-102 2.55e-21

Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase A; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkA is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkA to its ligand, nerve growth factor (NGF), results in receptor oligomerization and activation of the catalytic domain. TrkA is expressed mainly in neural-crest-derived sensory and sympathetic neurons of the peripheral nervous system, and in basal forebrain cholinergic neurons of the central nervous system. It is critical for neuronal growth, differentiation and survival. Alternative TrkA splicing has been implicated as a pivotal regulator of neuroblastoma (NB) behavior. Normal TrkA expression is associated with better NB prognosis, while the hypoxia-regulated TrkAIII splice variant promotes NB pathogenesis and progression. Aberrant TrkA expression has also been demonstrated in non-neural tumors including prostate, breast, lung, and pancreatic cancers. The TrkA subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270674 [Multi-domain]  Cd Length: 280  Bit Score: 85.02  E-value: 2.55e-21
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFL-------------KGQYSTMLRLPQLVDFASQIAS 75
Cdd:cd05092  54 FQREAELLTVLQHQHIVRFYGVCTEgEPLIMVFEYMRHGDLNRFLrshgpdakildggEGQAPGQLTLGQMLQIASQIAS 133
                        90       100
                ....*....|....*....|....*..
gi 472744    76 GMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05092 134 GMVYLASLHFVHRDLATRNCLVGQGLV 160
PTKc_Syk_like cd05060
Catalytic domain of Spleen Tyrosine Kinase-like Protein Tyrosine Kinases; PTKs catalyze the ...
10-97 3.58e-21

Catalytic domain of Spleen Tyrosine Kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Syk-like subfamily is composed of Syk, ZAP-70, Shark, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing two Src homology 2 (SH2) domains N-terminal to the catalytic tyr kinase domain. They are involved in the signaling downstream of activated receptors (including B-cell, T-cell, and Fc receptors) that contain ITAMs (immunoreceptor tyr activation motifs), leading to processes such as cell proliferation, differentiation, survival, adhesion, migration, and phagocytosis. Syk is important in B-cell receptor signaling, while Zap-70 is primarily expressed in T-cells and NK cells, and is a crucial component in T-cell receptor signaling. Syk also plays a central role in Fc receptor-mediated phagocytosis in the adaptive immune system. Shark is exclusively expressed in ectodermally derived epithelia, and is localized preferentially to the apical surface of the epithelial cells, it may play a role in a signaling pathway for epithelial cell polarity. The Syk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270650 [Multi-domain]  Cd Length: 257  Bit Score: 83.94  E-value: 3.58e-21
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLpQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd05060  43 FLREASVMAQLDHPCIVRLIGVCKGEPLMLVMELAPLGPLLKYLK-KRREIPVS-DLKELAHQVAMGMAYLESKHFVHRD 120

                ....*...
gi 472744    90 LRAANILV 97
Cdd:cd05060 121 LAARNVLL 128
PTKc_InsR_like cd05032
Catalytic domain of Insulin Receptor-like Protein Tyrosine Kinases; PTKs catalyze the transfer ...
9-103 4.43e-21

Catalytic domain of Insulin Receptor-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The InsR subfamily is composed of InsR, Insulin-like Growth Factor-1 Receptor (IGF-1R), and similar proteins. InsR and IGF-1R are receptor PTKs (RTKs) composed of two alphabeta heterodimers. Binding of the ligand (insulin, IGF-1, or IGF-2) to the extracellular alpha subunit activates the intracellular tyr kinase domain of the transmembrane beta subunit. Receptor activation leads to autophosphorylation, stimulating downstream kinase activities, which initiate signaling cascades and biological function. InsR and IGF-1R, which share 84% sequence identity in their kinase domains, display physiologically distinct yet overlapping functions in cell growth, differentiation, and metabolism. InsR activation leads primarily to metabolic effects while IGF-1R activation stimulates mitogenic pathways. In cells expressing both receptors, InsR/IGF-1R hybrids are found together with classical receptors. Both receptors can interact with common adaptor molecules such as IRS-1 and IRS-2. The InsR-like subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173625 [Multi-domain]  Cd Length: 277  Bit Score: 84.32  E-value: 4.43e-21
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     9 AFLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFLKGQYSTMLRLP--------QLVDFASQIASGMAY 79
Cdd:cd05032  55 EFLNEASVMKEFNCHHVVRLLGVVStGQPTLVVMELMAKGDLKSYLRSRRPEAENNPglgpptlqKFIQMAAEIADGMAY 134
                        90       100
                ....*....|....*....|....
gi 472744    80 VERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05032 135 LAAKKFVHRDLAARNCMVAEDLTV 158
PTKc_Trk cd05049
Catalytic domain of the Protein Tyrosine Kinases, Tropomyosin Related Kinases; PTKs catalyze ...
8-102 2.56e-20

Catalytic domain of the Protein Tyrosine Kinases, Tropomyosin Related Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Trk subfamily consists of TrkA, TrkB, TrkC, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, the nerve growth factor (NGF) family of neutrotrophins, leads to Trk receptor oligomerization and activation of the catalytic domain. Trk receptors are mainly expressed in the peripheral and central nervous systems. They play important roles in cell fate determination, neuronal survival and differentiation, as well as in the regulation of synaptic plasticity. Altered expression of Trk receptors is associated with many human diseases. The Trk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270643 [Multi-domain]  Cd Length: 280  Bit Score: 82.13  E-value: 2.56e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLK------------GQYSTMLRLPQLVDFASQIA 74
Cdd:cd05049  53 KDFEREAELLTNLQHENIVKFYGVCTEgDPLLMVFEYMEHGDLNKFLRshgpdaaflaseDSAPGELTLSQLLHIAVQIA 132
                        90       100
                ....*....|....*....|....*...
gi 472744    75 SGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05049 133 SGMVYLASQHFVHRDLATRNCLVGTNLV 160
PTKc_EGFR_like cd05057
Catalytic domain of Epidermal Growth Factor Receptor-like Protein Tyrosine Kinases; PTKs ...
6-97 2.73e-20

Catalytic domain of Epidermal Growth Factor Receptor-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EGFR (HER, ErbB) subfamily members include EGFR (HER1, ErbB1), HER2 (ErbB2), HER3 (ErbB3), HER4 (ErbB4), and similar proteins. They are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, resulting in the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Collectively, they can recognize a variety of ligands including EGF, TGFalpha, and neuregulins, among others. All four subfamily members can form homo- or heterodimers. HER3 contains an impaired kinase domain and depends on its heterodimerization partner for activation. EGFR subfamily members are involved in signaling pathways leading to a broad range of cellular responses including cell proliferation, differentiation, migration, growth inhibition, and apoptosis. Gain of function alterations, through their overexpression, deletions, or point mutations in their kinase domains, have been implicated in various cancers. These receptors are targets of many small molecule inhibitors and monoclonal antibodies used in cancer therapy. The EGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270648 [Multi-domain]  Cd Length: 279  Bit Score: 82.08  E-value: 2.73e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:cd05057  52 ANEEILDEAYVMASVDHPHLVRLLGICLSSQVQLITQLMPLGCLLDYVR-NHRDNIGSQLLLNWCVQIAKGMSYLEEKRL 130
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd05057 131 VHRDLAARNVLV 142
PTKc_Jak_rpt2 cd05038
Catalytic (repeat 2) domain of the Protein Tyrosine Kinases, Janus kinases; The Jak subfamily ...
1-102 3.42e-20

Catalytic (repeat 2) domain of the Protein Tyrosine Kinases, Janus kinases; The Jak subfamily is composed of Jak1, Jak2, Jak3, TYK2, and similar proteins. They are PTKs, catalyzing the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jaks are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase catalytic domain. Most Jaks are expressed in a wide variety of tissues, except for Jak3, which is expressed only in hematopoietic cells. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). Jaks are also involved in regulating the surface expression of some cytokine receptors. The Jak-STAT pathway is involved in many biological processes including hematopoiesis, immunoregulation, host defense, fertility, lactation, growth, and embryogenesis. The Jak subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270634 [Multi-domain]  Cd Length: 284  Bit Score: 82.04  E-value: 3.42e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEA----FLQEAQVMKKLRHEKLVQlYAVVSEEP----IYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQ 72
Cdd:cd05038  40 SLQPSGEEQhmsdFKREIEILRTLDHEYIVK-YKGVCESPgrrsLRLIMEYLPSGSLRDYLQRH-RDQIDLKRLLLFASQ 117
                        90       100       110
                ....*....|....*....|....*....|.
gi 472744    73 IASGMAYVERMNYVHRDLRAANILV-GDNLV 102
Cdd:cd05038 118 ICKGMEYLGSQRYIHRDLAARNILVeSEDLV 148
SPS1 COG0515
Serine/threonine protein kinase [Signal transduction mechanisms];
8-100 5.45e-20

Serine/threonine protein kinase [Signal transduction mechanisms];


Pssm-ID: 440281 [Multi-domain]  Cd Length: 482  Bit Score: 83.14  E-value: 5.45e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPI-YIVTEFMDQGSLLEFLKGQysTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:COG0515  52 ERFRREARALARLNHPNIVRVYDVGEEDGRpYLVMEYVEGESLADLLRRR--GPLPPAEALRILAQLAEALAAAHAAGIV 129
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:COG0515 130 HRDIKPANILLTPD 143
PTKc_Ror cd05048
Catalytic Domain of the Protein Tyrosine Kinases, Receptor tyrosine kinase-like Orphan ...
10-102 1.12e-18

Catalytic Domain of the Protein Tyrosine Kinases, Receptor tyrosine kinase-like Orphan Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Ror subfamily consists of Ror1, Ror2, and similar proteins. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. Ror kinases are expressed in many tissues during development. They play important roles in bone and heart formation. Mutations in human Ror2 result in two different bone development genetic disorders, recessive Robinow syndrome and brachydactyly type B. Drosophila Ror is expressed only in the developing nervous system during neurite outgrowth and neuronal differentiation, suggesting a role for Drosophila Ror in neural development. More recently, mouse Ror1 and Ror2 have also been found to play an important role in regulating neurite growth in central neurons. Ror1 and Ror2 are believed to have some overlapping and redundant functions. The Ror subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270642 [Multi-domain]  Cd Length: 283  Bit Score: 77.80  E-value: 1.12e-18
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFL--------------KGQYSTMLRLPQLVDFASQIA 74
Cdd:cd05048  55 FRREAELMSDLQHPNIVCLLGVCTkEQPQCMLFEYMAHGDLHEFLvrhsphsdvgvssdDDGTASSLDQSDFLHIAIQIA 134
                        90       100
                ....*....|....*....|....*...
gi 472744    75 SGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05048 135 AGMEYLSSHHYVHRDLAARNCLVGDGLT 162
PTKc_DDR_like cd05097
Catalytic domain of Discoidin Domain Receptor-like Protein Tyrosine Kinases; PTKs catalyze the ...
10-101 1.40e-18

Catalytic domain of Discoidin Domain Receptor-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. DDR-like proteins are members of the DDR subfamily, which are receptor PTKs (RTKs) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDRs results in a slow but sustained receptor activation. DDRs regulate cell adhesion, proliferation, and extracellular matrix remodeling. They have been linked to a variety of human cancers including breast, colon, ovarian, brain, and lung. There is no evidence showing that DDRs act as transforming oncogenes. They are more likely to play a role in the regulation of tumor growth and metastasis. The DDR-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133228 [Multi-domain]  Cd Length: 295  Bit Score: 77.71  E-value: 1.40e-18
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFL-----KGQYSTMLRLP-----QLVDFASQIASGMA 78
Cdd:cd05097  64 FLKEIKIMSRLKNPNIIRLLGVcVSDDPLCMITEYMENGDLNQFLsqreiESTFTHANNIPsvsiaNLLYMAVQIASGMK 143
                        90       100
                ....*....|....*....|...
gi 472744    79 YVERMNYVHRDLRAANILVGDNL 101
Cdd:cd05097 144 YLASLNFVHRDLATRNCLVGNHY 166
PTKc_Fes cd05084
Catalytic domain of the Protein Tyrosine Kinase, Fes; PTKs catalyze the transfer of the ...
4-99 2.17e-18

Catalytic domain of the Protein Tyrosine Kinase, Fes; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fes (or Fps) is a cytoplasmic (or nonreceptor) PTK containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. The genes for Fes (feline sarcoma) and Fps (Fujinami poultry sarcoma) were first isolated from tumor-causing retroviruses. The viral oncogenes encode chimeric Fes proteins consisting of Gag sequences at the N-termini, resulting in unregulated PTK activity. Fes kinase is expressed in myeloid, vascular endothelial, epithelial, and neuronal cells. It plays important roles in cell growth and differentiation, angiogenesis, inflammation and immunity, and cytoskeletal regulation. A recent study implicates Fes kinase as a tumor suppressor in colorectal cancer. The Fes subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270667 [Multi-domain]  Cd Length: 252  Bit Score: 76.89  E-value: 2.17e-18
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPE---AFLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAY 79
Cdd:cd05084  32 TLPPDlkaKFLQEARILKQYSHPNIVRLIGVCTQkQPIYIVMELVQGGDFLTFLRTE-GPRLKVKELIRMVENAAAGMEY 110
                        90       100
                ....*....|....*....|
gi 472744    80 VERMNYVHRDLRAANILVGD 99
Cdd:cd05084 111 LESKHCIHRDLAARNCLVTE 130
PTKc_DDR2 cd05095
Catalytic domain of the Protein Tyrosine Kinase, Discoidin Domain Receptor 2; PTKs catalyze ...
10-100 3.95e-18

Catalytic domain of the Protein Tyrosine Kinase, Discoidin Domain Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. DDR2 is a receptor PTK (RTK) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDR2 results in a slow but sustained receptor activation. DDR2 binds mostly to fibrillar collagens as well as collagen X. DDR2 is widely expressed in many tissues with the highest levels found in skeletal muscle, skin, kidney and lung. It is important in cell proliferation and development. Mice, with a deletion of DDR2, suffer from dwarfism and delayed healing of epidermal wounds. DDR2 also contributes to collagen (type I) regulation by inhibiting fibrillogenesis and altering the morphology of collagen fibers. It is also expressed in immature dendritic cells (DCs), where it plays a role in DC activation and function. The DDR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K).


Pssm-ID: 270677 [Multi-domain]  Cd Length: 297  Bit Score: 76.57  E-value: 3.95e-18
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQY----------STMLRLPQLVDFASQIASGMA 78
Cdd:cd05095  66 FLKEIKIMSRLKDPNIIRLLAVcITDDPLCMITEYMENGDLNQFLSRQQpegqlalpsnALTVSYSDLRFMAAQIASGMK 145
                        90       100
                ....*....|....*....|..
gi 472744    79 YVERMNYVHRDLRAANILVGDN 100
Cdd:cd05095 146 YLSSLNFVHRDLATRNCLVGKN 167
STKc_MAPKKK cd06606
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase ...
8-103 4.77e-18

Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKKKs (MKKKs or MAP3Ks) are also called MAP/ERK kinase kinases (MEKKs) in some cases. They phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. This subfamily is composed of the Apoptosis Signal-regulating Kinases ASK1 (or MAPKKK5) and ASK2 (or MAPKKK6), MEKK1, MEKK2, MEKK3, MEKK4, as well as plant and fungal MAPKKKs. Also included in this subfamily are the cell division control proteins Schizosaccharomyces pombe Cdc7 and Saccharomyces cerevisiae Cdc15. The MAPKKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270783 [Multi-domain]  Cd Length: 258  Bit Score: 76.02  E-value: 4.77e-18
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQ-LYAVVSEEPIYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd06606  44 EALEREIRILSSLKHPNIVRyLGTERTENTLNIFLEYVPGGSLASLLKKFGK--LPEPVVRKYTRQILEGLEYLHSNGIV 121
                        90
                ....*....|....*..
gi 472744    87 HRDLRAANILVGDNLVC 103
Cdd:cd06606 122 HRDIKGANILVDSDGVV 138
PTKc_PDGFR cd05055
Catalytic domain of the Protein Tyrosine Kinases, Platelet Derived Growth Factor Receptors; ...
8-97 3.49e-17

Catalytic domain of the Protein Tyrosine Kinases, Platelet Derived Growth Factor Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The PDGFR subfamily consists of PDGFR alpha, PDGFR beta, KIT, CSF-1R, the mammalian FLT3, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. PDGFR kinase domains are autoinhibited by their juxtamembrane regions containing tyr residues. The binding to their ligands leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. PDGFR subfamily receptors are important in the development of a variety of cells. PDGFRs are expressed in a many cells including fibroblasts, neurons, endometrial cells, mammary epithelial cells, and vascular smooth muscle cells. PDGFR signaling is critical in normal embryonic development, angiogenesis, and wound healing. Kit is important in the development of melanocytes, germ cells, mast cells, hematopoietic stem cells, the interstitial cells of Cajal, and the pacemaker cells of the GI tract. CSF-1R signaling is critical in the regulation of macrophages and osteoclasts. Mammalian FLT3 plays an important role in the survival, proliferation, and differentiation of stem cells. The PDGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase .


Pssm-ID: 133186 [Multi-domain]  Cd Length: 302  Bit Score: 74.06  E-value: 3.49e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKL-RHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:cd05055  83 EALMSELKIMSHLgNHENIVNLLGACTIGgPILVITEYCCYGDLLNFLRRKRESFLTLEDLLSFSYQVAKGMAFLASKNC 162
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd05055 163 IHRDLAARNVLL 174
PTKc_TrkB cd05093
Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase B; PTKs catalyze ...
10-102 4.21e-17

Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase B; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkB is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkB to its ligands, brain-derived neurotrophic factor (BDNF) or neurotrophin 4 (NT4), results in receptor oligomerization and activation of the catalytic domain. TrkB is broadly expressed in the nervous system and in some non-neural tissues. It plays important roles in cell proliferation, differentiation, and survival. BDNF/Trk signaling plays a key role in regulating activity-dependent synaptic plasticity. TrkB also contributes to protection against gp120-induced neuronal cell death. TrkB overexpression is associated with poor prognosis in neuroblastoma (NB) and other human cancers. It acts as a suppressor of anoikis (detachment-induced apoptosis) and contributes to tumor metastasis. The TrkB subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270675 [Multi-domain]  Cd Length: 288  Bit Score: 73.92  E-value: 4.21e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLK-----------GQYSTMLRLPQLVDFASQIASGM 77
Cdd:cd05093  54 FHREAELLTNLQHEHIVKFYGVcVEGDPLIMVFEYMKHGDLNKFLRahgpdavlmaeGNRPAELTQSQMLHIAQQIAAGM 133
                        90       100
                ....*....|....*....|....*
gi 472744    78 AYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05093 134 VYLASQHFVHRDLATRNCLVGENLL 158
STKc_MEKK1_plant cd06632
Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP) ...
12-100 4.24e-17

Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of plant MAPK kinase kinases (MAPKKKs) including Arabidopsis thaliana MEKK1 and MAPKKK3. Arabidopsis thaliana MEKK1 activates MPK4, a MAPK that regulates systemic acquired resistance. MEKK1 also participates in the regulation of temperature-sensitive and tissue-specific cell death. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The plant MEKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270802 [Multi-domain]  Cd Length: 259  Bit Score: 73.21  E-value: 4.24e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKgQYSTmLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd06632  51 QEIALLSKLRHPNIVQYYGTeREEDNLYIFLEYVPGGSIHKLLQ-RYGA-FEEPVIRLYTRQILSGLAYLHSRNTVHRDI 128
                        90
                ....*....|
gi 472744    91 RAANILVGDN 100
Cdd:cd06632 129 KGANILVDTN 138
PTKc_FGFR cd05053
Catalytic domain of the Protein Tyrosine Kinases, Fibroblast Growth Factor Receptors; PTKs ...
10-102 4.91e-17

Catalytic domain of the Protein Tyrosine Kinases, Fibroblast Growth Factor Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The FGFR subfamily consists of FGFR1, FGFR2, FGFR3, FGFR4, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, and to heparin/heparan sulfate (HS) results in the formation of a ternary complex, which leads to receptor dimerization and activation, and intracellular signaling. There are at least 23 FGFs and four types of FGFRs. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. FGF/FGFR signaling is important in the regulation of embryonic development, homeostasis, and regenerative processes. Depending on the cell type and stage, FGFR signaling produces diverse cellular responses including proliferation, growth arrest, differentiation, and apoptosis. Aberrant signaling leads to many human diseases such as skeletal, olfactory, and metabolic disorders, as well as cancer. The FGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase .


Pssm-ID: 270646 [Multi-domain]  Cd Length: 294  Bit Score: 73.61  E-value: 4.91e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKL-RHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLK-----GQYSTM---------LRLPQLVDFASQI 73
Cdd:cd05053  63 LVSEMEMMKMIgKHKNIINLLGACTQDgPLYVVVEYASKGNLREFLRarrppGEEASPddprvpeeqLTQKDLVSFAYQV 142
                        90       100
                ....*....|....*....|....*....
gi 472744    74 ASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05053 143 ARGMEYLASKKCIHRDLAARNVLVTEDNV 171
PTKc_DDR1 cd05096
Catalytic domain of the Protein Tyrosine Kinase, Discoidin Domain Receptor 1; PTKs catalyze ...
10-101 5.15e-17

Catalytic domain of the Protein Tyrosine Kinase, Discoidin Domain Receptor 1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. DDR1 is a receptor PTK (RTK) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDR1 results in a slow but sustained receptor activation. DDR1 binds to all collagens tested to date (types I-IV). It is widely expressed in many tissues. It is abundant in the brain and is also found in keratinocytes, colonic mucosa epithelium, lung epithelium, thyroid follicles, and the islets of Langerhans. During embryonic development, it is found in the developing neuroectoderm. DDR1 is a key regulator of cell morphogenesis, differentiation and proliferation. It is important in the development of the mammary gland, the vasculator and the kidney. DDR1 is also found in human leukocytes, where it facilitates cell adhesion, migration, maturation, and cytokine production. The DDR1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133227 [Multi-domain]  Cd Length: 304  Bit Score: 73.82  E-value: 5.15e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQY-----------------STMLRLPQLVDFAS 71
Cdd:cd05096  66 FLKEVKILSRLKDPNIIRLLGVcVDEDPLCMITEYMENGDLNQFLSSHHlddkeengndavppahcLPAISYSSLLHVAL 145
                        90       100       110
                ....*....|....*....|....*....|
gi 472744    72 QIASGMAYVERMNYVHRDLRAANILVGDNL 101
Cdd:cd05096 146 QIASGMKYLSSLNFVHRDLATRNCLVGENL 175
STKc_TSSK4-like cd14162
Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins; STKs ...
7-100 7.91e-17

Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. It phosphorylates Cre-Responsive Element Binding protein (CREB), facilitating the binding of CREB to the specific cis cAMP responsive element (CRE), which is important in activating genes related to germ cell differentiation. Mutations in the human TSSK4 gene is associated with infertile Chinese men with impaired spermatogenesis. The TSSK4-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271064 [Multi-domain]  Cd Length: 259  Bit Score: 72.71  E-value: 7.91e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQ-----EAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQysTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd14162  39 PEDYLQkflprEIEVIKGLKHPNLICFYEAIeTTSRVYIIMELAENGDLLDYIRKN--GALPEPQARRWFRQLVAGVEYC 116
                        90       100
                ....*....|....*....|
gi 472744    81 ERMNYVHRDLRAANILVGDN 100
Cdd:cd14162 117 HSKGVVHRDLKCENLLLDKN 136
PKc_LIMK_like cd14065
Catalytic domain of the LIM domain kinase-like protein kinases; PKs catalyze the transfer of ...
10-97 1.15e-16

Catalytic domain of the LIM domain kinase-like protein kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. Members of this subfamily include LIMK, Testicular or testis-specific protein kinase (TESK), and similar proteins. LIMKs are characterized as serine/threonine kinases (STKs) while TESKs are dual-specificity protein kinases. Both LIMK and TESK phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They are implicated in many cellular functions including cell spreading, motility, morphogenesis, meiosis, mitosis, and spermatogenesis. The LIMK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270967 [Multi-domain]  Cd Length: 252  Bit Score: 72.14  E-value: 1.15e-16
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQYSTmLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd14065  35 FLKEVKLMRRLSHPNILRFIGVcVKDNKLNFITEYVNGGTLEELLKSMDEQ-LPWSQRVSLAKDIASGMAYLHSKNIIHR 113

                ....*....
gi 472744    89 DLRAANILV 97
Cdd:cd14065 114 DLNSKNCLV 122
PTKc_EphR_A10 cd05064
Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A10; PTKs catalyze the ...
9-103 1.19e-16

Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A10; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EphA10, which contains an inactive tyr kinase domain, may function to attenuate signals of co-clustered active receptors. EphA10 is mainly expressed in the testis. Ephrin/EphR interaction results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. EphRs comprise the largest subfamily of receptor tyr kinases (RTKs). In general, class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). The EphA10 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133195 [Multi-domain]  Cd Length: 266  Bit Score: 72.26  E-value: 1.19e-16
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     9 AFLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLK---GQYSTMlrlpQLVDFASQIASGMAYVERMN 84
Cdd:cd05064  52 GFLAEALTLGQFDHSNIVRLEGVITRgNTMMIVTEYMSNGALDSFLRkheGQLVAG----QLMGMLPGLASGMKYLSEMG 127
                        90
                ....*....|....*....
gi 472744    85 YVHRDLRAANILVGDNLVC 103
Cdd:cd05064 128 YVHKGLAAHKVLVNSDLVC 146
STKc_IRAK cd14066
Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases ...
6-102 2.30e-16

Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases and related STKs; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. Some IRAKs may also play roles in T- and B-cell signaling, and adaptive immunity. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK-1, -2, and -4 are ubiquitously expressed and are active kinases, while IRAK-M is only induced in monocytes and macrophages and is an inactive kinase. Variations in IRAK genes are linked to diverse diseases including infection, sepsis, cancer, and autoimmune diseases. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain (a pseudokinase domain in the case of IRAK3), and a C-terminal domain; IRAK-4 lacks the C-terminal domain. This subfamily includes plant receptor-like kinases (RLKs) including Arabidopsis thaliana BAK1 and CLAVATA1 (CLV1). BAK1 functions in BR (brassinosteroid)-regulated plant development and in pathways involved in plant resistance to pathogen infection and herbivore attack. CLV1, directly binds small signaling peptides, CLAVATA3 (CLV3) and CLAVATA3/EMBRYO SURROUNDING REGI0N (CLE), to restrict stem cell proliferation: the CLV3-CLV1-WUS (WUSCHEL) module influences stem cell maintenance in the shoot apical meristem, and the CLE40 (CLAVATA3/EMBRYO SURROUNDING REGION40) -ACR4 (CRINKLY4) -CLV1- WOX5 (WUSCHEL-RELATED HOMEOBOX5) module at the root apical meristem. The IRAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270968 [Multi-domain]  Cd Length: 272  Bit Score: 71.54  E-value: 2.30e-16
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQVMKKLRHEKLVQLYAVVSE--EPIyIVTEFMDQGSLLEFLKGQYS-TMLRLPQLVDFASQIASGMAYV-- 80
Cdd:cd14066  33 SKKEFLTELEMLGRLRHPNLVRLLGYCLEsdEKL-LVYEYMPNGSLEDRLHCHKGsPPLPWPQRLKIAKGIARGLEYLhe 111
                        90       100
                ....*....|....*....|...
gi 472744    81 -ERMNYVHRDLRAANILVGDNLV 102
Cdd:cd14066 112 eCPPPIIHGDIKSSNILLDEDFE 134
STKc_LIMK cd14154
Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase; STKs catalyze the transfer ...
10-100 3.52e-16

Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LIMKs phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They act downstream of Rho GTPases and are expressed ubiquitously. As regulators of actin dynamics, they contribute to diverse cellular functions such as cell motility, morphogenesis, differentiation, apoptosis, meiosis, mitosis, and neurite extension. LIMKs contain the LIM (two repeats), PDZ, and catalytic kinase domains. Vertebrate have two members, LIMK1 and LIMK2. The LIMK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271056 [Multi-domain]  Cd Length: 272  Bit Score: 71.00  E-value: 3.52e-16
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd14154  37 FLKEVKVMRSLDHPNVLKFIGVLyKDKKLNLITEYIPGGTLKDVLKDM-ARPLPWAQRVRFAKDIASGMAYLHSMNIIHR 115
                        90
                ....*....|..
gi 472744    89 DLRAANILVGDN 100
Cdd:cd14154 116 DLNSHNCLVRED 127
PTKc_TrkC cd05094
Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase C; PTKs catalyze ...
2-102 5.54e-16

Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase C; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkC is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkC to its ligand, neurotrophin 3 (NT3), results in receptor oligomerization and activation of the catalytic domain. TrkC is broadly expressed in the nervous system and in some non-neural tissues including the developing heart. NT3/TrkC signaling plays an important role in the innervation of the cardiac conducting system and the development of smooth muscle cells. Mice deficient with NT3 and TrkC have multiple heart defects. NT3/TrkC signaling is also critical for the development and maintenance of enteric neurons that are important for the control of gut peristalsis. The TrkC subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270676 [Multi-domain]  Cd Length: 287  Bit Score: 70.81  E-value: 5.54e-16
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     2 PGTMSPEAFLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKG--------------QYSTMLRLPQL 66
Cdd:cd05094  46 PTLAARKDFQREAELLTNLQHDHIVKFYGVcGDGDPLIMVFEYMKHGDLNKFLRAhgpdamilvdgqprQAKGELGLSQM 125
                        90       100       110
                ....*....|....*....|....*....|....*.
gi 472744    67 VDFASQIASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05094 126 LHIATQIASGMVYLASQHFVHRDLATRNCLVGANLL 161
PKc_STE cd05122
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the ...
11-100 6.75e-16

Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. This family is composed of STKs, and some dual-specificity PKs that phosphorylate both threonine and tyrosine residues of target proteins. Most members are kinases involved in mitogen-activated protein kinase (MAPK) signaling cascades, acting as MAPK kinases (MAPKKs), MAPKK kinases (MAPKKKs), or MAPKKK kinases (MAP4Ks). The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPKK, which itself is phosphorylated and activated by a MAPKKK. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAPKKK to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Other STE family members include p21-activated kinases (PAKs) and class III myosins, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain, which can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, as well as autophosphorylate the C-terminal motor domain. They play an important role in maintaining the structural integrity of photoreceptor cell microvilli. The STE family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270692 [Multi-domain]  Cd Length: 254  Bit Score: 69.92  E-value: 6.75e-16
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKgqySTMLRLPQlvdfaSQIAS-------GMAYVER 82
Cdd:cd05122  45 LNEIAILKKCKHPNIVKYYgSYLKKDELWIVMEFCSGGSLKDLLK---NTNKTLTE-----QQIAYvckevlkGLEYLHS 116
                        90
                ....*....|....*...
gi 472744    83 MNYVHRDLRAANILVGDN 100
Cdd:cd05122 117 HGIIHRDIKAANILLTSD 134
STKc_AMPK-like cd14003
Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze ...
12-100 1.29e-15

Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The AMPK-like subfamily is composed of AMPK, MARK, BRSK, NUAK, MELK, SNRK, TSSK, and SIK, among others. LKB1 serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. MARKs phosphorylate tau and related microtubule-associated proteins (MAPs), and regulates microtubule-based intracellular transport. They are involved in embryogenesis, epithelial cell polarization, cell signaling, and neuronal differentiation. BRSKs play important roles in establishing neuronal polarity. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. The AMPK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270905 [Multi-domain]  Cd Length: 252  Bit Score: 69.47  E-value: 1.29e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQYstmlRLPQlvDFA----SQIASGMAYVERMNYV 86
Cdd:cd14003  48 REIEIMKLLNHPNIIKLYEVIeTENKIYLVMEYASGGELFDYIVNNG----RLSE--DEArrffQQLISAVDYCHSNGIV 121
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:cd14003 122 HRDLKLENILLDKN 135
STKc_Cdc7_like cd06627
Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases; STKs ...
12-103 2.06e-15

Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily include Schizosaccharomyces pombe Cdc7, Saccharomyces cerevisiae Cdc15, Arabidopsis thaliana mitogen-activated protein kinase kinase kinase (MAPKKK) epsilon, and related proteins. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Fission yeast Cdc7 is essential for cell division by playing a key role in the initiation of septum formation and cytokinesis. Budding yeast Cdc15 functions to coordinate mitotic exit with cytokinesis. Arabidopsis MAPKKK epsilon is required for pollen development in the plasma membrane. The Cdc7-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270797 [Multi-domain]  Cd Length: 254  Bit Score: 68.79  E-value: 2.06e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKgQYStmlRLPQ-LVD-FASQIASGMAYVERMNYVHR 88
Cdd:cd06627  48 GEIDLLKKLNHPNIVKYIGSVkTKDSLYIILEYVENGSLASIIK-KFG---KFPEsLVAvYIYQVLEGLAYLHEQGVIHR 123
                        90
                ....*....|....*
gi 472744    89 DLRAANILVGDNLVC 103
Cdd:cd06627 124 DIKGANILTTKDGLV 138
STKc_RIP cd13978
Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein; STKs catalyze ...
8-101 2.78e-15

Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP kinases serve as essential sensors of cellular stress. They are involved in regulating NF-kappaB and MAPK signaling, and are implicated in mediating cellular processes such as apoptosis, necroptosis, differentiation, and survival. RIP kinases contain a homologous N-terminal kinase domain and varying C-terminal domains. Higher vertebrates contain multiple RIP kinases, with mammals harboring at least five members. RIP1 and RIP2 harbor C-terminal domains from the Death domain (DD) superfamily while RIP4 contains ankyrin (ANK) repeats. RIP3 contain a RIP homotypic interaction motif (RHIM) that facilitates binding to RIP1. RIP1 and RIP3 are important in apoptosis and necroptosis, while RIP2 and RIP4 play roles in keratinocyte differentiation and inflammatory immune responses. The RIP subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270880 [Multi-domain]  Cd Length: 263  Bit Score: 68.63  E-value: 2.78e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQYsTMLRLPQLVDFASQIASGMAYVERMN-- 84
Cdd:cd13978  37 KALLKEAEKMERARHSYVLPLLGVcVERRSLGLVMEYMENGSLKSLLEREI-QDVPWSLRFRIIHEIALGMNFLHNMDpp 115
                        90
                ....*....|....*..
gi 472744    85 YVHRDLRAANILVGDNL 101
Cdd:cd13978 116 LLHHDLKPENILLDNHF 132
PTKc_Ror1 cd05090
Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor ...
10-101 4.91e-15

Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor 1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Ror kinases are expressed in many tissues during development. Avian Ror1 was found to be involved in late limb development. Studies in mice reveal that Ror1 is important in the regulation of neurite growth in central neurons, as well as in respiratory development. Loss of Ror1 also enhances the heart and skeletal abnormalities found in Ror2-deficient mice. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The Ror1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270672 [Multi-domain]  Cd Length: 283  Bit Score: 68.11  E-value: 4.91e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFL---------------KGQYSTMLRLPQLVDFASQI 73
Cdd:cd05090  54 FQQEASLMTELHHPNIVCLLGVVTQEqPVCMLFEFMNQGDLHEFLimrsphsdvgcssdeDGTVKSSLDHGDFLHIAIQI 133
                        90       100
                ....*....|....*....|....*...
gi 472744    74 ASGMAYVERMNYVHRDLRAANILVGDNL 101
Cdd:cd05090 134 AAGMEYLSSHFFVHKDLAARNILVGEQL 161
STKc_ATG1_ULK_like cd14009
Catalytic domain of the Serine/Threonine kinases, Autophagy-related protein 1 and Unc-51-like ...
8-100 6.03e-15

Catalytic domain of the Serine/Threonine kinases, Autophagy-related protein 1 and Unc-51-like kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes yeast ATG1 and metazoan homologs including vertebrate ULK1-3. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. It is involved in nutrient sensing and signaling, the assembly of autophagy factors and the execution of autophagy. In metazoans, ATG1 homologs display additional functions. Unc-51 and ULKs have been implicated in neuronal and axonal development. The ATG1/ULK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270911 [Multi-domain]  Cd Length: 251  Bit Score: 67.63  E-value: 6.03e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKgqysTMLRLPQLV--DFASQIASGMAYVERMN 84
Cdd:cd14009  37 ENLESEIAILKSIKHPNIVRLYDVQkTEDFIYLVLEYCAGGDLSQYIR----KRGRLPEAVarHFMQQLASGLKFLRSKN 112
                        90
                ....*....|....*.
gi 472744    85 YVHRDLRAANILVGDN 100
Cdd:cd14009 113 IIHRDLKPQNLLLSTS 128
PTK_CCK4 cd05046
Pseudokinase domain of the Protein Tyrosine Kinase, Colon Carcinoma Kinase 4; CCK4, also ...
9-97 6.85e-15

Pseudokinase domain of the Protein Tyrosine Kinase, Colon Carcinoma Kinase 4; CCK4, also called protein tyrosine kinase 7 (PTK7), is an orphan receptor PTK (RTK) containing an extracellular region with seven immunoglobulin domains, a transmembrane segment, and an intracellular inactive pseudokinase domain, which shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. Studies in mice reveal that CCK4 is essential for neural development. Mouse embryos containing a truncated CCK4 die perinatally and display craniorachischisis, a severe form of neural tube defect. The mechanism of action of the CCK4 pseudokinase is still unknown. Other pseudokinases such as HER3 rely on the activity of partner RTKs. The CCK4 subfamily is part of a larger superfamily that includes other pseudokinases and the catalytic domains of active kinases including PTKs, protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133178 [Multi-domain]  Cd Length: 275  Bit Score: 67.49  E-value: 6.85e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     9 AFLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQYSTM-------LRLPQLVDFASQIASGMAYV 80
Cdd:cd05046  54 EFRRELDMFRKLSHKNVVRLLGLCREaEPHYMILEYTDLGDLKQFLRATKSKDeklkpppLSTKQKVALCTQIALGMDHL 133
                        90
                ....*....|....*..
gi 472744    81 ERMNYVHRDLRAANILV 97
Cdd:cd05046 134 SNARFVHRDLAARNCLV 150
STKc_MLTK cd14060
Catalytic domain of the Serine/Threonine Kinase, Mixed lineage kinase-Like mitogen-activated ...
12-97 1.23e-14

Catalytic domain of the Serine/Threonine Kinase, Mixed lineage kinase-Like mitogen-activated protein Triple Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLTK, also called zipper sterile-alpha-motif kinase (ZAK), contains a catalytic kinase domain and a leucine zipper. There are two alternatively-spliced variants, MLTK-alpha and MLTK-beta. MLTK-alpha contains a sterile-alpha-motif (SAM) at the C-terminus. MLTK regulates the c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38 MAPK, and NF-kB pathways. ZAK is the MAP3K involved in the signaling cascade that leads to the ribotoxic stress response initiated by cellular damage due to Shiga toxins and ricin. It may also play a role in cell transformation and cancer development. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals.The MLTK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270962 [Multi-domain]  Cd Length: 242  Bit Score: 66.52  E-value: 1.23e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVSEEPIY-IVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVER---MNYVH 87
Cdd:cd14060  31 KEAEILSVLSHRNIIQFYGAILEAPNYgIVTEYASYGSLFDYLNSNESEEMDMDQIMTWATDIAKGMHYLHMeapVKVIH 110
                        90
                ....*....|
gi 472744    88 RDLRAANILV 97
Cdd:cd14060 111 RDLKSRNVVI 120
PTKc_Tyk2_rpt2 cd05080
Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Tyrosine kinase 2; PTKs catalyze ...
3-102 1.34e-14

Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Tyrosine kinase 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tyk2 is widely expressed in many tissues. It is involved in signaling via the cytokine receptors IFN-alphabeta, IL-6, IL-10, IL-12, IL-13, and IL-23. It mediates cell surface urokinase receptor (uPAR) signaling and plays a role in modulating vascular smooth muscle cell (VSMC) functional behavior in response to injury. Tyk2 is also important in dendritic cell function and T helper (Th)1 cell differentiation. A homozygous mutation of Tyk2 was found in a patient with hyper-IgE syndrome (HIES), a primary immunodeficiency characterized by recurrent skin abscesses, pneumonia, and elevated serum IgE. This suggests that Tyk2 may play important roles in multiple cytokine signaling involved in innate and adaptive immunity. Tyk2 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase catalytic domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The Tyk2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270664 [Multi-domain]  Cd Length: 283  Bit Score: 66.85  E-value: 1.34e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     3 GTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSE---EPIYIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASGMAY 79
Cdd:cd05080  46 GPQHRSGWKQEIDILKTLYHENIVKYKGCCSEqggKSLQLIMEYVPLGSLRDYLP---KHSIGLAQLLLFAQQICEGMAY 122
                        90       100
                ....*....|....*....|....
gi 472744    80 VERMNYVHRDLRAANILV-GDNLV 102
Cdd:cd05080 123 LHSQHYIHRDLAARNVLLdNDRLV 146
PTKc_RET cd05045
Catalytic domain of the Protein Tyrosine Kinase, REarranged during Transfection protein; PTKs ...
1-103 1.98e-14

Catalytic domain of the Protein Tyrosine Kinase, REarranged during Transfection protein; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. RET is a receptor PTK (RTK) containing an extracellular region with four cadherin-like repeats, a calcium-binding site, and a cysteine-rich domain, a transmembrane segment, and an intracellular catalytic domain. It is part of a multisubunit complex that binds glial-derived neurotropic factor (GDNF) family ligands (GFLs) including GDNF, neurturin, artemin, and persephin. GFLs bind RET along with four GPI-anchored coreceptors, bringing two RET molecules together, leading to autophosphorylation, activation, and intracellular signaling. RET is essential for the development of the sympathetic, parasympathetic and enteric nervous systems, and the kidney. RET disruption by germline mutations causes diseases in humans including congenital aganglionosis of the gastrointestinal tract (Hirschsprung's disease) and three related inherited cancers: multiple endocrine neoplasia type 2A (MEN2A), MEN2B, and familial medullary thyroid carcinoma. The RET subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173631 [Multi-domain]  Cd Length: 290  Bit Score: 66.52  E-value: 1.98e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPE--AFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLK--------------GQYSTMLRL 63
Cdd:cd05045  39 KENASSSElrDLLSEFNLLKQVNHPHVIKLYgACSQDGPLLLIVEYAKYGSLRSFLResrkvgpsylgsdgNRNSSYLDN 118
                        90       100       110       120
                ....*....|....*....|....*....|....*....|....*...
gi 472744    64 P--------QLVDFASQIASGMAYVERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd05045 119 PderaltmgDLISFAWQISRGMQYLAEMKLVHRDLAARNVLVAEGRKM 166
STKc_CDK9_like cd07840
Catalytic domain of Cyclin-Dependent protein Kinase 9-like Serine/Threonine Kinases; STKs ...
7-102 2.33e-14

Catalytic domain of Cyclin-Dependent protein Kinase 9-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK9 and CDK12 from higher eukaryotes, yeast BUR1, C-type plant CDKs (CdkC), and similar proteins. CDK9, BUR1, and CdkC are functionally equivalent. They act as a kinase for the C-terminal domain of RNA polymerase II and participate in regulating mutliple steps of gene expression including transcription elongation and RNA processing. CDK9 and CdkC associate with T-type cyclins while BUR1 associates with the cyclin BUR2. CDK12 is a unique CDK that contains an arginine/serine-rich (RS) domain, which is predominantly found in splicing factors. CDK12 interacts with cyclins L1 and L2, and participates in regulating transcription and alternative splicing. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK9-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270832 [Multi-domain]  Cd Length: 291  Bit Score: 66.43  E-value: 2.33e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLRHEKLVQLYAVVSEEP-------IYIVTEFM--DQGSLLEflkgQYSTMLRLPQLVDFASQIASGM 77
Cdd:cd07840  42 PITAIREIKLLQKLDHPNVVRLKEIVTSKGsakykgsIYMVFEYMdhDLTGLLD----NPEVKFTESQIKCYMKQLLEGL 117
                        90       100
                ....*....|....*....|....*
gi 472744    78 AYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd07840 118 QYLHSNGILHRDIKGSNILINNDGV 142
PTKc_FGFR4 cd05099
Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 4; PTKs ...
10-102 2.49e-14

Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 4; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Unlike other FGFRs, there is only one splice form of FGFR4. It binds FGF1, FGF2, FGF6, FGF19, and FGF23. FGF19 is a selective ligand for FGFR4. Although disruption of FGFR4 in mice causes no obvious phenotype, in vivo inhibition of FGFR4 in cultured skeletal muscle cells resulted in an arrest of muscle progenitor differentiation. FGF6 and FGFR4 are uniquely expressed in myofibers and satellite cells. FGF6/FGFR4 signaling appears to play a key role in the regulation of muscle regeneration. A polymorphism in FGFR4 is found in head and neck squamous cell carcinoma. FGFR4 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR4 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133230 [Multi-domain]  Cd Length: 314  Bit Score: 66.53  E-value: 2.49e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKL-RHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQ--------------YSTMLRLPQLVDFASQI 73
Cdd:cd05099  64 LISEMELMKLIgKHKNIINLLGVCTQEgPLYVIVEYAAKGNLREFLRARrppgpdytfditkvPEEQLSFKDLVSCAYQV 143
                        90       100
                ....*....|....*....|....*....
gi 472744    74 ASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05099 144 ARGMEYLESRRCIHRDLAARNVLVTEDNV 172
PTKc_Jak1_rpt2 cd05079
Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 1; PTKs catalyze the ...
12-97 2.57e-14

Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jak1 is widely expressed in many tissues. Many cytokines are dependent on Jak1 for signaling, including those that use the shared receptor subunits common gamma chain (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) and gp130 (IL-6, IL-11, oncostatin M, G-CSF, and IFNs, among others). The many varied interactions of Jak1 and its ubiquitous expression suggest many biological roles. Jak1 is important in neurological development, as well as in lymphoid development and function. It also plays a role in the pathophysiology of cardiac hypertrophy and heart failure. A mutation in the ATP-binding site of Jak1 was identified in a human uterine leiomyosarcoma cell line, resulting in defective cytokine induction and antigen presentation, thus allowing the tumor to evade the immune system. Jak1 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The Jak1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173644 [Multi-domain]  Cd Length: 284  Bit Score: 66.11  E-value: 2.57e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVSEEP---IYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd05079  55 KEIEILRNLYHENIVKYKGICTEDGgngIKLIMEFLPSGSLKEYLP-RNKNKINLKQQLKYAVQICKGMDYLGSRQYVHR 133

                ....*....
gi 472744    89 DLRAANILV 97
Cdd:cd05079 134 DLAARNVLV 142
STKc_LKB1_CaMKK cd14008
Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent ...
12-100 2.62e-14

Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent Protein Kinase Kinase, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Both LKB1 and CaMKKs can phosphorylate and activate AMP-activated protein kinase (AMPK). LKB1, also called STK11, serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMPK. Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The LKB1/CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270910 [Multi-domain]  Cd Length: 267  Bit Score: 66.04  E-value: 2.62e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV---SEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd14008  53 REIAIMKKLDHPNIVRLYEVIddpESDKLYLVLEYCEGGPVMELDSGDRVPPLPEETARKYFRDLVLGLEYLHENGIVHR 132
                        90
                ....*....|..
gi 472744    89 DLRAANILVGDN 100
Cdd:cd14008 133 DIKPENLLLTAD 144
STKc_Nek cd08215
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; ...
11-100 3.08e-14

Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek family is composed of 11 different mammalian members (Nek1-11) with similarity to the catalytic domain of Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants that were prevented from entering mitosis. Neks contain a conserved N-terminal catalytic domain and a more divergent C-terminal regulatory region of various sizes and structures. They are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270855 [Multi-domain]  Cd Length: 258  Bit Score: 65.56  E-value: 3.08e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQYSTMLRLP--QLVDFASQIASGMAYVERMNYVH 87
Cdd:cd08215  47 LNEVKLLSKLKHPNIVKYYESFEENGkLCIVMEYADGGDLAQKIKKQKKKGQPFPeeQILDWFVQICLALKYLHSRKILH 126
                        90
                ....*....|...
gi 472744    88 RDLRAANILVGDN 100
Cdd:cd08215 127 RDLKTQNIFLTKD 139
PTKc_InsR cd05061
Catalytic domain of the Protein Tyrosine Kinase, Insulin Receptor; PTKs catalyze the transfer ...
10-100 3.57e-14

Catalytic domain of the Protein Tyrosine Kinase, Insulin Receptor; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. InsR is a receptor PTK (RTK) that is composed of two alphabeta heterodimers. Binding of the insulin ligand to the extracellular alpha subunit activates the intracellular tyr kinase domain of the transmembrane beta subunit. Receptor activation leads to autophosphorylation, stimulating downstream kinase activities, which initiate signaling cascades and biological function. InsR signaling plays an important role in many cellular processes including glucose homeostasis, glycogen synthesis, lipid and protein metabolism, ion and amino acid transport, cell cycle and proliferation, cell differentiation, gene transcription, and nitric oxide synthesis. Insulin resistance, caused by abnormalities in InsR signaling, has been described in diabetes, hypertension, cardiovascular disease, metabolic syndrome, heart failure, and female infertility. The InsR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133192 [Multi-domain]  Cd Length: 288  Bit Score: 65.76  E-value: 3.57e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKG--------QYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd05061  56 FLNEASVMKGFTCHHVVRLLGVVSKgQPTLVVMELMAHGDLKSYLRSlrpeaennPGRPPPTLQEMIQMAAEIADGMAYL 135
                        90       100
                ....*....|....*....|
gi 472744    81 ERMNYVHRDLRAANILVGDN 100
Cdd:cd05061 136 NAKKFVHRDLAARNCMVAHD 155
STKc_LIMK2 cd14222
Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase 2; STKs catalyze the ...
10-97 4.09e-14

Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LIMK2 activation is induced by transforming growth factor-beta l (TGFb-l) and shares the same subcellular location as the cofilin family member twinfilin, which may be its biological substrate. LIMK2 plays a role in spermatogenesis, and may contribute to tumor progression and metastasis formation in some cancer cells. LIMKs phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They act downstream of Rho GTPases and are expressed ubiquitously. As regulators of actin dynamics, they contribute to diverse cellular functions such as cell motility, morphogenesis, differentiation, apoptosis, meiosis, mitosis, and neurite extension. LIMKs contain the LIM (two repeats), PDZ, and catalytic kinase domains. The LIMK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271124 [Multi-domain]  Cd Length: 272  Bit Score: 65.74  E-value: 4.09e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQYSTMLRlpQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd14222  37 FLTEVKVMRSLDHPNVLKFIGVLyKDKRLNLLTEFIEGGTLKDFLRADDPFPWQ--QKVSFAKGIASGMAYLHSMSIIHR 114

                ....*....
gi 472744    89 DLRAANILV 97
Cdd:cd14222 115 DLNSHNCLI 123
STKc_CDK_like cd07829
Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases; STKs ...
11-100 4.60e-14

Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. CDKs are partly regulated by their subcellular localization, which defines substrate phosphorylation and the resulting specific function. CDK1, CDK2, CDK4, and CDK6 have well-defined functions in the cell cycle, such as the regulation of the early G1 phase by CDK4 or CDK6, the G1/S phase transition by CDK2, or the entry of mitosis by CDK1. They also exhibit overlapping cyclin specificity and functions in certain conditions. Knockout mice with a single CDK deleted remain viable with specific phenotypes, showing that some CDKs can compensate for each other. For example, CDK4 can compensate for the loss of CDK6, however, double knockout mice with both CDK4 and CDK6 deleted die in utero. CDK8 and CDK9 are mainly involved in transcription while CDK5 is implicated in neuronal function. CDK7 plays essential roles in both the cell cycle as a CDK-Activating Kinase (CAK) and in transcription as a component of the general transcription factor TFIIH. The CDK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270823 [Multi-domain]  Cd Length: 282  Bit Score: 65.58  E-value: 4.60e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQgSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd07829  46 LREISLLKELKHPNIVKLLDViHTENKLYLVFEYCDQ-DLKKYLD-KRPGPLPPNLIKSIMYQLLRGLAYCHSHRILHRD 123
                        90
                ....*....|.
gi 472744    90 LRAANILVGDN 100
Cdd:cd07829 124 LKPQNLLINRD 134
STKc_LIMK1 cd14221
Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase 1; STKs catalyze the ...
10-100 4.82e-14

Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LIMK1 activation is induced by bone morphogenic protein, vascular endothelial growth factor, and thrombin. It plays roles in microtubule disassembly and cell cycle progression, and is critical in the regulation of neurite outgrowth. LIMK1 knockout mice show abnormalities in dendritic spine morphology and synaptic function. LIMK1 is one of the genes deleted in patients with Williams Syndrome, which is characterized by distinct craniofacial features, cardiovascular problems, as well as behavioral and neurological abnormalities. LIMKs phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They act downstream of Rho GTPases and are expressed ubiquitously. As regulators of actin dynamics, they contribute to diverse cellular functions such as cell motility, morphogenesis, differentiation, apoptosis, meiosis, mitosis, and neurite extension. LIMKs contain the LIM (two repeats), PDZ, and catalytic kinase domains. The LIMK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271123 [Multi-domain]  Cd Length: 267  Bit Score: 65.36  E-value: 4.82e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd14221  37 FLKEVKVMRCLEHPNVLKFIGVLyKDKRLNFITEYIKGGTLRGIIKSM-DSHYPWSQRVSFAKDIASGMAYLHSMNIIHR 115
                        90
                ....*....|..
gi 472744    89 DLRAANILVGDN 100
Cdd:cd14221 116 DLNSHNCLVREN 127
STKc_MAP3K12_13 cd14059
Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase ...
17-100 4.91e-14

Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase Kinases 12 and 13; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP3K12 is also called MAPK upstream kinase (MUK), dual leucine zipper-bearing kinase (DLK) or leucine-zipper protein kinase (ZPK). It is involved in the c-Jun N-terminal kinase (JNK) pathway that directly regulates axonal regulation through the phosphorylation of microtubule-associated protein 1B (MAP1B). It also regulates the differentiation of many cell types including adipocytes and may play a role in adipogenesis. MAP3K13, also called leucine zipper-bearing kinase (LZK), directly phosphorylates and activates MKK7, which in turn activates the JNK pathway. It also activates NF-kB through IKK activation and this activity is enhanced by antioxidant protein-1 (AOP-1). MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAP2Ks (MAPKKs or MKKs), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The MAP3K12/13 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270961 [Multi-domain]  Cd Length: 237  Bit Score: 64.82  E-value: 4.91e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    17 MKKLRHEKLVQLYAVVSEEPIY-IVTEFMDQGSLLEFLKGQYSTMLRLpqLVDFASQIASGMAYVERMNYVHRDLRAANI 95
Cdd:cd14059  35 LRKLNHPNIIKFKGVCTQAPCYcILMEYCPYGQLYEVLRAGREITPSL--LVDWSKQIASGMNYLHLHKIIHRDLKSPNV 112

                ....*
gi 472744    96 LVGDN 100
Cdd:cd14059 113 LVTYN 117
STKc_CAMK cd05117
The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of ...
1-96 6.39e-14

The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. CaMKII is a signaling molecule that translates upstream calcium and reactive oxygen species (ROS) signals into downstream responses that play important roles in synaptic function and cardiovascular physiology. CAMKIV is implicated in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors, as well as in T-cell development and signaling. The CAMK family also consists of other related kinases including the Phosphorylase kinase Gamma subunit (PhKG), the C-terminal kinase domains of Ribosomal S6 kinase (RSK) and Mitogen and stress-activated kinase (MSK), Doublecortin-like kinase (DCKL), and the MAPK-activated protein kinases MK2, MK3, and MK5, among others. The CAMK family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270687 [Multi-domain]  Cd Length: 258  Bit Score: 64.80  E-value: 6.39e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFL--KGQYS-----TMLRlpqlvdfasQ 72
Cdd:cd05117  37 KLKSEDEEMLRREIEILKRLDHPNIVKLYEVfEDDKNLYLVMELCTGGELFDRIvkKGSFSereaaKIMK---------Q 107
                        90       100
                ....*....|....*....|....
gi 472744    73 IASGMAYVERMNYVHRDLRAANIL 96
Cdd:cd05117 108 ILSAVAYLHSQGIVHRDLKPENIL 131
STKc_TSSK1_2-like cd14165
Catalytic domain of testis-specific serine/threonine kinase 1, TSSK2, and similar proteins; ...
8-101 7.82e-14

Catalytic domain of testis-specific serine/threonine kinase 1, TSSK2, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK1 and TSSK2 are expressed specifically in meiotic and postmeiotic spermatogenic cells, respectively. TSSK2 is localized in the sperm neck, equatorial segment, and mid-piece of the sperm tail. Both TSSK1 and TSSK2 phosphorylate their common substrate TSKS (testis-specific-kinase-substrate). TSSK1/TSSK2 double knock-out mice are sterile without manifesting other defects, making these kinases viable targets for male contraception. The TSSK1/2-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271067 [Multi-domain]  Cd Length: 263  Bit Score: 64.80  E-value: 7.82e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFL-QEAQVMKKLRHEKLVQLYAV--VSEEPIYIVTEFMDQGSLLEFLKGQystmLRLPQLV--DFASQIASGMAYVER 82
Cdd:cd14165  45 EKFLpRELEILARLNHKSIIKTYEIfeTSDGKVYIVMELGVQGDLLEFIKLR----GALPEDVarKMFHQLSSAIKYCHE 120
                        90
                ....*....|....*....
gi 472744    83 MNYVHRDLRAANILVGDNL 101
Cdd:cd14165 121 LDIVHRDLKCENLLLDKDF 139
STKc_MEKK3_like cd06625
Catalytic domain of Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) ...
8-96 9.63e-14

Catalytic domain of Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MEKK3, MEKK2, and related proteins; all contain an N-terminal PB1 domain, which mediates oligomerization, and a C-terminal catalytic domain. MEKK2 and MEKK3 are MAPK kinase kinases (MAPKKKs or MKKK) that activate MEK5 (also called MKK5), which activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK3 plays an essential role in embryonic angiogenesis and early heart development. MEKK2 and MEKK3 can also activate the MAPKs, c-Jun N-terminal kinase (JNK) and p38, through their respective MAPKKs. The MEKK3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270795 [Multi-domain]  Cd Length: 260  Bit Score: 64.30  E-value: 9.63e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKgQYSTmLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd06625  47 KALECEIQLLKNLQHERIVQYYGCLQDEkSLSIFMEYMPGGSVKDEIK-AYGA-LTENVTRKYTRQILEGLAYLHSNMIV 124
                        90
                ....*....|
gi 472744    87 HRDLRAANIL 96
Cdd:cd06625 125 HRDIKGANIL 134
PTK_Jak_rpt1 cd05037
Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinases, Janus kinases; The Jak ...
8-97 1.85e-13

Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinases, Janus kinases; The Jak subfamily is composed of Jak1, Jak2, Jak3, TYK2, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal catalytic tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. In the case of Jak2, the presumed pseudokinase (repeat 1) domain exhibits dual-specificity kinase activity, phosphorylating two negative regulatory sites in Jak2: Ser523 and Tyr570. Most Jaks are expressed in a wide variety of tissues, except for Jak3, which is expressed only in hematopoietic cells. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). Jaks are also involved in regulating the surface expression of some cytokine receptors. The Jak-STAT pathway is involved in many biological processes including hematopoiesis, immunoregulation, host defense, fertility, lactation, growth, and embryogenesis. The Jak subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270633 [Multi-domain]  Cd Length: 259  Bit Score: 63.65  E-value: 1.85e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd05037  47 ESFFETASLMSQISHKHLVKLYGVCVADENIMVQEYVRYGPLDKYLRRM-GNNVPLSWKLQVAKQLASALHYLEDKKLIH 125
                        90
                ....*....|
gi 472744    88 RDLRAANILV 97
Cdd:cd05037 126 GNVRGRNILL 135
STKc_IRAK4 cd14158
Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 4; ...
10-102 2.73e-13

Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain, and a C-terminal domain; IRAK-4 lacks the C-terminal domain. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK4 plays a critical role in NFkB activation by its interaction with MyD88, which acts as a scaffold that enables IRAK4 to phosphorylate and activate IRAK1 and/or IRAK2. It also plays an important role in type I IFN production induced by TLR7/8/9. The IRAK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271060 [Multi-domain]  Cd Length: 288  Bit Score: 63.29  E-value: 2.73e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSEEPIY-IVTEFMDQGSLLEFLKGQYSTM-LRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd14158  61 FEQEIQVMAKCQHENLVELLGYSCDGPQLcLVYTYMPNGSLLDRLACLNDTPpLSWHMRCKIAQGTANGINYLHENNHIH 140
                        90
                ....*....|....*
gi 472744    88 RDLRAANILVGDNLV 102
Cdd:cd14158 141 RDIKSANILLDETFV 155
STKc_Raf cd14062
Catalytic domain of the Serine/Threonine Kinases, Raf (Rapidly Accelerated Fibrosarcoma) ...
9-101 3.17e-13

Catalytic domain of the Serine/Threonine Kinases, Raf (Rapidly Accelerated Fibrosarcoma) kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Raf kinases act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. Aberrant expression or activation of components in this pathway are associated with tumor initiation, progression, and metastasis. Raf proteins contain a Ras binding domain, a zinc finger cysteine-rich domain, and a catalytic kinase domain. Vertebrates have three Raf isoforms (A-, B-, and C-Raf) with different expression profiles, modes of regulation, and abilities to function in the ERK cascade, depending on cellular context and stimuli. They have essential and non-overlapping roles during embryo- and organogenesis. Knockout of each isoform results in a lethal phenotype or abnormality in most mouse strains. The Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270964 [Multi-domain]  Cd Length: 253  Bit Score: 62.80  E-value: 3.17e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     9 AFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd14062  35 AFKNEVAVLRKTRHVNILLFMGYMTKPQLAIVTQWCEGSSLYKHLHVL-ETKFEMLQLIDIARQTAQGMDYLHAKNIIHR 113
                        90
                ....*....|...
gi 472744    89 DLRAANILVGDNL 101
Cdd:cd14062 114 DLKSNNIFLHEDL 126
STKc_TSSK-like cd14080
Catalytic domain of testis-specific serine/threonine kinases and similar proteins; STKs ...
6-100 4.22e-13

Catalytic domain of testis-specific serine/threonine kinases and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK1 and TSSK2 are expressed specifically in meiotic and postmeiotic spermatogenic cells, respectively. TSSK3 has been reported to be expressed in the interstitial Leydig cells of adult testis. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. TSSK6, also called SSTK, is expressed at the head of elongated sperm. TSSK1/TSSK2 double knock-out and TSSK6 null mice are sterile without manifesting other defects, making these kinases viable targets for male contraception. The TSSK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270982 [Multi-domain]  Cd Length: 262  Bit Score: 62.59  E-value: 4.22e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQ-----EAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAY 79
Cdd:cd14080  40 APKDFLEkflprELEILRKLRHPNIIQVYSIFERGSkVFIFMEYAEHGDLLEYI--QKRGALSESQARIWFRQLALAVQY 117
                        90       100
                ....*....|....*....|.
gi 472744    80 VERMNYVHRDLRAANILVGDN 100
Cdd:cd14080 118 LHSLDIAHRDLKCENILLDSN 138
PTKc_Axl cd05075
Catalytic domain of the Protein Tyrosine Kinase, Axl; PTKs catalyze the transfer of the ...
8-103 5.33e-13

Catalytic domain of the Protein Tyrosine Kinase, Axl; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Axl is widely expressed in a variety of organs and cells including epithelial, mesenchymal, hematopoietic, as well as non-transformed cells. It is important in many cellular functions such as survival, anti-apoptosis, proliferation, migration, and adhesion. Axl was originally isolated from patients with chronic myelogenous leukemia and a chronic myeloproliferative disorder. It is overexpressed in many human cancers including colon, squamous cell, thyroid, breast, and lung carcinomas. Axl is a member of the TAM subfamily, composed of receptor PTKs (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to its ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. The Axl subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270660 [Multi-domain]  Cd Length: 277  Bit Score: 62.72  E-value: 5.33e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVV---SEEPIY----IVTEFMDQGSLLEFLkgQYSTM----LRLPQ--LVDFASQIA 74
Cdd:cd05075  46 EDFLSEAVCMKEFDHPNVMRLIGVClqnTESEGYpspvVILPFMKHGDLHSFL--LYSRLgdcpVYLPTqmLVKFMTDIA 123
                        90       100       110
                ....*....|....*....|....*....|
gi 472744    75 SGMAYVERMNYVHRDLRAANILVGDNL-VC 103
Cdd:cd05075 124 SGMEYLSSKNFIHRDLAARNCMLNENMnVC 153
PTKc_HER4 cd05110
Catalytic domain of the Protein Tyrosine Kinase, HER4; PTKs catalyze the transfer of the ...
4-97 5.61e-13

Catalytic domain of the Protein Tyrosine Kinase, HER4; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. HER4 (ErbB4) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Ligands that bind HER4 fall into two groups, the neuregulins (or heregulins) and some EGFR (HER1) ligands including betacellulin, HBEGF, and epiregulin. All four neuregulins (NRG1-4) interact with HER4. Upon ligand binding, HER4 forms homo- or heterodimers with other HER proteins. HER4 is essential in embryonic development. It is implicated in mammary gland, cardiac, and neural development. As a postsynaptic receptor of NRG1, HER4 plays an important role in synaptic plasticity and maturation. The impairment of NRG1/HER4 signaling may contribute to schizophrenia. The HER4 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173655 [Multi-domain]  Cd Length: 303  Bit Score: 62.78  E-value: 5.61e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPEA---FLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd05110  47 TTGPKAnveFMDEALIMASMDHPHLVRLLGVCLSPTIQLVTQLMPHGCLLDYVH-EHKDNIGSQLLLNWCVQIAKGMMYL 125
                        90
                ....*....|....*..
gi 472744    81 ERMNYVHRDLRAANILV 97
Cdd:cd05110 126 EERRLVHRDLAARNVLV 142
STKc_MAK_like cd07830
Catalytic domain of Male germ cell-Associated Kinase-like Serine/Threonine Kinases; STKs ...
11-97 5.65e-13

Catalytic domain of Male germ cell-Associated Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of human MAK and MAK-related kinase (MRK), Saccharomyces cerevisiae Ime2p, Schizosaccharomyces pombe Mei4-dependent protein 3 (Mde3) and Pit1, Caenorhabditis elegans dyf-5, Arabidopsis thaliana MHK, and similar proteins. These proteins play important roles during meiosis. MAK is highly expressed in testicular cells specifically in the meiotic phase, but is not essential for spermatogenesis and fertility. It functions as a coactivator of the androgen receptor in prostate cells. MRK, also called Intestinal Cell Kinase (ICK), is expressed ubiquitously, with highest expression in the ovary and uterus. A missense mutation in MRK causes endocrine-cerebro-osteodysplasia, suggesting that this protein plays an important role in the development of many organs. MAK and MRK may be involved in regulating cell cycle and cell fate. Ime2p is a meiosis-specific kinase that is important during meiotic initiation and during the later stages of meiosis. Mde3 functions downstream of the transcription factor Mei-4 which is essential for meiotic prophase I. The MAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270824 [Multi-domain]  Cd Length: 283  Bit Score: 62.55  E-value: 5.65e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKL-RHEKLVQLYAVVSE-EPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd07830  45 LREVKSLRKLnEHPNIVKLKEVFREnDELYFVFEYMEG-NLYQLMKDRKGKPFSESVIRSIIYQILQGLAHIHKHGFFHR 123

                ....*....
gi 472744    89 DLRAANILV 97
Cdd:cd07830 124 DLKPENLLV 132
PTKc_Musk cd05050
Catalytic domain of the Protein Tyrosine Kinase, Muscle-specific kinase; PTKs catalyze the ...
10-102 6.53e-13

Catalytic domain of the Protein Tyrosine Kinase, Muscle-specific kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Musk is a receptor PTK (RTK) containing an extracellular region with four immunoglobulin-like domains and a cysteine-rich cluster, a transmembrane segment, and an intracellular catalytic domain. Musk is expressed and concentrated in the postsynaptic membrane in skeletal muscle. It is essential for the establishment of the neuromuscular junction (NMJ), a peripheral synapse that conveys signals from motor neurons to muscle cells. Agrin, a large proteoglycan released from motor neurons, stimulates Musk autophosphorylation and activation, leading to the clustering of acetylcholine receptors (AChRs). To date, there is no evidence to suggest that agrin binds directly to Musk. Mutations in AChR, Musk and other partners are responsible for diseases of the NMJ, such as the autoimmune syndrome myasthenia gravis. The Musk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133181 [Multi-domain]  Cd Length: 288  Bit Score: 62.54  E-value: 6.53e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLK--------------------GQYSTMLRLPQLVD 68
Cdd:cd05050  55 FQREAALMAEFDHPNIVKLLGVCAVgKPMCLLFEYMAYGDLNEFLRhrspraqcslshstssarkcGLNPLPLSCTEQLC 134
                        90       100       110
                ....*....|....*....|....*....|....
gi 472744    69 FASQIASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05050 135 IAKQVAAGMAYLSERKFVHRDLATRNCLVGENMV 168
STKc_SIK cd14071
Catalytic domain of the Serine/Threonine Kinases, Salt-Inducible kinases; STKs catalyze the ...
12-101 7.12e-13

Catalytic domain of the Serine/Threonine Kinases, Salt-Inducible kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SIKs are part of a complex network that regulates Na,K-ATPase to maintain sodium homeostasis and blood pressure. Vertebrates contain three forms of SIKs (SIK1-3) from three distinct genes, which display tissue-specific effects. SIK1, also called SNF1LK, controls steroidogenic enzyme production in adrenocortical cells. In the brain, both SIK1 and SIK2 regulate energy metabolism. SIK2, also called QIK or SNF1LK2, is involved in the regulation of gluconeogenesis in the liver and lipogenesis in adipose tissues, where it phosphorylates the insulin receptor substrate-1. In the liver, SIK3 (also called QSK) regulates cholesterol and bile acid metabolism. In addition, SIK2 plays an important role in the initiation of mitosis and regulates the localization of C-Nap1, a centrosome linker protein. The SIK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270973 [Multi-domain]  Cd Length: 253  Bit Score: 62.02  E-value: 7.12e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFaSQIASGMAYVERMNYVHRDL 90
Cdd:cd14071  48 REVQIMKMLNHPHIIKLYQVMeTKDMLYLVTEYASNGEIFDYLA-QHGRMSEKEARKKF-WQILSAVEYCHKRHIVHRDL 125
                        90
                ....*....|.
gi 472744    91 RAANILVGDNL 101
Cdd:cd14071 126 KAENLLLDANM 136
PTK_Ryk cd05043
Pseudokinase domain of Ryk (Receptor related to tyrosine kinase); Ryk is a receptor tyr kinase ...
10-101 1.11e-12

Pseudokinase domain of Ryk (Receptor related to tyrosine kinase); Ryk is a receptor tyr kinase (RTK) containing an extracellular region with two leucine-rich motifs, a transmembrane segment, and an intracellular inactive pseudokinase domain, which shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. The extracellular region of Ryk shows homology to the N-terminal domain of Wnt inhibitory factor-1 (WIF) and serves as the ligand (Wnt) binding domain of Ryk. Ryk is expressed in many different tissues both during development and in adults, suggesting a widespread function. It acts as a chemorepulsive axon guidance receptor of Wnt glycoproteins and is responsible for the establishment of axon tracts during the development of the central nervous system. In addition, studies in mice reveal that Ryk is essential in skeletal, craniofacial, and cardiac development. Thus, it appears Ryk is involved in signal transduction despite its lack of kinase activity. Ryk may function as an accessory protein that modulates the signals coming from catalytically active partner RTKs such as the Eph receptors. The Ryk subfamily is part of a larger superfamily that includes other pseudokinases and the catalytic domains of active kinases including PTKs, protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270639 [Multi-domain]  Cd Length: 279  Bit Score: 61.70  E-value: 1.11e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSE--EPIYIVTEFMDQGSLLEFLK------GQYSTMLRLPQLVDFASQIASGMAYVE 81
Cdd:cd05043  54 LLQESSLLYGLSHQNLLPILHVCIEdgEKPMVLYPYMNWGNLKLFLQqcrlseANNPQALSTQQLVHMALQIACGMSYLH 133
                        90       100
                ....*....|....*....|
gi 472744    82 RMNYVHRDLRAANILVGDNL 101
Cdd:cd05043 134 RRGVIHKDIAARNCVIDDEL 153
PTKc_ALK_LTK cd05036
Catalytic domain of the Protein Tyrosine Kinases, Anaplastic Lymphoma Kinase and Leukocyte ...
10-96 1.32e-12

Catalytic domain of the Protein Tyrosine Kinases, Anaplastic Lymphoma Kinase and Leukocyte Tyrosine Kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyr residues in protein substrates. ALK and LTK are orphan receptor PTKs (RTKs) whose ligands are not yet well-defined. ALK appears to play an important role in mammalian neural development as well as visceral muscle differentiation in Drosophila. ALK is aberrantly expressed as fusion proteins, due to chromosomal translocations, in about 60% of anaplastic large cell lymphomas (ALCLs). ALK fusion proteins are also found in rare cases of diffuse large B cell lymphomas (DLBCLs). LTK is mainly expressed in B lymphocytes and neuronal tissues. It is important in cell proliferation and survival. Transgenic mice expressing TLK display retarded growth and high mortality rate. In addition, a polymorphism in mouse and human LTK is implicated in the pathogenesis of systemic lupus erythematosus. RTKs contain an extracellular ligand-binding domain, a transmembrane region, and an intracellular tyr kinase domain. They are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The ALK/LTK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270632 [Multi-domain]  Cd Length: 277  Bit Score: 61.64  E-value: 1.32e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFL-----KGQYSTMLRLPQLVDFASQIASGMAYVERM 83
Cdd:cd05036  56 FLMEALIMSKFNHPNIVRCIGVcFQRLPRFILLELMAGGDLKSFLrenrpRPEQPSSLTMLDLLQLAQDVAKGCRYLEEN 135
                        90
                ....*....|...
gi 472744    84 NYVHRDLRAANIL 96
Cdd:cd05036 136 HFIHRDIAARNCL 148
PK_KSR cd14063
Pseudokinase domain of Kinase Suppressor of Ras; The pseudokinase domain shows similarity to ...
8-102 1.44e-12

Pseudokinase domain of Kinase Suppressor of Ras; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. KSR is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. KSR proteins regulate the assembly and activation of the Raf/MEK/ERK module upon Ras activation at the membrane by direct association of its components. They are widely regarded as pseudokinases, but there is some debate in this designation as a few groups have reported detecting kinase catalytic activity for KSRs, specifically KSR1. Vertebrates contain two KSR proteins, KSR1 and KSR2. The KSR subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270965 [Multi-domain]  Cd Length: 271  Bit Score: 61.21  E-value: 1.44e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIY-IVTEFMDQGSLLEFLKGQYSTmLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd14063  41 EAFKEEVAAYKNTRHDNLVLFMGACMDPPHLaIVTSLCKGRTLYSLIHERKEK-FDFNKTVQIAQQICQGMGYLHAKGII 119
                        90
                ....*....|....*.
gi 472744    87 HRDLRAANILVGDNLV 102
Cdd:cd14063 120 HKDLKSKNIFLENGRV 135
PTKc_Tie cd05047
Catalytic domain of Tie Protein Tyrosine Kinases; PTKs catalyze the transfer of the ...
10-102 1.44e-12

Catalytic domain of Tie Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tie proteins, consisting of Tie1 and Tie2, are receptor PTKs (RTKs) containing an extracellular region, a transmembrane segment, and an intracellular catalytic domain. The extracellular region contains an immunoglobulin (Ig)-like domain, three epidermal growth factor (EGF)-like domains, a second Ig-like domain, and three fibronectin type III repeats. Tie receptors are specifically expressed in endothelial cells and hematopoietic stem cells. The angiopoietins (Ang-1 to Ang-4) serve as ligands for Tie2, while no specific ligand has been identified for Tie1. The binding of Ang-1 to Tie2 leads to receptor autophosphorylation and activation, promoting cell migration and survival. In contrast, Ang-2 binding to Tie2 does not result in the same response, suggesting that Ang-2 may function as an antagonist. In vivo studies of Tie1 show that it is critical in vascular development. The Tie subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270641 [Multi-domain]  Cd Length: 270  Bit Score: 61.21  E-value: 1.44e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKL-RHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLK---------------GQYSTmLRLPQLVDFASQ 72
Cdd:cd05047  42 FAGELEVLCKLgHHPNIINLLGACEHRGyLYLAIEYAPHGNLLDFLRksrvletdpafaianSTAST-LSSQQLLHFAAD 120
                        90       100       110
                ....*....|....*....|....*....|
gi 472744    73 IASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05047 121 VARGMDYLSQKQFIHRDLAARNILVGENYV 150
STKc_MLCK-like cd14006
Catalytic kinase domain of Myosin Light Chain Kinase-like Serine/Threonine Kinases; STKs ...
8-99 1.59e-12

Catalytic kinase domain of Myosin Light Chain Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This family is composed of MLCKs and related MLCK-like kinase domains from giant STKs such as titin, obscurin, SPEG, Unc-89, Trio, kalirin, and Twitchin. Also included in this family are Death-Associated Protein Kinases (DAPKs) and Death-associated protein kinase-Related Apoptosis-inducing protein Kinase (DRAKs). MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. Titin, obscurin, Twitchin, and SPEG are muscle proteins involved in the contractile apparatus. The giant STKs are multidomain proteins containing immunoglobulin (Ig), fibronectin type III (FN3), SH3, RhoGEF, PH and kinase domains. Titin, obscurin, Twitchin, and SPEG contain many Ig domain repeats at the N-terminus, while Trio and Kalirin contain spectrin-like repeats. The MLCK-like family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270908 [Multi-domain]  Cd Length: 247  Bit Score: 61.13  E-value: 1.59e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYI-VTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd14006  34 EAVLREISILNQLQHPRIIQLHEAYESPTELVlILELCSGGELLDRLAERGS--LSEEEVRTYMRQLLEGLQYLHNHHIL 111
                        90
                ....*....|...
gi 472744    87 HRDLRAANILVGD 99
Cdd:cd14006 112 HLDLKPENILLAD 124
STKc_PAK cd06614
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase; STKs catalyze the ...
6-100 1.70e-12

Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs are implicated in the regulation of many cellular processes including growth factor receptor-mediated proliferation, cell polarity, cell motility, cell death and survival, and actin cytoskeleton organization. PAK deregulation is associated with tumor development. PAKs from higher eukaryotes are classified into two groups (I and II), according to their biochemical and structural features. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). Group II PAKs contain a PBD and a catalytic domain, but lack other motifs found in group I PAKs. Since group II PAKs do not contain an obvious AID, they may be regulated differently from group I PAKs. Group I PAKs interact with the SH3 containing proteins Nck, Grb2 and PIX; no such binding has been demonstrated for group II PAKs. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270789 [Multi-domain]  Cd Length: 255  Bit Score: 61.07  E-value: 1.70e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMN 84
Cdd:cd06614  39 NKELIINEILIMKECKHPNIVDYYdSYLVGDELWVVMEYMDGGSLTDIIT-QNPVRMNESQIAYVCREVLQGLEYLHSQN 117
                        90
                ....*....|....*.
gi 472744    85 YVHRDLRAANILVGDN 100
Cdd:cd06614 118 VIHRDIKSDNILLSKD 133
STKc_FA2-like cd08529
Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii FA2 and similar ...
8-101 2.24e-12

Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii FA2 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii FA2 was discovered in a genetic screen for deflagellation-defective mutants. It is essential for basal-body/centriole-associated microtubule severing, and plays a role in cell cycle progression. No cellular function has yet been ascribed to CNK4. The Chlamydomonas reinhardtii FA2-like subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily contains FA2 and CNK4. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270868 [Multi-domain]  Cd Length: 256  Bit Score: 60.50  E-value: 2.24e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd08529  44 EEAIDEARVLSKLNSPYVIKYYdSFVDKGKLNIVMEYAENGDLHSLIKSQRGRPLPEDQIWKFFIQTLLGLSHLHSKKIL 123
                        90
                ....*....|....*..
gi 472744    87 HRDLRAANILV--GDNL 101
Cdd:cd08529 124 HRDIKSMNIFLdkGDNV 140
STKc_MEKK4 cd06626
Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP) ...
13-100 2.86e-12

Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK4 is a MAPK kinase kinase that phosphorylates and activates the c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways by directly activating their respective MAPKKs, MKK4/MKK7 and MKK3/MKK6. JNK and p38 are collectively known as stress-activated MAPKs, as they are activated in response to a variety of environmental stresses and pro-inflammatory cytokines. MEKK4 also plays roles in the re-polarization of the actin cytoskeleton in response to osmotic stress, in the proper closure of the neural tube, in cardiovascular development, and in immune responses. The MEKK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270796 [Multi-domain]  Cd Length: 265  Bit Score: 60.39  E-value: 2.86e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKgqYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLR 91
Cdd:cd06626  49 EMKVLEGLDHPNLVRYYGVeVHREEVYIFMEYCQEGTLEELLR--HGRILDEAVIRVYTLQLLEGLAYLHENGIVHRDIK 126

                ....*....
gi 472744    92 AANILVGDN 100
Cdd:cd06626 127 PANIFLDSN 135
STKc_MLK cd14061
Catalytic domain of the Serine/Threonine Kinases, Mixed Lineage Kinases; STKs catalyze the ...
8-97 3.26e-12

Catalytic domain of the Serine/Threonine Kinases, Mixed Lineage Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLKs act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Mammals have four MLKs (MLK1-4), mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270963 [Multi-domain]  Cd Length: 258  Bit Score: 60.10  E-value: 3.26e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQystmlRLPQ--LVDFASQIASGMAYVER-- 82
Cdd:cd14061  38 ENVRQEARLFWMLRHPNIIALRGVCLQPPnLCLVMEYARGGALNRVLAGR-----KIPPhvLVDWAIQIARGMNYLHNea 112
                        90
                ....*....|....*.
gi 472744    83 -MNYVHRDLRAANILV 97
Cdd:cd14061 113 pVPIIHRDLKSSNILI 128
STKc_RIP1 cd14027
Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 1; STKs catalyze ...
8-100 3.27e-12

Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP1 harbors a C-terminal Death domain (DD), which binds death receptors (DRs) including TNF receptor 1, Fas, TNF-related apoptosis-inducing ligand receptor 1 (TRAILR1), and TRAILR2. It also interacts with other DD-containing adaptor proteins such as TRADD and FADD. RIP1 can also recruit other kinases including MEKK1, MEKK3, and RIP3 through an intermediate domain (ID) that bears a RIP homotypic interaction motif (RHIM). RIP1 plays a crucial role in determining a cell's fate, between survival or death, following exposure to stress signals. It is important in the signaling of NF-kappaB and MAPKs, and it links DR-associated signaling to reactive oxygen species (ROS) production. Abnormal RIP1 function may result in ROS accummulation affecting inflammatory responses, innate immunity, stress responses, and cell survival. RIP kinases serve as essential sensors of cellular stress. The RIP1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270929 [Multi-domain]  Cd Length: 267  Bit Score: 60.21  E-value: 3.27e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIY-IVTEFMDQGSLLEFLKGqystmLRLPQLVD--FASQIASGMAYVERMN 84
Cdd:cd14027  36 EALLEEGKMMNRLRHSRVVKLLGVILEEGKYsLVMEYMEKGNLMHVLKK-----VSVPLSVKgrIILEIIEGMAYLHGKG 110
                        90
                ....*....|....*.
gi 472744    85 YVHRDLRAANILVGDN 100
Cdd:cd14027 111 VIHKDLKPENILVDND 126
PTKc_Ror2 cd05091
Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor ...
8-101 3.30e-12

Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Ror2 plays important roles in skeletal and heart formation. Ror2-deficient mice show widespread bone abnormalities, ventricular defects in the heart, and respiratory dysfunction. Mutations in human Ror2 result in two different bone development genetic disorders, recessive Robinow syndrome and brachydactyly type B. Ror2 is also implicated in neural development. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The Ror2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270673 [Multi-domain]  Cd Length: 284  Bit Score: 60.42  E-value: 3.30e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFL--KGQYS------------TMLRLPQLVDFASQ 72
Cdd:cd05091  54 EEFRHEAMLRSRLQHPNIVCLLGVVTkEQPMSMIFSYCSHGDLHEFLvmRSPHSdvgstdddktvkSTLEPADFLHIVTQ 133
                        90       100
                ....*....|....*....|....*....
gi 472744    73 IASGMAYVERMNYVHRDLRAANILVGDNL 101
Cdd:cd05091 134 IAAGMEYLSSHHVVHKDLATRNVLVFDKL 162
PTKc_Zap-70 cd05115
Catalytic domain of the Protein Tyrosine Kinase, Zeta-chain-associated protein of 70kDa; PTKs ...
8-97 3.79e-12

Catalytic domain of the Protein Tyrosine Kinase, Zeta-chain-associated protein of 70kDa; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Zap-70 is a cytoplasmic (or nonreceptor) PTK containing two Src homology 2 (SH2) domains N-terminal to the catalytic tyr kinase domain. Zap-70 is primarily expressed in T-cells and NK cells, and is a crucial component in T-cell receptor (TCR) signaling. Zap-70 binds the phosphorylated ITAM (immunoreceptor tyr activation motif) sequences of the activated TCR zeta-chain through its SH2 domains, leading to its phosphorylation and activation. It then phosphorylates target proteins, which propagate the signals to downstream pathways. Zap-70 is hardly detected in normal peripheral B-cells, but is present in some B-cell malignancies. It is used as a diagnostic marker for chronic lymphocytic leukemia (CLL) as it is associated with the more aggressive subtype of the disease. The Zap-70 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270686 [Multi-domain]  Cd Length: 269  Bit Score: 60.34  E-value: 3.79e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTmLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd05115  49 DEMMREAQIMHQLDNPYIVRMIGVCEAEALMLVMEMASGGPLNKFLSGKKDE-ITVSNVVELMHQVSMGMKYLEEKNFVH 127
                        90
                ....*....|
gi 472744    88 RDLRAANILV 97
Cdd:cd05115 128 RDLAARNVLL 137
PKc_MAPKK_plant_like cd06623
Catalytic domain of Plant dual-specificity Mitogen-Activated Protein Kinase Kinases and ...
11-97 3.80e-12

Catalytic domain of Plant dual-specificity Mitogen-Activated Protein Kinase Kinases and similar proteins; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include MAPKKs from plants, kinetoplastids, alveolates, and mycetozoa. The MAPKK, LmxPK4, from Leishmania mexicana, is important in differentiation and virulence. Dictyostelium discoideum MEK1 is required for proper chemotaxis; MEK1 null mutants display severe defects in cell polarization and directional movement. Plants contain multiple MAPKKs like other eukaryotes. The Arabidopsis genome encodes for 10 MAPKKs while poplar and rice contain 13 MAPKKs each. The functions of these proteins have not been fully elucidated. There is evidence to suggest that MAPK cascades are involved in plant stress responses. In Arabidopsis, MKK3 plays a role in pathogen signaling; MKK2 is involved in cold and salt stress signaling; MKK4/MKK5 participates in innate immunity; and MKK7 regulates basal and systemic acquired resistance. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132954 [Multi-domain]  Cd Length: 264  Bit Score: 59.91  E-value: 3.80e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKgqYSTMLRLPQLVDFASQIASGMAYVERM-NYVHR 88
Cdd:cd06623  47 LRELKTLRSCESPYVVKCYgAFYKEGEISIVLEYMDGGSLADLLK--KVGKIPEPVLAYIARQILKGLDYLHTKrHIIHR 124

                ....*....
gi 472744    89 DLRAANILV 97
Cdd:cd06623 125 DIKPSNLLI 133
PTKc_IGF-1R cd05062
Catalytic domain of the Protein Tyrosine Kinase, Insulin-like Growth Factor-1 Receptor; PTKs ...
10-101 4.07e-12

Catalytic domain of the Protein Tyrosine Kinase, Insulin-like Growth Factor-1 Receptor; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. IGF-1R is a receptor PTK (RTK) that is composed of two alphabeta heterodimers. Binding of the ligand (IGF-1 or IGF-2) to the extracellular alpha subunit activates the intracellular tyr kinase domain of the transmembrane beta subunit. Receptor activation leads to autophosphorylation, which stimulates downstream kinase activities and biological function. IGF-1R signaling is important in the differentiation, growth, and survival of normal cells. In cancer cells, where it is frequently overexpressed, IGF-1R is implicated in proliferation, the suppression of apoptosis, invasion, and metastasis. IGF-1R is being developed as a therapeutic target in cancer treatment. The IGF-1R subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133193 [Multi-domain]  Cd Length: 277  Bit Score: 60.05  E-value: 4.07e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKG-----QYSTMLRLPQL---VDFASQIASGMAYV 80
Cdd:cd05062  56 FLNEASVMKEFNCHHVVRLLGVVSQgQPTLVIMELMTRGDLKSYLRSlrpemENNPVQAPPSLkkmIQMAGEIADGMAYL 135
                        90       100
                ....*....|....*....|.
gi 472744    81 ERMNYVHRDLRAANILVGDNL 101
Cdd:cd05062 136 NANKFVHRDLAARNCMVAEDF 156
PTKc_Tie1 cd05089
Catalytic domain of the Protein Tyrosine Kinase, Tie1; Protein Tyrosine Kinase (PTK) family; ...
10-102 4.87e-12

Catalytic domain of the Protein Tyrosine Kinase, Tie1; Protein Tyrosine Kinase (PTK) family; Tie1; catalytic (c) domain. The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tie1 is a receptor tyr kinase (RTK) containing an extracellular region, a transmembrane segment, and an intracellular catalytic domain. The extracellular region contains an immunoglobulin (Ig)-like domain, three epidermal growth factor (EGF)-like domains, a second Ig-like domain, and three fibronectin type III repeats. Tie receptors are specifically expressed in endothelial cells and hematopoietic stem cells. No specific ligand has been identified for Tie1, although the angiopoietin, Ang-1, binds to Tie1 through integrins at high concentrations. In vivo studies of Tie1 show that it is critical in vascular development.


Pssm-ID: 270671 [Multi-domain]  Cd Length: 297  Bit Score: 60.01  E-value: 4.87e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKL-RHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLK---------------GQYSTmLRLPQLVDFASQ 72
Cdd:cd05089  49 FAGELEVLCKLgHHPNIINLLGACENRGyLYIAIEYAPYGNLLDFLRksrvletdpafakehGTAST-LTSQQLLQFASD 127
                        90       100       110
                ....*....|....*....|....*....|
gi 472744    73 IASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05089 128 VAKGMQYLSEKQFIHRDLAARNVLVGENLV 157
STKc_NUAK cd14073
Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK; STKs catalyze ...
12-101 5.38e-12

Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NUAK proteins are classified as AMP-activated protein kinase (AMPK)-related kinases, which like AMPK are activated by the major tumor suppressor LKB1. Vertebrates contain two NUAK proteins, called NUAK1 and NUAK2. NUAK1, also called ARK5 (AMPK-related protein kinase 5), regulates cell proliferation and displays tumor suppression through direct interaction and phosphorylation of p53. It is also involved in cell senescence and motility. High NUAK1 expression is associated with invasiveness of nonsmall cell lung cancer (NSCLC) and breast cancer cells. NUAK2, also called SNARK (Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase), is involved in energy metabolism. It is activated by hyperosmotic stress, DNA damage, and nutrients such as glucose and glutamine. NUAK2-knockout mice develop obesity, altered serum lipid profiles, hyperinsulinaemia, hyperglycaemia, and impaired glucose tolerance. The NUAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270975 [Multi-domain]  Cd Length: 254  Bit Score: 59.71  E-value: 5.38e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLkgqySTMLRLP--QLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd14073  50 REIEIMSSLNHPHIIRIYEVFeNKDKIVIVMEYASGGELYDYI----SERRRLPerEARRIFRQIVSAVHYCHKNGVVHR 125
                        90
                ....*....|...
gi 472744    89 DLRAANILVGDNL 101
Cdd:cd14073 126 DLKLENILLDQNG 138
STKc_A-Raf cd14150
Catalytic domain of the Serine/Threonine Kinase, A-Raf (Rapidly Accelerated Fibrosarcoma) ...
1-101 5.89e-12

Catalytic domain of the Serine/Threonine Kinase, A-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. A-Raf cooperates with C-Raf in regulating ERK transient phosphorylation that is associated with cyclin D expression and cell cycle progression. Mice deficient in A-Raf are born alive but show neurological and intestinal defects. A-Raf demonstrates low kinase activity to MEK, compared with B- and C-Raf, and may also have alternative functions other than in the ERK signaling cascade. It regulates the M2 type pyruvate kinase, a key glycolytic enzyme. It also plays a role in endocytic membrane trafficking. A-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. It functions in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The A-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271052 [Multi-domain]  Cd Length: 265  Bit Score: 59.65  E-value: 5.89e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd14150  34 EPTPEQLQAFKNEMQVLRKTRHVNILLFMGFMTRPNFAIITQWCEGSSLYRHLH-VTETRFDTMQLIDVARQTAQGMDYL 112
                        90       100
                ....*....|....*....|.
gi 472744    81 ERMNYVHRDLRAANILVGDNL 101
Cdd:cd14150 113 HAKNIIHRDLKSNNIFLHEGL 133
STKc_MLK4 cd14146
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 4; STKs catalyze the ...
4-97 5.99e-12

Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK4 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The specific function of MLK4 is yet to be determined. Mutations in the kinase domain of MLK4 have been detected in colorectal cancers. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation.The MLK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271048 [Multi-domain]  Cd Length: 268  Bit Score: 59.67  E-value: 5.99e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQYSTML-----RLPQ--LVDFASQIAS 75
Cdd:cd14146  34 KATAESVRQEAKLFSMLRHPNIIKLEGVCLEEPnLCLVMEFARGGTLNRALAAANAAPGprrarRIPPhiLVNWAVQIAR 113
                        90       100
                ....*....|....*....|....*
gi 472744    76 GMAYVERMNYV---HRDLRAANILV 97
Cdd:cd14146 114 GMLYLHEEAVVpilHRDLKSSNILL 138
PTKc_Jak2_rpt2 cd14205
Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 2; PTKs catalyze the ...
10-97 6.10e-12

Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jak2 is widely expressed in many tissues and is essential for the signaling of hormone-like cytokines such as growth hormone, erythropoietin, thrombopoietin, and prolactin, as well as some IFNs and cytokines that signal through the IL-3 and gp130 receptors. Disruption of Jak2 in mice results in an embryonic lethal phenotype with multiple defects including erythropoietic and cardiac abnormalities. It is the only Jak gene that results in a lethal phenotype when disrupted in mice. A mutation in the pseudokinase domain of Jak2, V617F, is present in many myeloproliferative diseases, including almost all patients with polycythemia vera, and 50% of patients with essential thrombocytosis and myelofibrosis. Jak2 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal catalytic tyr kinase domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271107 [Multi-domain]  Cd Length: 284  Bit Score: 59.64  E-value: 6.10e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAV---VSEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd14205  52 FEREIEILKSLQHDNIVKYKGVcysAGRRNLRLIMEYLPYGSLRDYLQ-KHKERIDHIKLLQYTSQICKGMEYLGTKRYI 130
                        90
                ....*....|.
gi 472744    87 HRDLRAANILV 97
Cdd:cd14205 131 HRDLATRNILV 141
PknB_PASTA_kin NF033483
Stk1 family PASTA domain-containing Ser/Thr kinase;
10-100 6.40e-12

Stk1 family PASTA domain-containing Ser/Thr kinase;


Pssm-ID: 468045 [Multi-domain]  Cd Length: 563  Bit Score: 59.81  E-value: 6.40e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     10 FLQEAQVMKKLRHEKLVQLYAVVSEEPI-YIVTEFMDQGSLLEFLKGQYstmlRLP--QLVDFASQIASGMAYVERMNYV 86
Cdd:NF033483  54 FRREAQSAASLSHPNIVSVYDVGEDGGIpYIVMEYVDGRTLKDYIREHG----PLSpeEAVEIMIQILSALEHAHRNGIV 129
                         90
                 ....*....|....
gi 472744     87 HRDLRAANILVGDN 100
Cdd:NF033483 130 HRDIKPQNILITKD 143
STKc_OSR1_SPAK cd06610
Catalytic domain of the Serine/Threonine Kinases, Oxidative stress response kinase and ...
11-100 6.89e-12

Catalytic domain of the Serine/Threonine Kinases, Oxidative stress response kinase and Ste20-related proline alanine-rich kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SPAK is also referred to as STK39 or PASK (proline-alanine-rich STE20-related kinase). OSR1 and SPAK regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. They are also implicated in cytoskeletal rearrangement, cell differentiation, transformation and proliferation. OSR1 and SPAK contain a conserved C-terminal (CCT) domain, which recognizes a unique motif ([RK]FX[VI]) present in their activating kinases (WNK1/WNK4) and their substrates. The OSR1 and SPAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270787 [Multi-domain]  Cd Length: 267  Bit Score: 59.29  E-value: 6.89e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGQYST-MLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd06610  47 RKEIQAMSQCNHPNVVSYYtSFVVGDELWLVMPLLSGGSLLDIMKSSYPRgGLDEAIIATVLKEVLKGLEYLHSNGQIHR 126
                        90
                ....*....|..
gi 472744    89 DLRAANILVGDN 100
Cdd:cd06610 127 DVKAGNILLGED 138
PTKc_Tyro3 cd05074
Catalytic domain of the Protein Tyrosine Kinase, Tyro3; PTKs catalyze the transfer of the ...
8-103 1.20e-11

Catalytic domain of the Protein Tyrosine Kinase, Tyro3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tyro3 (or Sky) is predominantly expressed in the central nervous system and the brain, and functions as a neurotrophic factor. It is also expressed in osteoclasts and has a role in bone resorption. Tyro3 is a member of the TAM subfamily, composed of receptor PTKs (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. The Tyro3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270659 [Multi-domain]  Cd Length: 284  Bit Score: 58.78  E-value: 1.20e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEE------PI-YIVTEFMDQGSLLEFLK----GQYSTMLRLPQLVDFASQIASG 76
Cdd:cd05074  56 EEFLREAACMKEFDHPNVIKLIGVSLRSrakgrlPIpMVILPFMKHGDLHTFLLmsriGEEPFTLPLQTLVRFMIDIASG 135
                        90       100
                ....*....|....*....|....*...
gi 472744    77 MAYVERMNYVHRDLRAANILVGDNL-VC 103
Cdd:cd05074 136 MEYLSSKNFIHRDLAARNCMLNENMtVC 163
STKc_EIF2AK cd13996
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ...
3-97 1.30e-11

Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: General Control Non-derepressible-2 (GCN2) which is activated during amino acid or serum starvation; protein kinase regulated by RNA (PKR) which is activated by double stranded RNA; heme-regulated inhibitor kinase (HRI) which is activated under heme-deficient conditions; and PKR-like endoplasmic reticulum kinase (PERK) which is activated when misfolded proteins accumulate in the ER. The EIF2AK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270898 [Multi-domain]  Cd Length: 273  Bit Score: 58.84  E-value: 1.30e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     3 GTMSPEAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFL-KGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd13996  44 KSSASEKVLREVKALAKLNHPNIVRYYtAWVEEPPLYIQMELCEGGTLRDWIdRRNSSSKNDRKLALELFKQILKGVSYI 123
                        90
                ....*....|....*..
gi 472744    81 ERMNYVHRDLRAANILV 97
Cdd:cd13996 124 HSKGIVHRDLKPSNIFL 140
STKc_Rad53_Cds1 cd14098
Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the ...
6-97 1.31e-11

Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Rad53 and Cds1 are the checkpoint kinase 2 (Chk2) homologs found in budding and fission yeast, respectively. They play a central role in the cell's response to DNA lesions to prevent genome rearrangements and maintain genome integrity. They are phosphorylated in response to DNA damage and incomplete replication, and are essential for checkpoint control. They help promote DNA repair by stalling the cell cycle prior to mitosis in the presence of DNA damage. The Rad53/Cds1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271000 [Multi-domain]  Cd Length: 265  Bit Score: 58.64  E-value: 1.31e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQYStmlrLPQLV--DFASQIASGMAYVER 82
Cdd:cd14098  44 NLQLFQREINILKSLEHPGIVRLIDWYEDdQHIYLVMEYVEGGDLMDFIMAWGA----IPEQHarELTKQILEAMAYTHS 119
                        90
                ....*....|....*
gi 472744    83 MNYVHRDLRAANILV 97
Cdd:cd14098 120 MGITHRDLKPENILI 134
STKc_BUR1 cd07866
Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase (CDK), ...
11-100 1.41e-11

Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase (CDK), Bypass UAS Requirement 1, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BUR1, also called SGV1, is a yeast CDK that is functionally equivalent to mammalian CDK9. It associates with the cyclin BUR2. BUR genes were orginally identified in a genetic screen as factors involved in general transcription. The BUR1/BUR2 complex phosphorylates the C-terminal domain of RNA polymerase II. In addition, this complex regulates histone modification by phosporylating Rad6 and mediating the association of the Paf1 complex with chromatin. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The BUR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270849 [Multi-domain]  Cd Length: 311  Bit Score: 58.87  E-value: 1.41e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVVSEEP---------IYIVTEFMDqgSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVE 81
Cdd:cd07866  55 LREIKILKKLKHPNVVPLIDMAVERPdkskrkrgsVYMVTPYMD--HDLSGLLENPSVKLTESQIKCYMLQLLEGINYLH 132
                        90
                ....*....|....*....
gi 472744    82 RMNYVHRDLRAANILVGDN 100
Cdd:cd07866 133 ENHILHRDIKAANILIDNQ 151
PTKc_Syk cd05116
Catalytic domain of the Protein Tyrosine Kinase, Spleen tyrosine kinase; PTKs catalyze the ...
8-97 1.46e-11

Catalytic domain of the Protein Tyrosine Kinase, Spleen tyrosine kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Syk is a cytoplasmic (or nonreceptor) PTK containing two Src homology 2 (SH2) domains N-terminal to the catalytic tyr kinase domain. Syk was first cloned from the spleen, and its function in hematopoietic cells is well-established. It is involved in the signaling downstream of activated receptors (including B-cell and Fc receptors) that contain ITAMs (immunoreceptor tyr activation motifs), leading to processes such as cell proliferation, differentiation, survival, adhesion, migration, and phagocytosis. More recently, Syk expression has been detected in other cell types (including epithelial cells, vascular endothelial cells, neurons, hepatocytes, and melanocytes), suggesting a variety of biological functions in non-immune cells. Syk plays a critical role in maintaining vascular integrity and in wound healing during embryogenesis. It also regulates Vav3, which is important in osteoclast function including bone development. In breast epithelial cells, where Syk acts as a negative regulator for EGFR signaling, loss of Syk expression is associated with abnormal proliferation during cancer development suggesting a potential role as a tumor suppressor. In mice, Syk has been shown to inhibit malignant transformation of mammary epithelial cells induced with murine mammary tumor virus (MMTV). The Syk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133247 [Multi-domain]  Cd Length: 257  Bit Score: 58.44  E-value: 1.46e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFL-KGQYSTMLRLPQLVdfaSQIASGMAYVERMNYV 86
Cdd:cd05116  41 DELLREANVMQQLDNPYIVRMIGICEAESWMLVMEMAELGPLNKFLqKNRHVTEKNITELV---HQVSMGMKYLEESNFV 117
                        90
                ....*....|.
gi 472744    87 HRDLRAANILV 97
Cdd:cd05116 118 HRDLAARNVLL 128
PTKc_EGFR cd05108
Catalytic domain of the Protein Tyrosine Kinase, Epidermal Growth Factor Receptor; PTKs ...
6-97 2.15e-11

Catalytic domain of the Protein Tyrosine Kinase, Epidermal Growth Factor Receptor; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EGFR (HER1, ErbB1) is a receptor PTK (RTK) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Ligands for EGFR include EGF, heparin binding EGF-like growth factor (HBEGF), epiregulin, amphiregulin, TGFalpha, and betacellulin. Upon ligand binding, EGFR can form homo- or heterodimers with other EGFR subfamily members. The EGFR signaling pathway is one of the most important pathways regulating cell proliferation, differentiation, survival, and growth. Overexpression and mutation in the kinase domain of EGFR have been implicated in the development and progression of a variety of cancers. A number of monoclonal antibodies and small molecule inhibitors have been developed that target EGFR, including the antibodies Cetuximab and Panitumumab, which are used in combination with other therapies for the treatment of colorectal cancer and non-small cell lung carcinoma (NSCLC). The small molecule inhibitors Gefitinib (Iressa) and Erlotinib (Tarceva), already used for NSCLC, are undergoing clinical trials for other types of cancer including gastrointestinal, breast, head and neck, and bladder. The EGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270683 [Multi-domain]  Cd Length: 313  Bit Score: 58.50  E-value: 2.15e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEA---FLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVER 82
Cdd:cd05108  49 SPKAnkeILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPFGCLLDYVR-EHKDNIGSQYLLNWCVQIAKGMNYLED 127
                        90
                ....*....|....*
gi 472744    83 MNYVHRDLRAANILV 97
Cdd:cd05108 128 RRLVHRDLAARNVLV 142
STKc_C-Raf cd14149
Catalytic domain of the Serine/Threonine Kinase, C-Raf (Rapidly Accelerated Fibrosarcoma) ...
8-101 2.78e-11

Catalytic domain of the Serine/Threonine Kinase, C-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. C-Raf, also known as Raf-1 or c-Raf-1, is ubiquitously expressed and was the first Raf identified. It was characterized as the acquired oncogene from an acutely transforming murine sarcoma virus (3611-MSV) and the transforming agent from the avian retrovirus MH2. C-Raf-deficient mice embryos die around midgestation with increased apoptosis of embryonic tissues, especially in the fetal liver. One of the main functions of C-Raf is restricting caspase activation to promote survival in response to specific stimuli such as Fas stimulation, macrophage apoptosis, and erythroid differentiation. C-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. It functions in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The C-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271051 [Multi-domain]  Cd Length: 283  Bit Score: 57.73  E-value: 2.78e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd14149  53 QAFRNEVAVLRKTRHVNILLFMGYMTKDNLAIVTQWCEGSSLYKHLHVQ-ETKFQMFQLIDIARQTAQGMDYLHAKNIIH 131
                        90
                ....*....|....
gi 472744    88 RDLRAANILVGDNL 101
Cdd:cd14149 132 RDMKSNNIFLHEGL 145
STKc_CDKL cd07833
Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases; STKs ...
11-102 3.22e-11

Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDKL1-5 and similar proteins. Some CDKLs, like CDKL1 and CDKL3, may be implicated in transformation and others, like CDKL3 and CDKL5, are associated with mental retardation when impaired. CDKL2 plays a role in learning and memory. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270827 [Multi-domain]  Cd Length: 288  Bit Score: 57.71  E-value: 3.22e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQgSLLEFLKGQYSTMLrlPQLVDFAS-QIASGMAYVERMNYVHR 88
Cdd:cd07833  48 LREVKVLRQLRHENIVNLKeAFRRKGRLYLVFEYVER-TLLELLEASPGGLP--PDAVRSYIwQLLQAIAYCHSHNIIHR 124
                        90
                ....*....|....
gi 472744    89 DLRAANILVGDNLV 102
Cdd:cd07833 125 DIKPENILVSESGV 138
STKc_Nek5 cd08225
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ...
8-100 3.28e-11

Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Neks are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. The specific function of Nek5 is unknown. Nek5 is one in a family of 11 different Neks (Nek1-11). The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173765 [Multi-domain]  Cd Length: 257  Bit Score: 57.66  E-value: 3.28e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd08225  44 EASKKEVILLAKMKHPNIVTFFASFQENgRLFIVMEYCDGGDLMKRINRQRGVLFSEDQILSWFVQISLGLKHIHDRKIL 123
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:cd08225 124 HRDIKSQNIFLSKN 137
STKc_CMGC cd05118
Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ...
1-97 3.56e-11

Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The CMGC family consists of Cyclin-Dependent protein Kinases (CDKs), Mitogen-activated protein kinases (MAPKs) such as Extracellular signal-regulated kinase (ERKs), c-Jun N-terminal kinases (JNKs), and p38, and other kinases. CDKs belong to a large subfamily of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Other members of the CMGC family include casein kinase 2 (CK2), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK), Glycogen Synthase Kinase 3 (GSK3), among many others. The CMGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270688 [Multi-domain]  Cd Length: 249  Bit Score: 57.24  E-value: 3.56e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLR----HEKLVQLYAVVSEEP---IYIVTEFMDQgSLLEFLKGqYSTMLRLPQLVDFASQI 73
Cdd:cd05118  33 KNDFRHPKAALREIKLLKHLNdvegHPNIVKLLDVFEHRGgnhLCLVFELMGM-NLYELIKD-YPRGLPLDLIKSYLYQL 110
                        90       100
                ....*....|....*....|....
gi 472744    74 ASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd05118 111 LQALDFLHSNGIIHRDLKPENILI 134
STKc_PDK1 cd05581
Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1; STKs ...
12-101 3.94e-11

Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PDK1 carries an N-terminal catalytic domain and a C-terminal pleckstrin homology (PH) domain that binds phosphoinositides. It phosphorylates the activation loop of AGC kinases that are regulated by PI3K such as PKB, SGK, and PKC, among others, and is crucial for their activation. Thus, it contributes in regulating many processes including metabolism, growth, proliferation, and survival. PDK1 also has the ability to autophosphorylate and is constitutively active in mammalian cells. It is essential for normal embryo development and is important in regulating cell volume. The PDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270733 [Multi-domain]  Cd Length: 278  Bit Score: 57.22  E-value: 3.94e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQYS---TMLRLpqlvdFASQIASGMAYVERMNYVH 87
Cdd:cd05581  50 IEKEVLSRLAHPGIVKLYYTFqDESKLYFVLEYAPNGDLLEYIRKYGSldeKCTRF-----YTAEIVLALEYLHSKGIIH 124
                        90
                ....*....|....
gi 472744    88 RDLRAANILVGDNL 101
Cdd:cd05581 125 RDLKPENILLDEDM 138
PTKc_FGFR3 cd05100
Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 3; PTKs ...
10-102 4.30e-11

Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Many FGFR3 splice variants have been reported with the IIIb and IIIc isoforms being the predominant forms. FGFR3 IIIc is the isoform expressed in chondrocytes, the cells affected in dwarfism, while IIIb is expressed in epithelial cells. FGFR3 ligands include FGF1, FGF2, FGF4, FGF8, FGF9, and FGF23. It is a negative regulator of long bone growth. In the cochlear duct and in the lens, FGFR3 is involved in differentiation while it appears to have a role in cell proliferation in epithelial cells. Germline mutations in FGFR3 are associated with skeletal disorders including several forms of dwarfism. Some missense mutations are associated with multiple myeloma and carcinomas of the bladder and cervix. Overexpression of FGFR3 is found in thyroid carcinoma. FGFR3 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173652 [Multi-domain]  Cd Length: 334  Bit Score: 57.72  E-value: 4.30e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKL-RHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQ------YS-TMLRLPQ-------LVDFASQI 73
Cdd:cd05100  64 LVSEMEMMKMIgKHKNIINLLGACTQDgPLYVLVEYASKGNLREYLRARrppgmdYSfDTCKLPEeqltfkdLVSCAYQV 143
                        90       100
                ....*....|....*....|....*....
gi 472744    74 ASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05100 144 ARGMEYLASQKCIHRDLAARNVLVTEDNV 172
STKc_ACVR2 cd14053
Catalytic domain of the Serine/Threonine Kinase, Activin Type II Receptor; STKs catalyze the ...
20-103 4.66e-11

Catalytic domain of the Serine/Threonine Kinase, Activin Type II Receptor; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR2 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. Type II receptors, such as ACVR2, are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. ACVR2 acts primarily as the receptors for activins, nodal, myostatin, GDF11, and a subset of BMPs. ACVR2 signaling impacts many cellular and physiological processes including reproductive and gonadal functions, myogenesis, bone remodeling and tooth development, kidney organogenesis, apoptosis, fibrosis, inflammation, and neurogenesis. Vertebrates contain two ACVR2 proteins, ACVR2a (or ActRIIA) and ACVR2b (or ActRIIB). The ACVR2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270955 [Multi-domain]  Cd Length: 290  Bit Score: 57.34  E-value: 4.66e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    20 LRHEKLVQLYAV----VSEEPIY-IVTEFMDQGSLLEFLKGQystMLRLPQLVDFASQIASGMAYV--ERMNY------- 85
Cdd:cd14053  46 MKHENILQFIGAekhgESLEAEYwLITEFHERGSLCDYLKGN---VISWNELCKIAESMARGLAYLheDIPATngghkps 122
                        90
                ....*....|....*....
gi 472744    86 -VHRDLRAANILVGDNLVC 103
Cdd:cd14053 123 iAHRDFKSKNVLLKSDLTA 141
PTKc_TAM cd05035
Catalytic Domain of TAM (Tyro3, Axl, Mer) Protein Tyrosine Kinases; PTKs catalyze the transfer ...
8-103 5.24e-11

Catalytic Domain of TAM (Tyro3, Axl, Mer) Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The TAM subfamily consists of Tyro3 (or Sky), Axl, Mer (or Mertk), and similar proteins. TAM subfamily members are receptor tyr kinases (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. TAM proteins are implicated in a variety of cellular effects including survival, proliferation, migration, and phagocytosis. They are also associated with several types of cancer as well as inflammatory, autoimmune, vascular, and kidney diseases. The TAM subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270631 [Multi-domain]  Cd Length: 273  Bit Score: 57.16  E-value: 5.24e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSE--------EPIyIVTEFMDQGSLLEFL----KGQYSTMLRLPQLVDFASQIAS 75
Cdd:cd05035  46 EEFLSEAACMKDFDHPNVMRLIGVCFTasdlnkppSPM-VILPFMKHGDLHSYLlysrLGGLPEKLPLQTLLKFMVDIAK 124
                        90       100
                ....*....|....*....|....*....
gi 472744    76 GMAYVERMNYVHRDLRAANILVGDNL-VC 103
Cdd:cd05035 125 GMEYLSNRNFIHRDLAARNCMLDENMtVC 153
STKc_MLK1 cd14145
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 1; STKs catalyze the ...
8-97 5.27e-11

Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK1 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK) and is also called MAP3K9. MAP3Ks phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Little is known about the specific function of MLK1. It is capable of activating the c-Jun N-terminal kinase pathway. Mice lacking both MLK1 and MLK2 are viable, fertile, and have normal life spans. There could be redundancy in the function of MLKs. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271047 [Multi-domain]  Cd Length: 270  Bit Score: 56.97  E-value: 5.27e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQystmlRLPQ--LVDFASQIASGMAYVERMN 84
Cdd:cd14145  50 ENVRQEAKLFAMLKHPNIIALRGVCLKEPnLCLVMEFARGGPLNRVLSGK-----RIPPdiLVNWAVQIARGMNYLHCEA 124
                        90
                ....*....|....*.
gi 472744    85 YV---HRDLRAANILV 97
Cdd:cd14145 125 IVpviHRDLKSSNILI 140
Pkinase pfam00069
Protein kinase domain;
1-84 5.74e-11

Protein kinase domain;


Pssm-ID: 459660 [Multi-domain]  Cd Length: 217  Bit Score: 56.48  E-value: 5.74e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744       1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAY 79
Cdd:pfam00069  36 KIKKKKDKNILREIKILKKLNHPNIVRLYDAFEDKDnLYLVLEYVEGGSLFDLL--SEKGAFSEREAKFIMKQILEGLES 113

                  ....*
gi 472744      80 VERMN 84
Cdd:pfam00069 114 GSSLT 118
PTKc_Mer cd14204
Catalytic Domain of the Protein Tyrosine Kinase, Mer; PTKs catalyze the transfer of the ...
8-103 7.13e-11

Catalytic Domain of the Protein Tyrosine Kinase, Mer; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Mer (or Mertk) is named after its original reported expression pattern (monocytes, epithelial, and reproductive tissues). It is required for the ingestion of apoptotic cells by phagocytes such as macrophages, retinal pigment epithelial cells, and dendritic cells. Mer is also important in maintaining immune homeostasis. Mer is a member of the TAM subfamily, composed of receptor PTKs (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. The Mer subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271106 [Multi-domain]  Cd Length: 284  Bit Score: 56.87  E-value: 7.13e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSE-------EPIyIVTEFMDQGSLLEFL----KGQYSTMLRLPQLVDFASQIASG 76
Cdd:cd14204  54 EEFLSEAACMKDFNHPNVIRLLGVCLEvgsqripKPM-VILPFMKYGDLHSFLlrsrLGSGPQHVPLQTLLKFMIDIALG 132
                        90       100
                ....*....|....*....|....*...
gi 472744    77 MAYVERMNYVHRDLRAANILVGDNL-VC 103
Cdd:cd14204 133 MEYLSSRNFLHRDLAARNCMLRDDMtVC 160
STKc_AMPK_alpha cd14079
Catalytic domain of the Alpha subunit of the Serine/Threonine Kinase, AMP-activated protein ...
13-101 1.09e-10

Catalytic domain of the Alpha subunit of the Serine/Threonine Kinase, AMP-activated protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. In response to decreased ATP levels, it enhances energy-producing processes and inhibits energy-consuming pathways. Once activated, AMPK phosphorylates a broad range of downstream targets, with effects in carbohydrate metabolism and uptake, lipid and fatty acid biosynthesis, carbon energy storage, and inflammation, among others. Defects in energy homeostasis underlie many human diseases including Type 2 diabetes, obesity, heart disease, and cancer. As a result, AMPK has emerged as a therapeutic target in the treatment of these diseases. The AMPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270981 [Multi-domain]  Cd Length: 256  Bit Score: 56.12  E-value: 1.09e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVVsEEP--IYIVTEFMDQGSLLEFL--KGQystmLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd14079  52 EIQILKLFRHPHIIRLYEVI-ETPtdIFMVMEYVSGGELFDYIvqKGR----LSEDEARRFFQQIISGVEYCHRHMVVHR 126
                        90
                ....*....|...
gi 472744    89 DLRAANILVGDNL 101
Cdd:cd14079 127 DLKPENLLLDSNM 139
STKc_ULK3 cd14121
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 3; STKs catalyze the ...
6-96 1.09e-10

Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK3 mRNA is up-regulated in fibroblasts after Ras-induced senescence, and its overexpression induces both autophagy and senescence in a fibroblast cell line. ULK3, through its kinase activity, positively regulates Gli proteins, mediators of the Sonic hedgehog (Shh) signaling pathway that is implicated in tissue homeostasis maintenance and neurogenesis. It is inhibited by binding to Suppressor of Fused (Sufu). The ULK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271023 [Multi-domain]  Cd Length: 252  Bit Score: 56.14  E-value: 1.09e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKgqysTMLRLPQLV--DFASQIASGMAYVER 82
Cdd:cd14121  38 STENLLTEIELLKKLKHPHIVELKDFQwDEEHIYLIMEYCSGGDLSRFIR----SRRTLPESTvrRFLQQLASALQFLRE 113
                        90
                ....*....|....
gi 472744    83 MNYVHRDLRAANIL 96
Cdd:cd14121 114 HNISHMDLKPQNLL 127
PTKc_Jak3_rpt2 cd05081
Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 3; PTKs catalyze the ...
10-97 1.47e-10

Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jak3 is expressed only in hematopoietic cells. It binds the shared receptor subunit common gamma chain and thus, is essential in the signaling of cytokines that use it such as IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is important in lymphoid development and myeloid cell differentiation. Inactivating mutations in Jak3 have been reported in humans with severe combined immunodeficiency (SCID). Jak3 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal catalytic tyr kinase domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270665 [Multi-domain]  Cd Length: 283  Bit Score: 56.06  E-value: 1.47e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQlYAVVSEEP----IYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:cd05081  52 FQREIQILKALHSDFIVK-YRGVSYGPgrrsLRLVMEYLPSGCLRDFLQ-RHRARLDASRLLLYSSQICKGMEYLGSRRC 129
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd05081 130 VHRDLAARNILV 141
PTKc_FGFR2 cd05101
Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 2; PTKs ...
10-102 1.50e-10

Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. There are many splice variants of FGFR2 which show differential expression and binding to FGF ligands. Disruption of either FGFR2 or FGFR2b is lethal in mice, due to defects in the placenta or severe impairment of tissue development including lung, limb, and thyroid, respectively. Disruption of FGFR2c in mice results in defective bone and skull development. Genetic alterations of FGFR2 are associated with many human skeletal disorders including Apert syndrome, Crouzon syndrome, Jackson-Weiss syndrome, and Pfeiffer syndrome. FGFR2 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270679 [Multi-domain]  Cd Length: 313  Bit Score: 56.18  E-value: 1.50e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKL-RHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKG------QYS-TMLRLPQ-------LVDFASQI 73
Cdd:cd05101  76 LVSEMEMMKMIgKHKNIINLLGACTQDgPLYVIVEYASKGNLREYLRArrppgmEYSyDINRVPEeqmtfkdLVSCTYQL 155
                        90       100
                ....*....|....*....|....*....
gi 472744    74 ASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05101 156 ARGMEYLASQKCIHRDLAARNVLVTENNV 184
STKc_MELK cd14078
Catalytic domain of the Serine/Threonine Kinase, Maternal Embryonic Leucine zipper Kinase; ...
13-97 1.56e-10

Catalytic domain of the Serine/Threonine Kinase, Maternal Embryonic Leucine zipper Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MELK is a cell cycle dependent protein which functions in cytokinesis, cell cycle, apoptosis, cell proliferation, and mRNA processing. It is found upregulated in many types of cancer cells, playing an indispensable role in cancer cell survival. It makes an attractive target in the design of inhibitors for use in the treatment of a wide range of human cancer. The MELK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270980 [Multi-domain]  Cd Length: 257  Bit Score: 55.47  E-value: 1.56e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQysTMLRLPQLVDFASQIASGMAYVERMNYVHRDLR 91
Cdd:cd14078  51 EIEALKNLSHQHICRLYHVIeTDNKIFMVLEYCPGGELFDYIVAK--DRLSEDEARVFFRQIVSAVAYVHSQGYAHRDLK 128

                ....*.
gi 472744    92 AANILV 97
Cdd:cd14078 129 PENLLL 134
PKc_LIMK_like_unk cd14156
Catalytic domain of an unknown subfamily of LIM domain kinase-like protein kinases; PKs ...
8-97 1.56e-10

Catalytic domain of an unknown subfamily of LIM domain kinase-like protein kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. This group is composed of uncharacterized proteins with similarity to LIMK and Testicular or testis-specific protein kinase (TESK). LIMKs are characterized as serine/threonine kinases (STKs) while TESKs are dual-specificity protein kinases. Both LIMK and TESK phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They are implicated in many cellular functions including cell spreading, motility, morphogenesis, meiosis, mitosis, and spermatogenesis. The LIMK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271058 [Multi-domain]  Cd Length: 256  Bit Score: 55.60  E-value: 1.56e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQ-LYAVVSEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd14156  33 HKIVREISLLQKLSHPNIVRyLGICVKDEKLHPILEYVSGGCLEELLARE-ELPLSWREKVELACDISRGMVYLHSKNIY 111
                        90
                ....*....|.
gi 472744    87 HRDLRAANILV 97
Cdd:cd14156 112 HRDLNSKNCLI 122
STKc_CDK1_CdkB_like cd07835
Catalytic domain of Cyclin-Dependent protein Kinase 1-like Serine/Threonine Kinases and of ...
7-97 1.88e-10

Catalytic domain of Cyclin-Dependent protein Kinase 1-like Serine/Threonine Kinases and of Plant B-type Cyclin-Dependent protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK, CDK2, and CDK3. CDK1 is also called Cell division control protein 2 (Cdc2) or p34 protein kinase, and is regulated by cyclins A, B, and E. The CDK1/cyclin A complex controls G2 phase entry and progression while the CDK1/cyclin B complex is critical for G2 to M phase transition. CDK2 is regulated by cyclin E or cyclin A. Upon activation by cyclin E, it phosphorylates the retinoblastoma (pRb) protein which activates E2F mediated transcription and allows cells to move into S phase. The CDK2/cyclin A complex plays a role in regulating DNA replication. Studies in knockout mice revealed that CDK1 can compensate for the loss of the cdk2 gene as it can also bind cyclin E and drive G1 to S phase transition. CDK3 is regulated by cyclin C and it phosphorylates pRB specifically during the G0/G1 transition. This phosphorylation is required for cells to exit G0 efficiently and enter the G1 phase. The plant-specific B-type CDKs are expressed from the late S to the M phase of the cell cycle. They are characterized by the cyclin binding motif PPT[A/T]LRE. They play a role in controlling mitosis and integrating developmental pathways, such as stomata and leaf development. CdkB has been shown to associate with both cyclin B, which controls G2/M transition, and cyclin D, which acts as a mediator in linking extracellular signals to the cell cycle. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270829 [Multi-domain]  Cd Length: 283  Bit Score: 55.37  E-value: 1.88e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:cd07835  42 PSTAIREISLLKELNHPNIVRLLDVVhSENKLYLVFEFLDL-DLKKYMDSSPLTGLDPPLIKSYLYQLLQGIAFCHSHRV 120
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd07835 121 LHRDLKPQNLLI 132
PTKc_HER2 cd05109
Catalytic domain of the Protein Tyrosine Kinase, HER2; PTKs catalyze the transfer of the ...
6-97 2.13e-10

Catalytic domain of the Protein Tyrosine Kinase, HER2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. HER2 (ErbB2, HER2/neu) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. HER2 does not bind to any known EGFR subfamily ligands, but contributes to the kinase activity of all possible heterodimers. It acts as the preferred partner of other ligand-bound EGFR proteins and functions as a signal amplifier, with the HER2-HER3 heterodimer being the most potent pair in mitogenic signaling. HER2 plays an important role in cell development, proliferation, survival and motility. Overexpression of HER2 results in its activation and downstream signaling, even in the absence of ligand. HER2 overexpression, mainly due to gene amplification, has been shown in a variety of human cancers. Its role in breast cancer is especially well-documented. HER2 is up-regulated in about 25% of breast tumors and is associated with increases in tumor aggressiveness, recurrence and mortality. HER2 is a target for monoclonal antibodies and small molecule inhibitors, which are being developed as treatments for cancer. The first humanized antibody approved for clinical use is Trastuzumab (Herceptin), which is being used in combination with other therapies to improve the survival rates of patients with HER2-overexpressing breast cancer. The HER2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270684 [Multi-domain]  Cd Length: 279  Bit Score: 55.42  E-value: 2.13e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEA---FLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVER 82
Cdd:cd05109  49 SPKAnkeILDEAYVMAGVGSPYVCRLLGICLTSTVQLVTQLMPYGCLLDYVR-ENKDRIGSQDLLNWCVQIAKGMSYLEE 127
                        90
                ....*....|....*
gi 472744    83 MNYVHRDLRAANILV 97
Cdd:cd05109 128 VRLVHRDLAARNVLV 142
STKc_MLK2 cd14148
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 2; STKs catalyze the ...
4-97 2.14e-10

Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK2 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK) and is also called MAP3K10. MAP3Ks phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLK2 is abundant in brain, skeletal muscle, and testis. It functions upstream of the MAPK, c-Jun N-terminal kinase. It binds hippocalcin, a calcium-sensor protein that protects neurons against calcium-induced cell death. Both MLK2 and hippocalcin may be associated with the pathogenesis of Parkinson's disease. MLK2 also binds to normal huntingtin (Htt), which is important in neuronal transcription, development, and survival. MLK2 does not bind to the polyglutamine-expanded Htt, which is implicated in the pathogeneis of Huntington's disease, leading to neuronal toxicity. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K).


Pssm-ID: 271050 [Multi-domain]  Cd Length: 258  Bit Score: 55.38  E-value: 2.14e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQystmlRLPQ--LVDFASQIASGMAYV 80
Cdd:cd14148  34 AVTAENVRQEARLFWMLQHPNIIALRGVCLNPPhLCLVMEYARGGALNRALAGK-----KVPPhvLVNWAVQIARGMNYL 108
                        90       100
                ....*....|....*....|
gi 472744    81 ERMNYV---HRDLRAANILV 97
Cdd:cd14148 109 HNEAIVpiiHRDLKSSNILI 128
STKc_GSK3 cd14137
The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3; STKs catalyze ...
13-97 2.31e-10

The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GSK3 is a mutifunctional kinase involved in many cellular processes including cell division, proliferation, differentiation, adhesion, and apoptosis. In plants, GSK3 plays a role in the response to osmotic stress. In Caenorhabditis elegans, it plays a role in regulating normal oocyte-to-embryo transition and response to oxidative stress. In Chlamydomonas reinhardtii, GSK3 regulates flagellar length and assembly. In mammals, there are two isoforms, GSK3alpha and GSK3beta, which show both distinct and redundant functions. The two isoforms differ mainly in their N-termini. They are both involved in axon formation and in Wnt signaling.They play distinct roles in cardiogenesis, with GSKalpha being essential in cardiomyocyte survival, and GSKbeta regulating heart positioning and left-right symmetry. GSK3beta was first identified as a regulator of glycogen synthesis, but has since been determined to play other roles. It regulates the degradation of beta-catenin and IkB. Beta-catenin is the main effector of Wnt, which is involved in normal haematopoiesis and stem cell function. IkB is a central inhibitor of NF-kB, which is critical in maintaining leukemic cell growth. GSK3beta is enriched in the brain and is involved in regulating neuronal signaling pathways. It is implicated in the pathogenesis of many diseases including Type II diabetes, obesity, mood disorders, Alzheimer's disease, osteoporosis, and some types of cancer, among others. The GSK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271039 [Multi-domain]  Cd Length: 293  Bit Score: 55.20  E-value: 2.31e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQL-YAVVSEEP------IYIVTEFMDQgSLLEFLKgQYSTMLRLPQLVD---FASQIASGMAYVER 82
Cdd:cd14137  47 ELQIMRRLKHPNIVKLkYFFYSSGEkkdevyLNLVMEYMPE-TLYRVIR-HYSKNKQTIPIIYvklYSYQLFRGLAYLHS 124
                        90
                ....*....|....*
gi 472744    83 MNYVHRDLRAANILV 97
Cdd:cd14137 125 LGICHRDIKPQNLLV 139
PKc_Wee1_like cd13997
Catalytic domain of the Wee1-like Protein Kinases; PKs catalyze the transfer of the ...
11-103 2.31e-10

Catalytic domain of the Wee1-like Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. This subfamily is composed of the dual-specificity kinase Myt1, the protein tyrosine kinase Wee1, and similar proteins. These proteins are cell cycle checkpoint kinases that are involved in the regulation of cyclin-dependent kinase CDK1, the master engine for mitosis. CDK1 is kept inactivated through phosphorylation of N-terminal thr (T14 by Myt1) and tyr (Y15 by Myt1 and Wee1) residues. Mitosis progression is ensured through activation of CDK1 by dephoshorylation and inactivation of Myt1/Wee1. The Wee1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270899 [Multi-domain]  Cd Length: 252  Bit Score: 55.08  E-value: 2.31e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKL-RHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQY-STMLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd13997  47 LREVEAHAALgQHPNIVRYYSSWEEgGHLYIQMELCENGSLQDALEELSpISKLSEAEVWDLLLQVALGLAFIHSKGIVH 126
                        90
                ....*....|....*.
gi 472744    88 RDLRAANILVGDNLVC 103
Cdd:cd13997 127 LDIKPDNIFISNKGTC 142
STKc_CDC2L1 cd07843
Catalytic domain of the Serine/Threonine Kinase, Cell Division Cycle 2-like 1; STKs catalyze ...
11-97 2.61e-10

Catalytic domain of the Serine/Threonine Kinase, Cell Division Cycle 2-like 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDC2L1, also called PITSLRE, exists in different isoforms which are named using the alias CDK11(p). The CDC2L1 gene produces two protein products, CDK11(p110) and CDK11(p58). CDC2L1 is also represented by the caspase-processed CDK11(p46). CDK11(p110), the major isoform, associates with cyclin L and is expressed throughout the cell cycle. It is involved in RNA processing and the regulation of transcription. CDK11(p58) associates with cyclin D3 and is expressed during the G2/M phase of the cell cycle. It plays roles in spindle morphogenesis, centrosome maturation, sister chromatid cohesion, and the completion of mitosis. CDK11(p46) is formed from the larger isoforms by caspases during TNFalpha- and Fas-induced apoptosis. It functions as a downstream effector kinase in apoptotic signaling pathways and interacts with eukaryotic initiation factor 3f (eIF3f), p21-activated kinase (PAK1), and Ran-binding protein (RanBPM). CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDC2L1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173741 [Multi-domain]  Cd Length: 293  Bit Score: 55.31  E-value: 2.61e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVV---SEEPIYIVTEFM--DQGSLLEFLKGQYSTmlrlPQLVDFASQIASGMAYVERMNY 85
Cdd:cd07843  52 LREINILLKLQHPNIVTVKEVVvgsNLDKIYMVMEYVehDLKSLMETMKQPFLQ----SEVKCLMLQLLSGVAHLHDNWI 127
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd07843 128 LHRDLKTSNLLL 139
STKc_CDK2_3 cd07860
Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase 2 and 3; ...
7-97 2.92e-10

Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase 2 and 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK2 is regulated by cyclin E or cyclin A. Upon activation by cyclin E, it phosphorylates the retinoblastoma (pRb) protein which activates E2F mediated transcription and allows cells to move into S phase. The CDK2/cyclin A complex plays a role in regulating DNA replication. CDK2, together with CDK4, also regulates embryonic cell proliferation. Despite these important roles, mice deleted for the cdk2 gene are viable and normal except for being sterile. This may be due to compensation provided by CDK1 (also called Cdc2), which can also bind cyclin E and drive the G1 to S phase transition. CDK3 is regulated by cyclin C and it phosphorylates pRB specifically during the G0/G1 transition. This phosphorylation is required for cells to exit G0 efficiently and enter the G1 phase. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270844 [Multi-domain]  Cd Length: 284  Bit Score: 55.20  E-value: 2.92e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:cd07860  43 PSTAIREISLLKELNHPNIVKLLDVIhTENKLYLVFEFLHQ-DLKKFMDASALTGIPLPLIKSYLFQLLQGLAFCHSHRV 121
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd07860 122 LHRDLKPQNLLI 133
PTKc_FGFR1 cd05098
Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 1; PTKs ...
10-102 3.22e-10

Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Alternative splicing of FGFR1 transcripts produces a variety of isoforms, which are differentially expressed in cells. FGFR1 binds the ligands, FGF1 and FGF2, with high affinity and has also been reported to bind FGF4, FGF6, and FGF9. FGFR1 signaling is critical in the control of cell migration during embryo development. It promotes cell proliferation in fibroblasts. Nuclear FGFR1 plays a role in the regulation of transcription. Mutations, insertions or deletions of FGFR1 have been identified in patients with Kallman's syndrome (KS), an inherited disorder characterized by hypogonadotropic hypogonadism and loss of olfaction. Aberrant FGFR1 expression has been found in some human cancers including 8P11 myeloproliferative syndrome (EMS), breast cancer, and pancreatic adenocarcinoma. FGFR1 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270678 [Multi-domain]  Cd Length: 302  Bit Score: 55.02  E-value: 3.22e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKL-RHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKG------QYS--------TMLRLPQLVDFASQI 73
Cdd:cd05098  65 LISEMEMMKMIgKHKNIINLLGACTQDgPLYVIVEYASKGNLREYLQArrppgmEYCynpshnpeEQLSSKDLVSCAYQV 144
                        90       100
                ....*....|....*....|....*....
gi 472744    74 ASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05098 145 ARGMEYLASKKCIHRDLAARNVLVTEDNV 173
STKc_TGFbR-like cd13998
Catalytic domain of Transforming Growth Factor beta Receptor-like Serine/Threonine Kinases; ...
20-103 3.24e-10

Catalytic domain of Transforming Growth Factor beta Receptor-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of receptors for the TGFbeta family of secreted signaling molecules including TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. There are two types of TGFbeta receptors included in this subfamily, I and II, that play different roles in signaling. For signaling to occur, the ligand first binds to the high-affinity type II receptor, which is followed by the recruitment of the low-affinity type I receptor to the complex and its activation through trans-phosphorylation by the type II receptor. The active type I receptor kinase starts intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. Different ligands interact with various combinations of types I and II receptors to elicit a specific signaling pathway. Activins primarily signal through combinations of ACVR1b/ALK7 and ACVR2a/b; myostatin and GDF11 through TGFbR1/ALK4 and ACVR2a/b; BMPs through ACVR1/ALK1 and BMPR2; and TGFbeta through TGFbR1 and TGFbR2. The TGFbR-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270900 [Multi-domain]  Cd Length: 289  Bit Score: 54.75  E-value: 3.24e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    20 LRHEKLVQLyaVVSEE-------PIYIVTEFMDQGSLLEFLKGqysTMLRLPQLVDFASQIASGMAYVE---------RM 83
Cdd:cd13998  46 LKHENILQF--IAADErdtalrtELWLVTAFHPNGSL*DYLSL---HTIDWVSLCRLALSVARGLAHLHseipgctqgKP 120
                        90       100
                ....*....|....*....|
gi 472744    84 NYVHRDLRAANILVGDNLVC 103
Cdd:cd13998 121 AIAHRDLKSKNILVKNDGTC 140
STKc_MLCK2 cd14190
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 2; STKs catalyze ...
1-96 3.58e-10

Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK2 (or MYLK2) phosphorylates myosin regulatory light chain and controls the contraction of skeletal muscles. MLCK2 contains a single kinase domain near the C-terminus followed by a regulatory segment containing an autoinhibitory Ca2+/calmodulin binding site. The MLCK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271092 [Multi-domain]  Cd Length: 261  Bit Score: 54.54  E-value: 3.58e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVdFASQIASGMAY 79
Cdd:cd14190  39 KQNSKDKEMVLLEIQVMNQLNHRNLIQLYeAIETPNEIVLFMEYVEGGELFERIVDEDYHLTEVDAMV-FVRQICEGIQF 117
                        90
                ....*....|....*..
gi 472744    80 VERMNYVHRDLRAANIL 96
Cdd:cd14190 118 MHQMRVLHLDLKPENIL 134
PK_eIF2AK_GCN2_rpt1 cd14012
Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or ...
6-97 3.90e-10

Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or General Control Non-derepressible-2; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the overall downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: GCN2, protein kinase regulated by RNA (PKR), heme-regulated inhibitor kinase (HRI), and PKR-like endoplasmic reticulum kinase (PERK). GCN2 is activated by amino acid or serum starvation and UV irradiation. It induces GCN4, a transcriptional activator of amino acid biosynthetic genes, leading to increased production of amino acids under amino acid-deficient conditions. In serum-starved cells, GCN2 activation induces translation of the stress-responsive transcription factor ATF4, while under UV stress, GCN2 triggers transcriptional rescue via NF-kappaB signaling. GCN2 contains an N-terminal RWD, a degenerate kinase-like (repeat 1), the catalytic kinase (repeat 2), a histidyl-tRNA synthetase (HisRS)-like, and a C-terminal ribosome-binding and dimerization (RB/DD) domains. The degenerate pseudokinase domain of GCN2 may function as a regulatory domain. The GCN2 subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270914 [Multi-domain]  Cd Length: 254  Bit Score: 54.67  E-value: 3.90e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQV-------MKKLRHEKLVQLYAVVSEEP-------IYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFAS 71
Cdd:cd14012  34 KTSNGKKQIQLlekelesLKKLRHPNLVSYLAFSIERRgrsdgwkVYLLTEYAPGGSLSELL--DSVGSVPLDTARRWTL 111
                        90       100
                ....*....|....*....|....*.
gi 472744    72 QIASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd14012 112 QLLEALEYLHRNGVVHKSLHAGNVLL 137
PTKc_Tie2 cd05088
Catalytic domain of the Protein Tyrosine Kinase, Tie2; PTKs catalyze the transfer of the ...
10-102 4.52e-10

Catalytic domain of the Protein Tyrosine Kinase, Tie2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tie2 is a receptor PTK (RTK) containing an extracellular region, a transmembrane segment, and an intracellular catalytic domain. The extracellular region contains an immunoglobulin (Ig)-like domain, three epidermal growth factor (EGF)-like domains, a second Ig-like domain, and three fibronectin type III repeats. Tie2 is expressed mainly in endothelial cells and hematopoietic stem cells. It is also found in a subset of tumor-associated monocytes and eosinophils. The angiopoietins (Ang-1 to Ang-4) serve as ligands for Tie2. The binding of Ang-1 to Tie2 leads to receptor autophosphorylation and activation, promoting cell migration and survival. In contrast, Ang-2 binding to Tie2 does not result in the same response, suggesting that Ang-2 may function as an antagonist. Tie2 signaling plays key regulatory roles in vascular integrity and quiescence, and in inflammation. The Tie2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133219 [Multi-domain]  Cd Length: 303  Bit Score: 54.62  E-value: 4.52e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEK-LVQLYAVVSEEP-IYIVTEFMDQGSLLEFLK--------------GQYSTMLRLPQLVDFASQI 73
Cdd:cd05088  54 FAGELEVLCKLGHHPnIINLLGACEHRGyLYLAIEYAPHGNLLDFLRksrvletdpafaiaNSTASTLSSQQLLHFAADV 133
                        90       100
                ....*....|....*....|....*....
gi 472744    74 ASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05088 134 ARGMDYLSQKQFIHRDLAARNILVGENYV 162
STKc_MLK3 cd14147
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 3; STKs catalyze the ...
4-102 4.71e-10

Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK3 is a mitogen-activated protein kinase kinase kinases (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLK3 activates multiple MAPK pathways and plays a role in apoptosis, proliferation, migration, and differentiation, depending on the cellular context. It is highly expressed in breast cancer cells and its signaling through c-Jun N-terminal kinase has been implicated in the migration, invasion, and malignancy of cancer cells. MLK3 also functions as a negative regulator of Inhibitor of Nuclear Factor-KappaB Kinase (IKK) and consequently, it also impacts inflammation and immunity. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation.The MLK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271049 [Multi-domain]  Cd Length: 267  Bit Score: 54.26  E-value: 4.71e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQystmlRLPQ--LVDFASQIASGMAYV 80
Cdd:cd14147  43 SVTAESVRQEARLFAMLAHPNIIALKAVCLEEPnLCLVMEYAAGGPLSRALAGR-----RVPPhvLVNWAVQIARGMHYL 117
                        90       100
                ....*....|....*....|....*
gi 472744    81 ER---MNYVHRDLRAANILVGDNLV 102
Cdd:cd14147 118 HCealVPVIHRDLKSNNILLLQPIE 142
STKc_MEKK3_like_u1 cd06653
Catalytic domain of an Uncharacterized subfamily of Mitogen-Activated Protein (MAP) ...
13-96 4.94e-10

Catalytic domain of an Uncharacterized subfamily of Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of uncharacterized proteins with similarity to MEKK3, MEKK2, and related proteins; they contain an N-terminal PB1 domain, which mediates oligomerization, and a C-terminal catalytic domain. MEKK2 and MEKK3 are MAPK kinase kinases (MAPKKKs or MKKKs), proteins that phosphorylate and activate MAPK kinases (MAPKKs or MKKs), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MEKK2 and MEKK3 activate MEK5 (also called MKK5), which activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK3 plays an essential role in embryonic angiogenesis and early heart development. MEKK2 and MEKK3 can also activate the MAPKs, c-Jun N-terminal kinase (JNK) and p38, through their respective MAPKKs. The MEKK3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270819 [Multi-domain]  Cd Length: 264  Bit Score: 54.26  E-value: 4.94e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV---SEEPIYIVTEFMDQGSLleflKGQYSTMLRLPQLVD--FASQIASGMAYVERMNYVH 87
Cdd:cd06653  54 EIQLLKNLRHDRIVQYYGCLrdpEEKKLSIFVEYMPGGSV----KDQLKAYGALTENVTrrYTRQILQGVSYLHSNMIVH 129

                ....*....
gi 472744    88 RDLRAANIL 96
Cdd:cd06653 130 RDIKGANIL 138
PTK_HER3 cd05111
Pseudokinase domain of the Protein Tyrosine Kinase, HER3; HER3 (ErbB3) is a member of the EGFR ...
17-97 5.59e-10

Pseudokinase domain of the Protein Tyrosine Kinase, HER3; HER3 (ErbB3) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. HER3 contains an impaired tyr kinase domain, which lacks crucial residues for catalytic activity against exogenous substrates but is still able to bind ATP and autophosphorylate. HER3 binds the neuregulin ligands, NRG1 and NRG2, and it relies on its heterodimerization partners for activity following ligand binding. The HER2-HER3 heterodimer constitutes a high affinity co-receptor capable of potent mitogenic signaling. HER3 participates in a signaling pathway involved in the proliferation, survival, adhesion, and motility of tumor cells. The HER3 subfamily is part of a larger superfamily that includes other pseudokinases and the the catalytic domains of active kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173656 [Multi-domain]  Cd Length: 279  Bit Score: 54.19  E-value: 5.59e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    17 MKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANIL 96
Cdd:cd05111  63 IGSLDHAYIVRLLGICPGASLQLVTQLLPLGSLLDHVR-QHRGSLGPQLLLNWCVQIAKGMYYLEEHRMVHRNLAARNVL 141

                .
gi 472744    97 V 97
Cdd:cd05111 142 L 142
STKc_Byr2_like cd06628
Catalytic domain of the Serine/Threonine Kinases, fungal Byr2-like Mitogen-Activated Protein ...
8-100 6.11e-10

Catalytic domain of the Serine/Threonine Kinases, fungal Byr2-like Mitogen-Activated Protein Kinase Kinase Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include the MAPKKKs Schizosaccharomyces pombe Byr2, Saccharomyces cerevisiae and Cryptococcus neoformans Ste11, and related proteins. They contain an N-terminal SAM (sterile alpha-motif) domain, which mediates protein-protein interaction, and a C-terminal catalytic domain. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Fission yeast Byr2 is regulated by Ras1. It responds to pheromone signaling and controls mating through the MAPK pathway. Budding yeast Ste11 functions in MAPK cascades that regulate mating, high osmolarity glycerol, and filamentous growth responses. The Byr2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270798 [Multi-domain]  Cd Length: 267  Bit Score: 54.08  E-value: 6.11e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQ-LYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTmLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd06628  51 DALQREIALLRELQHENIVQyLGSSSDANHLNIFLEYVPGGSVATLLN-NYGA-FEESLVRNFVRQILKGLNYLHNRGII 128
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVgDN 100
Cdd:cd06628 129 HRDIKGANILV-DN 141
STKc_B-Raf cd14151
Catalytic domain of the Serine/Threonine Kinase, B-Raf (Rapidly Accelerated Fibrosarcoma) ...
2-101 6.28e-10

Catalytic domain of the Serine/Threonine Kinase, B-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. B-Raf activates ERK with the strongest magnitude, compared with other Raf kinases. Mice embryos deficient in B-Raf die around midgestation due to vascular hemorrhage caused by apoptotic endothelial cells. Mutations in B-Raf have been implicated in initiating tumorigenesis and tumor progression, and are found in malignant cutaneous melanoma, papillary thyroid cancer, as well as in ovarian and colorectal carcinomas. Most oncogenic B-Raf mutations are located at the activation loop of the kinase and surrounding regions; the V600E mutation accounts for around 90% of oncogenic mutations. The V600E mutant constitutively activates MEK, resulting in sustained activation of ERK. B-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The B-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271053 [Multi-domain]  Cd Length: 274  Bit Score: 54.30  E-value: 6.28e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     2 PGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVE 81
Cdd:cd14151  43 PTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTKPQLAIVTQWCEGSSLYHHLHII-ETKFEMIKLIDIARQTAQGMDYLH 121
                        90       100
                ....*....|....*....|
gi 472744    82 RMNYVHRDLRAANILVGDNL 101
Cdd:cd14151 122 AKSIIHRDLKSNNIFLHEDL 141
PTKc_Met_Ron cd05058
Catalytic domain of the Protein Tyrosine Kinases, Met and Ron; PTKs catalyze the transfer of ...
8-102 6.41e-10

Catalytic domain of the Protein Tyrosine Kinases, Met and Ron; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Met and Ron are receptor PTKs (RTKs) composed of an alpha-beta heterodimer. The extracellular alpha chain is disulfide linked to the beta chain, which contains an extracellular ligand-binding region with a sema domain, a PSI domain and four IPT repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. Met binds to the ligand, hepatocyte growth factor/scatter factor (HGF/SF), and is also called the HGF receptor. HGF/Met signaling plays a role in growth, transformation, cell motility, invasion, metastasis, angiogenesis, wound healing, and tissue regeneration. Aberrant expression of Met through mutations or gene amplification is associated with many human cancers including hereditary papillary renal and gastric carcinomas. The ligand for Ron is macrophage stimulating protein (MSP). Ron signaling is important in regulating cell motility, adhesion, proliferation, and apoptosis. Aberrant Ron expression is implicated in tumorigenesis and metastasis. The Met/Ron subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270649 [Multi-domain]  Cd Length: 262  Bit Score: 54.02  E-value: 6.41e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVV--SEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:cd05058  41 EQFLKEGIIMKDFSHPNVLSLLGIClpSEGSPLVVLPYMKHGDLRNFIRSE-THNPTVKDLIGFGLQVAKGMEYLASKKF 119
                        90
                ....*....|....*..
gi 472744    86 VHRDLRAANILVGDNLV 102
Cdd:cd05058 120 VHRDLAARNCMLDESFT 136
STKc_MAPK cd07834
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase; STKs ...
11-100 6.51e-10

Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Typical MAPK pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPK kinase (MAP2K or MKK), which itself is phosphorylated and activated by a MAPK kinase kinase (MAP3K or MKKK). Each cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. There are three typical MAPK subfamilies: Extracellular signal-Regulated Kinase (ERK), c-Jun N-terminal Kinase (JNK), and p38. Some MAPKs are atypical in that they are not regulated by MAP2Ks. These include MAPK4, MAPK6, NLK, and ERK7. The MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270828 [Multi-domain]  Cd Length: 329  Bit Score: 54.07  E-value: 6.51e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVV------SEEPIYIVTEFMD--------QGSLLEFLKGQYstmlrlpqlvdFASQIASG 76
Cdd:cd07834  47 LREIKILRHLKHENIIGLLDILrppspeEFNDVYIVTELMEtdlhkvikSPQPLTDDHIQY-----------FLYQILRG 115
                        90       100
                ....*....|....*....|....
gi 472744    77 MAYVERMNYVHRDLRAANILVGDN 100
Cdd:cd07834 116 LKYLHSAGVIHRDLKPSNILVNSN 139
STKc_MLCK cd14103
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase; STKs catalyze the ...
8-96 6.99e-10

Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. In vertebrates, different MLCKs function in smooth (MLCK1), skeletal (MLCK2), and cardiac (MLCK3) muscles. A fourth protein, MLCK4, has also been identified through comprehensive genome analysis although it has not been biochemically characterized. The MLCK1 gene expresses three transcripts in a cell-specific manner: a short MLCK1 which contains three immunoglobulin (Ig)-like and one fibronectin type III (FN3) domains, PEVK and actin-binding regions, and a kinase domain near the C-terminus; a long MLCK1 containing six additional Ig-like domains at the N-terminus compared to the short MLCK1; and the C-terminal Ig module. MLCK2, MLCK3, and MLCK4 share a simpler domain architecture of a single kinase domain near the C-terminus and the absence of Ig-like or FN3 domains. The MLCK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271005 [Multi-domain]  Cd Length: 250  Bit Score: 53.77  E-value: 6.99e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLE------FLKGQYSTMLrlpqlvdFASQIASGMAYV 80
Cdd:cd14103  35 EDVRNEIEIMNQLRHPRLLQLYdAFETPREMVLVMEYVAGGELFErvvdddFELTERDCIL-------FMRQICEGVQYM 107
                        90
                ....*....|....*.
gi 472744    81 ERMNYVHRDLRAANIL 96
Cdd:cd14103 108 HKQGILHLDLKPENIL 123
PTKc_Aatyk cd05042
Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinases; PTKs ...
10-101 7.25e-10

Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Aatyk subfamily is also referred to as the lemur tyrosine kinase (Lmtk) subfamily. It consists of Aatyk1 (Lmtk1), Aatyk2 (Lmtk2, Brek), Aatyk3 (Lmtk3), and similar proteins. Aatyk proteins are mostly receptor PTKs (RTKs) containing a transmembrane segment and a long C-terminal cytoplasmic tail with a catalytic domain. Aatyk1 does not contain a transmembrane segment and is a cytoplasmic (or nonreceptor) kinase. Aatyk proteins are classified as PTKs based on overall sequence similarity and the phylogenetic tree. However, analysis of catalytic residues suggests that Aatyk proteins may be multispecific kinases, functioning also as serine/threonine kinases. They are involved in neural differentiation, nerve growth factor (NGF) signaling, apoptosis, and spermatogenesis. The Aatyk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270638 [Multi-domain]  Cd Length: 269  Bit Score: 53.75  E-value: 7.25e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQYSTMLRLPQ---LVDFASQIASGMAYVERMNY 85
Cdd:cd05042  42 FLKEGQPYRILQHPNILQCLGQCVEAiPYLLVMEFCDLGDLKAYLRSEREHERGDSDtrtLQRMACEVAAGLAHLHKLNF 121
                        90
                ....*....|....*.
gi 472744    86 VHRDLRAANILVGDNL 101
Cdd:cd05042 122 VHSDLALRNCLLTSDL 137
PK_STRAD cd08216
Pseudokinase domain of STE20-related kinase adapter protein; The pseudokinase domain shows ...
10-103 1.16e-09

Pseudokinase domain of STE20-related kinase adapter protein; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. STRAD forms a complex with the scaffolding protein MO25, and the serine/threonine kinase (STK), LKB1, resulting in the activation of the kinase. In the complex, LKB1 phosphorylates and activates adenosine monophosphate-activated protein kinases (AMPKs), which regulate cell energy metabolism and cell polarity. LKB1 is a tumor suppressor linked to the rare inherited disease, Peutz-Jeghers syndrome, which is characterized by a predisposition to benign polyps and hyperpigmentation of the buccal mucosa. There are two forms of STRAD, alpha and beta, that complex with LKB1 and MO25. The structure of STRAD-alpha is available and shows that this protein binds ATP, has an ordered activation loop, and adopts a closed conformation typical of fully active protein kinases. It does not possess activity due to nonconservative substitutions of essential catalytic residues. ATP binding enhances the affinity of STRAD for MO25. The conformation of STRAD-alpha stabilized through ATP and MO25 may be needed to activate LKB1. The STRAD subfamily is part of a larger superfamily that includes the catalytic domains of STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270856 [Multi-domain]  Cd Length: 315  Bit Score: 53.45  E-value: 1.16e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQYSTmlRLPQLVdfasqIA-------SGMAYVE 81
Cdd:cd08216  46 LQQEILTSRQLQHPNILPYVTSfVVDNDLYVVTPLMAYGSCRDLLKTHFPE--GLPELA-----IAfilrdvlNALEYIH 118
                        90       100
                ....*....|....*....|...
gi 472744    82 RMNYVHRDLRAANILV-GDNLVC 103
Cdd:cd08216 119 SKGYIHRSVKASHILIsGDGKVV 141
STKc_Nek11 cd08222
Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA) ...
11-102 1.32e-09

Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 11; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek11 is involved, through direct phosphorylation, in regulating the degradation of Cdc25A (Cell Division Cycle 25 homolog A), which plays a role in cell cycle progression and in activating cyclin dependent kinases. Nek11 is activated by CHK1 (CHeckpoint Kinase 1) and may be involved in the G2/M checkpoint. Nek11 may also play a role in the S-phase checkpoint as well as in DNA replication and genotoxic stress responses. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270861 [Multi-domain]  Cd Length: 260  Bit Score: 53.20  E-value: 1.32e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYA-VVSEEPIYIVTEFMDQGSLLEFLKG--QYSTMLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd08222  50 NREAKLLSKLDHPAIVKFHDsFVEKESFCIVTEYCEGGDLDDKISEykKSGTTIDENQILDWFIQLLLAVQYMHERRILH 129
                        90
                ....*....|....*
gi 472744    88 RDLRAANILVGDNLV 102
Cdd:cd08222 130 RDLKAKNIFLKNNVI 144
STKc_MEKK3 cd06651
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular ...
13-96 1.38e-09

Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK3 is a MAPK kinase kinase (MAPKKK or MKKK), that phosphorylates and activates the MAPK kinase MEK5 (or MKK5), which in turn phosphorylates and activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK3 plays an essential role in embryonic angiogenesis and early heart development. In addition, MEKK3 is involved in interleukin-1 receptor and Toll-like receptor 4 signaling. It is also a specific regulator of the proinflammatory cytokines IL-6 and GM-CSF in some immune cells. MEKK3 also regulates calcineurin, which plays a critical role in T cell activation, apoptosis, skeletal myocyte differentiation, and cardiac hypertrophy. The MEKK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270817 [Multi-domain]  Cd Length: 271  Bit Score: 53.16  E-value: 1.38e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV---SEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQlvDFASQIASGMAYVERMNYVHRD 89
Cdd:cd06651  59 EIQLLKNLQHERIVQYYGCLrdrAEKTLTIFMEYMPGGSVKDQLKAYGALTESVTR--KYTRQILEGMSYLHSNMIVHRD 136

                ....*..
gi 472744    90 LRAANIL 96
Cdd:cd06651 137 IKGANIL 143
STKc_ULK1_2-like cd14120
Catalytic domain of the Serine/Threonine kinases, Unc-51-like kinases 1 and 2, and similar ...
12-96 1.39e-09

Catalytic domain of the Serine/Threonine kinases, Unc-51-like kinases 1 and 2, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK1 is required for efficient amino acid starvation-induced autophagy and mitochondrial clearance. ULK2 is ubiquitously expressed and is essential in autophagy induction. ULK1 and ULK2 have unique and cell-type specific roles, but also display partially redundant roles in starvation-induced autophagy. They both display neuron-specific functions: ULK1 is involved in non-clathrin-coated endocytosis in growth cones, filopodia extension, and axon branching; ULK2 plays a role in axon development. The ULK1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271022 [Multi-domain]  Cd Length: 256  Bit Score: 53.14  E-value: 1.39e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFL--KGQYS-TMLRLpqlvdFASQIASGMAYVERMNYVH 87
Cdd:cd14120  41 KEIKILKELSHENVVALLDCqETSSSVYLVMEYCNGGDLADYLqaKGTLSeDTIRV-----FLQQIAAAMKALHSKGIVH 115

                ....*....
gi 472744    88 RDLRAANIL 96
Cdd:cd14120 116 RDLKPQNIL 124
STKc_Nek4 cd08223
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ...
12-95 1.49e-09

Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek4 is highly abundant in the testis. Its specific function is unknown. Neks are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. Nek4 is one in a family of 11 different Neks (Nek1-11). The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270862 [Multi-domain]  Cd Length: 257  Bit Score: 52.82  E-value: 1.49e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVSEEP--IYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd08223  48 QEAKLLSKLKHPNIVSYKESFEGEDgfLYIVMGFCEGGDLYTRLKEQKGVLLEERQVVEWFVQIAMALQYMHERNILHRD 127

                ....*.
gi 472744    90 LRAANI 95
Cdd:cd08223 128 LKTQNI 133
PTK_Jak1_rpt1 cd05077
Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 1; Jak1 is widely ...
9-97 1.58e-09

Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 1; Jak1 is widely expressed in many tissues. Many cytokines are dependent on Jak1 for signaling, including those that use the shared receptor subunits, common gamma chain (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) and gp130 (IL-6, IL-11, oncostatin M, G-CSF, and IFNs, among others). The many varied interactions of Jak1 and its ubiquitous expression suggest many biological roles. Jak1 is important in neurological development, as well as in lymphoid development and function. It also plays a role in the pathophysiology of cardiac hypertrophy and heart failure. A mutation in the ATP-binding site of Jak1 was identified in a human uterine leiomyosarcoma cell line, resulting in defective cytokine induction and antigen presentation, thus allowing the tumor to evade the immune system. Jak1 is a cytoplasmic (or nonreceptor) PTK containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. The Jak1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270662 [Multi-domain]  Cd Length: 266  Bit Score: 53.02  E-value: 1.58e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     9 AFLQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd05077  54 AFFETASMMRQVSHKHIVLLYGVcVRDVENIMVEEFVEFGPLDLFMHRK-SDVLTTPWKFKVAKQLASALSYLEDKDLVH 132
                        90
                ....*....|
gi 472744    88 RDLRAANILV 97
Cdd:cd05077 133 GNVCTKNILL 142
PTKc_Aatyk1 cd05087
Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 1; PTKs ...
10-101 1.70e-09

Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Aatyk1 (or simply Aatyk) is also called lemur tyrosine kinase 1 (Lmtk1). It is a cytoplasmic (or nonreceptor) kinase containing a long C-terminal region. The expression of Aatyk1 is upregulated during growth arrest and apoptosis in myeloid cells. Aatyk1 has been implicated in neural differentiation, and is a regulator of the Na-K-2Cl cotransporter, a membrane protein involved in cell proliferation and survival, epithelial transport, and blood pressure control. The Aatyk1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270670 [Multi-domain]  Cd Length: 271  Bit Score: 53.07  E-value: 1.70e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQ---LVDFASQIASGMAYVERMNY 85
Cdd:cd05087  44 FLEEAQPYRALQHTNLLQCLAQCAEvTPYLLVMEFCPLGDLKGYLRSCRAAESMAPDpltLQRMACEVACGLLHLHRNNF 123
                        90
                ....*....|....*.
gi 472744    86 VHRDLRAANILVGDNL 101
Cdd:cd05087 124 VHSDLALRNCLLTADL 139
STKc_ULK2 cd14201
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 2; STKs catalyze the ...
12-97 1.92e-09

Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK2 is ubiquitously expressed and is essential in autophagy induction. It displays partially redundant functions with ULK1 and is able to compensate for the loss of ULK1 in non-selective autophagy. It also displays neuron-specific functions and is important in axon development. The ULK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271103 [Multi-domain]  Cd Length: 271  Bit Score: 52.70  E-value: 1.92e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVvSEEP--IYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd14201  54 KEIKILKELQHENIVALYDV-QEMPnsVFLVMEYCNGGDLADYL--QAKGTLSEDTIRVFLQQIAAAMRILHSKGIIHRD 130

                ....*...
gi 472744    90 LRAANILV 97
Cdd:cd14201 131 LKPQNILL 138
STKc_GAK_like cd13985
Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of ...
8-99 2.00e-09

Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes cyclin G-Associated Kinase (GAK), Drosophila melanogaster Numb-Associated Kinase (NAK)-like proteins, and similar protein kinases. GAK plays regulatory roles in clathrin-mediated membrane trafficking, the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses. NAK plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. The GAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270887 [Multi-domain]  Cd Length: 272  Bit Score: 52.72  E-value: 2.00e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKL-RHEKLVQLY--AVVSEEP---IYIVTEFMdQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVE 81
Cdd:cd13985  42 RVAIKEIEIMKRLcGHPNIVQYYdsAILSSEGrkeVLLLMEYC-PGSLVDILEKSPPSPLSEEEVLRIFYQICQAVGHLH 120
                        90       100
                ....*....|....*....|
gi 472744    82 RMN--YVHRDLRAANILVGD 99
Cdd:cd13985 121 SQSppIIHRDIKIENILFSN 140
STKc_STK33 cd14097
Catalytic domain of Serine/Threonine Kinase 33; STKs catalyze the transfer of the ...
1-102 2.04e-09

Catalytic domain of Serine/Threonine Kinase 33; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK33 is highly expressed in the testis and is present in low levels in most tissues. It may be involved in spermatogenesis and organ ontogenesis. It interacts with and phosphorylates vimentin and may be involved in regulating intermediate filament cytoskeletal dynamics. Its role in promoting the cell viability of KRAS-dependent cancer cells is under debate; some studies have found STK33 to promote cancer cell viability, while other studies have found it to be non-essential. KRAS is the most commonly mutated human oncogene, thus, studies on the role of STK33 in KRAS mutant cancer cells are important. The STK33 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270999 [Multi-domain]  Cd Length: 266  Bit Score: 52.55  E-value: 2.04e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVsEEP--IYIVTEFMDQGSLLEFL--KGQYSTmlrlPQLVDFASQIASG 76
Cdd:cd14097  38 KAGSSAVKLLEREVDILKHVNHAHIIHLEEVF-ETPkrMYLVMELCEDGELKELLlrKGFFSE----NETRHIIQSLASA 112
                        90       100
                ....*....|....*....|....*.
gi 472744    77 MAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd14097 113 VAYLHKNDIVHRDLKLENILVKSSII 138
STKc_CDKL2_3 cd07846
Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 2 and 3; ...
11-102 2.34e-09

Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 2 and 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKL2, also called p56 KKIAMRE, is expressed in testis, kidney, lung, and brain. It functions mainly in mature neurons and plays an important role in learning and memory. Inactivation of CDKL3, also called NKIAMRE (NKIATRE in rat), by translocation is associated with mild mental retardation. It has been reported that CDKL3 is lost in leukemic cells having a chromosome arm 5q deletion, and may contribute to the transformed phenotype. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270836 [Multi-domain]  Cd Length: 286  Bit Score: 52.42  E-value: 2.34e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQgSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd07846  48 MREIKMLKQLRHENLVNLIEVFRRKKrWYLVFEFVDH-TVLDDLE-KYPNGLDESRVRKYLFQILRGIDFCHSHNIIHRD 125
                        90
                ....*....|...
gi 472744    90 LRAANILVGDNLV 102
Cdd:cd07846 126 IKPENILVSQSGV 138
STKc_Aurora cd14007
Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of ...
10-100 2.48e-09

Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Aurora kinases are key regulators of mitosis and are essential for the accurate and equal division of genomic material from parent to daughter cells. Yeast contains only one Aurora kinase while most higher eukaryotes have two. Vertebrates contain at least 2 Aurora kinases (A and B); mammals contains a third Aurora kinase gene (C). Aurora-A regulates cell cycle events from the late S-phase through the M-phase including centrosome maturation, mitotic entry, centrosome separation, spindle assembly, chromosome alignment, cytokinesis, and mitotic exit. Aurora-A activation depends on its autophosphorylation and binding to the microtubule-associated protein TPX2. Aurora-B is most active at the transition during metaphase to the end of mitosis. It is critical for accurate chromosomal segregation, cytokinesis, protein localization to the centrosome and kinetochore, correct microtubule-kinetochore attachments, and regulation of the mitotic checkpoint. Aurora-C is mainly expressed in meiotically dividing cells; it was originally discovered in mice as a testis-specific STK called Aie1. Both Aurora-B and -C are chromosomal passenger proteins that can form complexes with INCENP and survivin, and they may have redundant cellular functions. The Aurora subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270909 [Multi-domain]  Cd Length: 253  Bit Score: 52.09  E-value: 2.48e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQystmLRLP--QLVDFASQIASGMAYVERMNYV 86
Cdd:cd14007  47 LRREIEIQSHLRHPNILRLYGYFeDKKRIYLILEYAPNGELYKELKKQ----KRFDekEAAKYIYQLALALDYLHSKNII 122
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:cd14007 123 HRDIKPENILLGSN 136
PLN00034 PLN00034
mitogen-activated protein kinase kinase; Provisional
37-97 2.77e-09

mitogen-activated protein kinase kinase; Provisional


Pssm-ID: 215036 [Multi-domain]  Cd Length: 353  Bit Score: 52.52  E-value: 2.77e-09
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 472744     37 IYIVTEFMDQGSLleflkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:PLN00034 147 IQVLLEFMDGGSL------EGTHIADEQFLADVARQILSGIAYLHRRHIVHRDIKPSNLLI 201
STKc_MEKK2 cd06652
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular ...
13-96 3.07e-09

Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK2 is a MAPK kinase kinase (MAPKKK or MKKK), that phosphorylates and activates the MAPK kinase MEK5 (or MKK5), which in turn phosphorylates and activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK2 also activates ERK1/2, c-Jun N-terminal kinase (JNK) and p38 through their respective MAPKKs MEK1/2, JNK-activating kinase 2 (JNKK2), and MKK3/6. MEKK2 plays roles in T cell receptor signaling, immune synapse formation, cytokine gene expression, as well as in EGF and FGF receptor signaling. The MEKK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270818 [Multi-domain]  Cd Length: 264  Bit Score: 51.97  E-value: 3.07e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV---SEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQlvDFASQIASGMAYVERMNYVHRD 89
Cdd:cd06652  54 EIQLLKNLLHERIVQYYGCLrdpQERTLSIFMEYMPGGSIKDQLKSYGALTENVTR--KYTRQILEGVHYLHSNMIVHRD 131

                ....*..
gi 472744    90 LRAANIL 96
Cdd:cd06652 132 IKGANIL 138
STKc_TGFbR2_like cd14055
Catalytic domain of the Serine/Threonine Kinase, Transforming Growth Factor beta Type II ...
20-103 3.29e-09

Catalytic domain of the Serine/Threonine Kinase, Transforming Growth Factor beta Type II Receptor; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TGFbR2 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. Type II receptors, such as TGFbR2, are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. TGFbR2 acts as the receptor for TGFbeta, which is crucial in growth control and homeostasis in many different tissues. It plays roles in regulating apoptosis and in maintaining the balance between self renewal and cell loss. It also plays a key role in maintaining vascular integrity and in regulating responses to genotoxic stress. Mutations in TGFbR2 can cause aortic aneurysm disorders such as Loeys-Dietz and Marfan syndromes. The TGFbR2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270957 [Multi-domain]  Cd Length: 295  Bit Score: 51.99  E-value: 3.29e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    20 LRHEKLVQLYAvvSEEPI-------YIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASGMAY---------VERM 83
Cdd:cd14055  52 LKHENILQFLT--AEERGvgldrqyWLITAYHENGSLQDYLT---RHILSWEDLCKMAGSLARGLAHlhsdrtpcgRPKI 126
                        90       100
                ....*....|....*....|
gi 472744    84 NYVHRDLRAANILVGDNLVC 103
Cdd:cd14055 127 PIAHRDLKSSNILVKNDGTC 146
STKc_CDK9 cd07865
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 9; STKs ...
8-97 3.65e-09

Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 9; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK9, together with a cyclin partner (cyclin T1, T2a, T2b, or K), is the main component of distinct positive transcription elongation factors (P-TEFb), which function as Ser2 C-terminal domain kinases of RNA polymerase II. P-TEFb participates in multiple steps of gene expression including transcription elongation, mRNA synthesis, processing, export, and translation. It also plays a role in mediating cytokine induced transcription networks such as IL6-induced STAT3 signaling. In addition, the CDK9/cyclin T2a complex promotes muscle differentiation and enhances the function of some myogenic regulatory factors. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK9 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270848 [Multi-domain]  Cd Length: 310  Bit Score: 51.99  E-value: 3.65e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAF----LQEAQVMKKLRHEKLVQLYAVVSEEP---------IYIVTEFMDQgSLLEFLKGQYSTMlRLPQLVDFASQIA 74
Cdd:cd07865  52 EGFpitaLREIKILQLLKHENVVNLIEICRTKAtpynrykgsIYLVFEFCEH-DLAGLLSNKNVKF-TLSEIKKVMKMLL 129
                        90       100
                ....*....|....*....|...
gi 472744    75 SGMAYVERMNYVHRDLRAANILV 97
Cdd:cd07865 130 NGLYYIHRNKILHRDMKAANILI 152
STKc_SGK2 cd05603
Catalytic domain of the Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 2; ...
16-97 3.91e-09

Catalytic domain of the Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGK2 shows a more restricted distribution than SGK1 and is most abundantly expressed in epithelial tissues including kidney, liver, pancreas, and the choroid plexus of the brain. In vitro cellular assays show that SGK2 can stimulate the activity of ion channels, the glutamate transporter EEAT4, and the glutamate receptors, GluR6 and GLUR1. The SGK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270754 [Multi-domain]  Cd Length: 321  Bit Score: 51.89  E-value: 3.91e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    16 VMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLleFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAAN 94
Cdd:cd05603  49 LLKNLKHPFLVGLhYSFQTSEKLYFVLDYVNGGEL--FFHLQRERCFLEPRARFYAAEVASAIGYLHSLNIIYRDLKPEN 126

                ...
gi 472744    95 ILV 97
Cdd:cd05603 127 ILL 129
STKc_BRSK1_2 cd14081
Catalytic domain of Brain-specific serine/threonine-protein kinases 1 and 2; STKs catalyze the ...
13-101 3.92e-09

Catalytic domain of Brain-specific serine/threonine-protein kinases 1 and 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BRSK1, also called SAD-B or SAD1 (Synapses of Amphids Defective homolog 1), and BRSK2, also called SAD-A, are highly expressed in mammalian forebrain. They play important roles in establishing neuronal polarity. BRSK1/2 double knock-out mice die soon after birth, showing thin cerebral cortices due to disordered subplate layers and neurons that lack distinct axons and dendrites. BRSK1 regulates presynaptic neurotransmitter release. Its activity fluctuates during cell cysle progression and it acts as a regulator of centrosome duplication. BRSK2 is also abundant in pancreatic islets, where it is involved in the regulation of glucose-stimulated insulin secretion. The BRSK1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270983 [Multi-domain]  Cd Length: 255  Bit Score: 51.87  E-value: 3.92e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFL--KGqystmlRLP--QLVDFASQIASGMAYVERMNYVH 87
Cdd:cd14081  51 EIAIMKLIEHPNVLKLYDVYEnKKYLYLVLEYVSGGELFDYLvkKG------RLTekEARKFFRQIISALDYCHSHSICH 124
                        90
                ....*....|....
gi 472744    88 RDLRAANILVGDNL 101
Cdd:cd14081 125 RDLKPENLLLDEKN 138
PKc_MAPKK cd06605
Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein Kinase ...
11-97 4.08e-09

Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein Kinase Kinase; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MAPKKs are dual-specificity PKs that phosphorylate their downstream targets, MAPKs, at specific threonine and tyrosine residues. The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising the MAPK, which is phosphorylated and activated by a MAPK kinase (MAPKK or MKK or MAP2K), which itself is phosphorylated and activated by a MAPKK kinase (MAPKKK or MKKK or MAP3K). There are three MAPK subfamilies: extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In mammalian cells, there are seven MAPKKs (named MKK1-7) and 20 MAPKKKs. Each MAPK subfamily can be activated by at least two cognate MAPKKs and by multiple MAPKKKs. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270782 [Multi-domain]  Cd Length: 265  Bit Score: 51.58  E-value: 4.08e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKgqYSTMLRLPQLVDFASQIASGMAYV-ERMNYVHR 88
Cdd:cd06605  47 LRELDVLHKCNSPYIVGFYgAFYSEGDISICMEYMDGGSLDKILK--EVGRIPERILGKIAVAVVKGLIYLhEKHKIIHR 124

                ....*....
gi 472744    89 DLRAANILV 97
Cdd:cd06605 125 DVKPSNILV 133
STKc_MLCK4 cd14193
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 4; STKs catalyze ...
13-96 4.30e-09

Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. In vertebrates, different MLCKs function in smooth (MLCK1), skeletal (MLCK2), and cardiac (MLCK3) muscles. A fourth protein, MLCK4, has also been identified through comprehensive genome analysis although it has not been biochemically characterized. MLCK4 (or MYLK4 or SgK085) contains a single kinase domain near the C-terminus. The MLCK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271095 [Multi-domain]  Cd Length: 261  Bit Score: 51.84  E-value: 4.30e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLpQLVDFASQIASGMAYVERMNYVHRDLR 91
Cdd:cd14193  51 EIEVMNQLNHANLIQLYdAFESRNDIVLVMEYVDGGELFDRIIDENYNLTEL-DTILFIKQICEGIQYMHQMYILHLDLK 129

                ....*
gi 472744    92 AANIL 96
Cdd:cd14193 130 PENIL 134
PKc_TESK cd14155
Catalytic domain of the Dual-specificity protein kinase, Testicular protein kinase; ...
11-97 4.49e-09

Catalytic domain of the Dual-specificity protein kinase, Testicular protein kinase; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TESK proteins phosphorylate cofilin and induce actin cytoskeletal reorganization. In the Drosphila eye, TESK is required for epithelial cell organization. Mammals contain two TESK proteins, TESK1 and TESK2, which are highly expressed in testis and play roles in spermatogenesis. TESK1 is found in testicular germ cells while TESK2 is expressed mainly in nongerminal Sertoli cells. TESK1 is stimulated by integrin-mediated signaling pathways. It regulates cell spreading and focal adhesion formation. The TESK subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271057 [Multi-domain]  Cd Length: 253  Bit Score: 51.71  E-value: 4.49e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd14155  36 LREVQLMNRLSHPNILRFMGVcVHQGQLHALTEYINGGNLEQLL--DSNEPLSWTVRVKLALDIARGLSYLHSKGIFHRD 113

                ....*...
gi 472744    90 LRAANILV 97
Cdd:cd14155 114 LTSKNCLI 121
STKc_Twitchin_like cd14114
The catalytic domain of the Giant Serine/Threonine Kinases, Twitchin and Projectin; STKs ...
2-96 4.93e-09

The catalytic domain of the Giant Serine/Threonine Kinases, Twitchin and Projectin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Caenorhabditis elegans and Aplysia californica Twitchin, Drosophila melanogaster Projectin, and similar proteins. These are very large muscle proteins containing multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains and a single kinase domain near the C-terminus. Twitchin and Projectin are both associated with thick filaments. Twitchin is localized in the outer parts of A-bands and is involved in regulating muscle contraction. It interacts with the myofibrillar proteins myosin and actin in a phosphorylation-dependent manner, and may be involved in regulating the myosin cross-bridge cycle. The kinase activity of Twitchen is activated by Ca2+ and the Ca2+ binding protein S100A1. Projectin is associated with the end of thick filaments and is a component of flight muscle connecting filaments. The kinase domain of Projectin may play roles in autophosphorylation and transphosphorylation, which impact the formation of myosin filaments. The Twitchin-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271016 [Multi-domain]  Cd Length: 259  Bit Score: 51.43  E-value: 4.93e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     2 PGTMSPEAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRlPQLVDFASQIASGMAYV 80
Cdd:cd14114  38 PHESDKETVRKEIQIMNQLHHPKLINLHdAFEDDNEMVLILEFLSGGELFERIAAEHYKMSE-AEVINYMRQVCEGLCHM 116
                        90
                ....*....|....*.
gi 472744    81 ERMNYVHRDLRAANIL 96
Cdd:cd14114 117 HENNIVHLDIKPENIM 132
STKc_TGFbR_I cd14056
Catalytic domain of the Serine/Threonine Kinases, Transforming Growth Factor beta family Type ...
20-103 5.20e-09

Catalytic domain of the Serine/Threonine Kinases, Transforming Growth Factor beta family Type I Receptors; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of type I receptors for the TGFbeta family of secreted signaling molecules including TGFbeta, bone morphogenetic proteins, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation through trans-phosphorylation by type II receptors, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. They are inhibited by the immunophilin FKBP12, which is thought to control leaky signaling caused by receptor oligomerization in the absence of ligand. The TGFbR-I subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270958 [Multi-domain]  Cd Length: 287  Bit Score: 51.50  E-value: 5.20e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    20 LRHEKLVQLYA--VVSEEPI---YIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASGMAYV--ERMNY------V 86
Cdd:cd14056  46 LRHENILGFIAadIKSTGSWtqlWLITEYHEHGSLYDYLQ---RNTLDTEEALRLAYSAASGLAHLhtEIVGTqgkpaiA 122
                        90
                ....*....|....*..
gi 472744    87 HRDLRAANILVGDNLVC 103
Cdd:cd14056 123 HRDLKSKNILVKRDGTC 139
STKc_PLK2 cd14188
Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 2; STKs catalyze the ...
8-101 5.66e-09

Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK2, also called Snk (serum-inducible kinase), functions in G1 progression, S-phase arrest, and centriole duplication. Its gene is responsive to both growth factors and cellular stress, is a transcriptional target of p53, and activates a G2-M checkpoint. The PLK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271090 [Multi-domain]  Cd Length: 255  Bit Score: 51.17  E-value: 5.66e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQysTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd14188  46 EKIDKEIELHRILHHKHVVQFYHYFEDkENIYILLEYCSRRSMAHILKAR--KVLTEPEVRYYLRQIVSGLKYLHEQEIL 123
                        90
                ....*....|....*
gi 472744    87 HRDLRAANILVGDNL 101
Cdd:cd14188 124 HRDLKLGNFFINENM 138
STKc_Chk2 cd14084
Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2; STKs catalyze ...
13-100 6.15e-09

Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Checkpoint Kinase 2 (Chk2) plays an important role in cellular responses to DNA double-strand breaks and related lesions. It is phosphorylated and activated by ATM kinase, resulting in its dissociation from sites of damage to phosphorylate downstream targets such as BRCA1, p53, cell cycle transcription factor E2F1, the promyelocytic leukemia protein (PML) involved in apoptosis, and CDC25 phosphatases, among others. Mutations in Chk2 is linked to a variety of cancers including familial breast cancer, myelodysplastic syndromes, prostate cancer, lung cancer, and osteosarcomas. Chk2 contains an N-terminal SQ/TQ cluster domain (SCD), a central forkhead-associated (FHA) domain, and a C-terminal catalytic kinase domain. The Chk2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270986 [Multi-domain]  Cd Length: 275  Bit Score: 51.24  E-value: 6.15e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGqySTMLRLPQLVDFASQIASGMAYVERMNYVHRDLR 91
Cdd:cd14084  61 EIEILKKLSHPCIIKIEDFFdAEDDYYIVLELMEGGELFDRVVS--NKRLKEAICKLYFYQMLLAVKYLHSNGIIHRDLK 138

                ....*....
gi 472744    92 AANILVGDN 100
Cdd:cd14084 139 PENVLLSSQ 147
STKc_RIP2 cd14026
Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 2; STKs catalyze ...
11-99 7.16e-09

Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP2, also called RICK or CARDIAK, harbors a C-terminal Caspase Activation and Recruitment domain (CARD) belonging to the Death domain (DD) superfamily. It functions as an effector kinase downstream of the pattern recognition receptors from the Nod-like (NLR) family, Nod1 and Nod2, which recognizes bacterial peptidoglycans released upon infection. RIP2 may also be involved in regulating wound healing and keratinocyte proliferation. RIP kinases serve as essential sensors of cellular stress. The RIP2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270928 [Multi-domain]  Cd Length: 284  Bit Score: 51.07  E-value: 7.16e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFL--KGQYSTM---LRLPQLvdfaSQIASGMAYVERMN 84
Cdd:cd14026  45 LKEAEILHKARFSYILPILGICNEpEFLGIVTEYMTNGSLNELLheKDIYPDVawpLRLRIL----YEIALGVNYLHNMS 120
                        90
                ....*....|....*..
gi 472744    85 --YVHRDLRAANILVGD 99
Cdd:cd14026 121 ppLLHHDLKTQNILLDG 137
STKc_CAMKK cd14118
Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase; ...
12-100 7.67e-09

Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271020 [Multi-domain]  Cd Length: 275  Bit Score: 51.21  E-value: 7.67e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV---SEEPIYIVTEFMDQGSLLE------FLKGQYSTMLRlpqlvdfasQIASGMAYVER 82
Cdd:cd14118  63 REIAILKKLDHPNVVKLVEVLddpNEDNLYMVFELVDKGAVMEvptdnpLSEETARSYFR---------DIVLGIEYLHY 133
                        90
                ....*....|....*...
gi 472744    83 MNYVHRDLRAANILVGDN 100
Cdd:cd14118 134 QKIIHRDIKPSNLLLGDD 151
STKc_Sty1_Hog1 cd07856
Catalytic domain of the Serine/Threonine Kinases, Fungal Mitogen-Activated Protein Kinases ...
12-100 7.94e-09

Catalytic domain of the Serine/Threonine Kinases, Fungal Mitogen-Activated Protein Kinases Sty1 and Hog1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the MAPKs Sty1 from Schizosaccharomyces pombe, Hog1 from Saccharomyces cerevisiae, and similar proteins. Sty1 and Hog1 are stress-activated MAPKs that partipate in transcriptional regulation in response to stress. Sty1 is activated in response to oxidative stress, osmotic stress, and UV radiation. It is regulated by the MAP2K Wis1, which is activated by the MAP3Ks Wis4 and Win1, which receive signals of the stress condition from membrane-spanning histidine kinases Mak1-3. Activated Sty1 stabilizes the Atf1 transcription factor and induces transcription of Atf1-dependent genes of the core environmetal stress response. Hog1 is the key element in the high osmolarity glycerol (HOG) pathway and is activated upon hyperosmotic stress. Activated Hog1 accumulates in the nucleus and regulates stress-induced transcription. The HOG pathway is mediated by two transmembrane osmosensors, Sln1 and Sho1. MAPKs are important mediators of cellular responses to extracellular signals. The Sty1/Hog1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270843 [Multi-domain]  Cd Length: 328  Bit Score: 51.03  E-value: 7.94e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVSE--EPIYIVTEFM--DQGSLLEF--LKGQYSTMlrlpqlvdFASQIASGMAYVERMNY 85
Cdd:cd07856  58 RELKLLKHLRHENIISLSDIFISplEDIYFVTELLgtDLHRLLTSrpLEKQFIQY--------FLYQILRGLKYVHSAGV 129
                        90
                ....*....|....*
gi 472744    86 VHRDLRAANILVGDN 100
Cdd:cd07856 130 IHRDLKPSNILVNEN 144
STKc_LKB1 cd14119
Catalytic domain of the Serine/Threonine kinase, Liver Kinase B1; STKs catalyze the transfer ...
12-97 8.11e-09

Catalytic domain of the Serine/Threonine kinase, Liver Kinase B1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LKB1, also called STK11, was first identified as a tumor suppressor responsible for Peutz-Jeghers syndrome, a disorder that leads to an increased risk of spontaneous epithelial cancer. It serves as a master upstream kinase that activates AMP-activated protein kinase (AMPK) and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. To be activated, LKB1 requires the adaptor proteins STe20-Related ADaptor (STRAD) and mouse protein 25 (MO25). The LKB1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271021 [Multi-domain]  Cd Length: 255  Bit Score: 50.72  E-value: 8.11e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVSEE---PIYIVTEFMdQGSLLEFLKgqYSTMLRLP--QLVDFASQIASGMAYVERMNYV 86
Cdd:cd14119  43 REIQILRRLNHRNVIKLVDVLYNEekqKLYMVMEYC-VGGLQEMLD--SAPDKRLPiwQAHGYFVQLIDGLEYLHSQGII 119
                        90
                ....*....|.
gi 472744    87 HRDLRAANILV 97
Cdd:cd14119 120 HKDIKPGNLLL 130
STKc_NIM1 cd14075
Catalytic domain of the Serine/Threonine Kinase, NIM1; STKs catalyze the transfer of the ...
12-100 8.56e-09

Catalytic domain of the Serine/Threonine Kinase, NIM1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NIM1 is a widely-expressed kinase belonging to the AMP-activated protein kinase (AMPK) subfamily. Although present in most tissues, NIM1 kinase activity is only observed in the brain and testis. NIM1 is capable of autophosphorylating and activating itself, but may be present in other tissues in the inactive form. The physiological function of NIM1 has yet to be elucidated. The NIM1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270977 [Multi-domain]  Cd Length: 255  Bit Score: 50.80  E-value: 8.56e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLkgqySTMLRLPQLVD---FAsQIASGMAYVERMNYVH 87
Cdd:cd14075  50 REISSMEKLHHPNIIRLYEVVeTLSKLHLVMEYASGGELYTKI----STEGKLSESEAkplFA-QIVSAVKHMHENNIIH 124
                        90
                ....*....|...
gi 472744    88 RDLRAANILVGDN 100
Cdd:cd14075 125 RDLKAENVFYASN 137
STKc_CDK10 cd07845
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 10; STKs ...
7-100 8.84e-09

Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 10; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK10, also called PISSLRE, is essential for cell growth and proliferation, and acts through the G2/M phase of the cell cycle. CDK10 has also been identified as an important factor in endocrine therapy resistance in breast cancer. CDK10 silencing increases the transcription of c-RAF and the activation of the p42/p44 MAPK pathway, which leads to antiestrogen resistance. Patients who express low levels of CDK10 relapse early on tamoxifen. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK10 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173742 [Multi-domain]  Cd Length: 309  Bit Score: 50.83  E-value: 8.84e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLRHEKLVQLYAVV---SEEPIYIVTEFMDQ--GSLLEFLKGQYSTmlrlPQLVDFASQIASGMAYVE 81
Cdd:cd07845  50 PISSLREITLLLNLRHPNIVELKEVVvgkHLDSIFLVMEYCEQdlASLLDNMPTPFSE----SQVKCLMLQLLRGLQYLH 125
                        90
                ....*....|....*....
gi 472744    82 RMNYVHRDLRAANILVGDN 100
Cdd:cd07845 126 ENFIIHRDLKVSNLLLTDK 144
STKc_CaMKK1 cd14200
Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 1; ...
1-100 8.88e-09

Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). CaMKK1, also called CaMKK alpha, is involved in the regulation of glucose uptake in skeletal muscles, independently of AMPK and PKB activation. It also play roles in learning and memory. Studies on CaMKK1 knockout mice reveal deficits in fear conditioning. The CaMKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271102 [Multi-domain]  Cd Length: 284  Bit Score: 51.10  E-value: 8.88e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     1 KPGTMSP-EAFLQEAQVMKKLRHEKLVQLYAVV---SEEPIYIVTEFMDQGSLLE------FLKGQYSTMLRlpqlvdfa 70
Cdd:cd14200  60 QAKPLAPlERVYQEIAILKKLDHVNIVKLIEVLddpAEDNLYMVFDLLRKGPVMEvpsdkpFSEDQARLYFR-------- 131
                        90       100       110
                ....*....|....*....|....*....|
gi 472744    71 sQIASGMAYVERMNYVHRDLRAANILVGDN 100
Cdd:cd14200 132 -DIVLGIEYLHYQKIVHRDIKPSNLLLGDD 160
PTZ00024 PTZ00024
cyclin-dependent protein kinase; Provisional
11-103 9.66e-09

cyclin-dependent protein kinase; Provisional


Pssm-ID: 240233 [Multi-domain]  Cd Length: 335  Bit Score: 50.91  E-value: 9.66e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     11 LQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDqGSLLEFLKGQysTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:PTZ00024  68 LRELKIMNEIKHENIMGLVDVyVEGDFINLVMDIMA-SDLKKVVDRK--IRLTESQVKCILLQILNGLNVLHKWYFMHRD 144
                         90
                 ....*....|....
gi 472744     90 LRAANILVGDNLVC 103
Cdd:PTZ00024 145 LSPANIFINSKGIC 158
PLN00009 PLN00009
cyclin-dependent kinase A; Provisional
7-97 1.12e-08

cyclin-dependent kinase A; Provisional


Pssm-ID: 177649 [Multi-domain]  Cd Length: 294  Bit Score: 50.59  E-value: 1.12e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744      7 PEAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDqgslLEFLKGQYST--MLRLPQLVD-FASQIASGMAYVER 82
Cdd:PLN00009  45 PSTAIREISLLKEMQHGNIVRLQDVVhSEKRLYLVFEYLD----LDLKKHMDSSpdFAKNPRLIKtYLYQILRGIAYCHS 120
                         90
                 ....*....|....*
gi 472744     83 MNYVHRDLRAANILV 97
Cdd:PLN00009 121 HRVLHRDLKPQNLLI 135
STKc_Nek8 cd08220
Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA) ...
8-97 1.24e-08

Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 8; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek8 contains an N-terminal kinase catalytic domain and a C-terminal RCC1 (regulator of chromosome condensation) domain. A double point mutation in Nek8 causes cystic kidney disease in mice that genetically resembles human autosomal recessive polycystic kidney disease (ARPKD). Nek8 is also associated with a rare form of juvenile renal cystic disease, nephronophthisis type 9. It has been suggested that a defect in the ciliary localization of Nek8 contributes to the development of cysts manifested by these diseases. Nek8 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270859 [Multi-domain]  Cd Length: 256  Bit Score: 50.50  E-value: 1.24e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd08220  44 QAALNEVKVLSMLHHPNIIEYYeSFLEDKALMIVMEYAPGGTLFEYIQQRKGSLLSEEEILHFFVQILLALHHVHSKQIL 123
                        90
                ....*....|.
gi 472744    87 HRDLRAANILV 97
Cdd:cd08220 124 HRDLKTQNILL 134
STKc_CDK5 cd07839
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 5; STKs ...
7-100 1.46e-08

Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK5 is unusual in that it is regulated by non-cyclin proteins, p35 and p39. It is highly expressed in the nervous system and is critical in normal neural development and function. It plays a role in neuronal migration and differentiation, and is also important in synaptic plasticity and learning. CDK5 also participates in protecting against cell death and promoting angiogenesis. Impaired CDK5 activity is implicated in Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease and acute neuronal injury. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 143344 [Multi-domain]  Cd Length: 284  Bit Score: 50.12  E-value: 1.46e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQgSLLEFLKGQYSTMLRlPQLVDFASQIASGMAYVERMNY 85
Cdd:cd07839  43 PSSALREICLLKELKHKNIVRLYDVLhSDKKLTLVFEYCDQ-DLKKYFDSCNGDIDP-EIVKSFMFQLLKGLAFCHSHNV 120
                        90
                ....*....|....*
gi 472744    86 VHRDLRAANILVGDN 100
Cdd:cd07839 121 LHRDLKPQNLLINKN 135
STKc_ULK1 cd14202
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 1; STKs catalyze the ...
12-97 1.47e-08

Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK1 is required for efficient amino acid starvation-induced autophagy and mitochondrial clearance. It associates with three autophagy-related proteins (Atg13, FIP200 amd Atg101) to form the ULK1 complex. All fours proteins are essential for autophagosome formation. ULK1 is regulated by both mammalian target-of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK). mTORC1 negatively regulates the ULK1 complex in a nutrient-dependent manner while AMPK stimulates autophagy by inhibiting mTORC1. ULK1 also plays neuron-specific roles and is involved in non-clathrin-coated endocytosis in growth cones, filopodia extension, neurite extension, and axon branching. The ULK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271104 [Multi-domain]  Cd Length: 267  Bit Score: 50.39  E-value: 1.47e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFL--KGQYST-MLRLpqlvdFASQIASGMAYVERMNYVH 87
Cdd:cd14202  50 KEIKILKELKHENIVALYDFQEiANSVYLVMEYCNGGDLADYLhtMRTLSEdTIRL-----FLQQIAGAMKMLHSKGIIH 124
                        90
                ....*....|
gi 472744    88 RDLRAANILV 97
Cdd:cd14202 125 RDLKPQNILL 134
PTKc_Wee1_fungi cd14052
Catalytic domain of the Protein Tyrosine Kinases, Fungal Wee1 proteins; PTKs catalyze the ...
11-97 1.97e-08

Catalytic domain of the Protein Tyrosine Kinases, Fungal Wee1 proteins; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of fungal Wee1 proteins, also called Swe1 in budding yeast and Mik1 in fission yeast. Yeast Wee1 is required to control cell size. Wee1 is a cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. The fungal Wee1 subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270954 [Multi-domain]  Cd Length: 278  Bit Score: 49.73  E-value: 1.97e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLR---HEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKgQYSTMLRL--PQLVDFASQIASGMAYVERMN 84
Cdd:cd14052  48 LEEVSILRELTldgHDNIVQLIDSWEYHGhLYIQTELCENGSLDVFLS-ELGLLGRLdeFRVWKILVELSLGLRFIHDHH 126
                        90
                ....*....|...
gi 472744    85 YVHRDLRAANILV 97
Cdd:cd14052 127 FVHLDLKPANVLI 139
STKc_DCKL cd14095
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase (also called ...
13-100 2.04e-08

Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase (also called Doublecortin-like and CAM kinase-like); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL (or DCAMKL) proteins belong to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. In addition, DCKL proteins contain a C-terminal kinase domain with similarity to CAMKs. They are involved in the regulation of cAMP signaling. Vertebrates contain three DCKL proteins (DCKL1-3); DCKL1 and 2 also contain a serine, threonine, and proline rich domain (SP), while DCKL3 contains only a single DCX domain instead of tandem domains. The DCKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270997 [Multi-domain]  Cd Length: 258  Bit Score: 49.63  E-value: 2.04e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLR 91
Cdd:cd14095  48 EVAILRRVKHPNIVQLIEEYdTDTELYLVMELVKGGDLFDAI--TSSTKFTERDASRMVTDLAQALKYLHSLSIVHRDIK 125

                ....*....
gi 472744    92 AANILVGDN 100
Cdd:cd14095 126 PENLLVVEH 134
STKc_CDK7 cd07841
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 7; STKs ...
11-100 2.24e-08

Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK7 plays essential roles in the cell cycle and in transcription. It associates with cyclin H and MAT1 and acts as a CDK-Activating Kinase (CAK) by phosphorylating and activating cell cycle CDKs (CDK1/2/4/6). In the brain, it activates CDK5. CDK7 is also a component of the general transcription factor TFIIH, which phosphorylates the C-terminal domain (CTD) of RNA polymerase II when it is bound with unphosphorylated DNA, as present in the pre-initiation complex. Following phosphorylation, the CTD dissociates from the DNA which allows transcription initiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK7 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270833 [Multi-domain]  Cd Length: 298  Bit Score: 49.88  E-value: 2.24e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDqgSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd07841  50 LREIKLLQELKHPNIIGLLDVFGHKSnINLVFEFME--TDLEKVIKDKSIVLTPADIKSYMLMTLRGLEYLHSNWILHRD 127
                        90
                ....*....|.
gi 472744    90 LRAANILVGDN 100
Cdd:cd07841 128 LKPNNLLIASD 138
STKc_CCRK cd07832
Catalytic domain of the Serine/Threonine Kinase, Cell Cycle-Related Kinase; STKs catalyze the ...
7-99 2.54e-08

Catalytic domain of the Serine/Threonine Kinase, Cell Cycle-Related Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CCRK was previously called p42. It is a Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK) which is essential for the activation of CDK2. It is indispensable for cell growth and has been implicated in the progression of glioblastoma multiforme. In the heart, a splice variant of CCRK with a different C-terminal half is expressed; this variant promotes cardiac cell growth and survival and is significantly down-regulated during the development of heart failure. The CCRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270826 [Multi-domain]  Cd Length: 287  Bit Score: 49.63  E-value: 2.54e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLR-HEKLVQLYAVVSE-EPIYIVTEFMDqGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMN 84
Cdd:cd07832  43 PNQALREIKALQACQgHPYVVKLRDVFPHgTGFVLVFEYML-SSLSEVLR-DEERPLTEAQVKRYMRMLLKGVAYMHANR 120
                        90
                ....*....|....*
gi 472744    85 YVHRDLRAANILVGD 99
Cdd:cd07832 121 IMHRDLKPANLLISS 135
STKc_Kin1_2 cd14077
Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases; STKs catalyze the ...
12-100 2.66e-08

Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of yeast Kin1, Kin2, and similar proteins. Fission yeast Kin1 is a membrane-associated kinase that is involved in regulating cell surface cohesiveness during interphase. It also plays a role during mitosis, linking actomyosin ring assembly with septum synthesis and membrane closure to ensure separation of daughter cells. Budding yeast Kin1 and Kin2 act downstream of the Rab-GTPase Sec4 and are associated with the exocytic apparatus; they play roles in the secretory pathway. The Kin1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270979 [Multi-domain]  Cd Length: 267  Bit Score: 49.37  E-value: 2.66e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd14077  62 REAALSSLLNHPHICRLRDFLrTPNHYYMLFEYVDGGQLLDYIISHGK--LKEKQARKFARQIASALDYLHRNSIVHRDL 139
                        90
                ....*....|
gi 472744    91 RAANILVGDN 100
Cdd:cd14077 140 KIENILISKS 149
STKc_LRRK1 cd14067
Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 1; STKs catalyze ...
10-97 2.96e-08

Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LRRK1 is one of two vertebrate LRRKs which show complementary expression in the brain. It can form heterodimers with LRRK2, and may influence the age of onset of LRRK2-associated Parkinson's disease. LRRKs are also classified as ROCO proteins because they contain a ROC (Ras of complex proteins)/GTPase domain followed by a COR (C-terminal of ROC) domain of unknown function. In addition, LRRKs contain a catalytic kinase domain and protein-protein interaction motifs including a WD40 domain, LRRs and ankyrin (ANK) repeats. LRRKs possess both GTPase and kinase activities, with the ROC domain acting as a molecular switch for the kinase domain, cycling between a GTP-bound state which drives kinase activity and a GDP-bound state which decreases the activity. The LRRK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270969 [Multi-domain]  Cd Length: 276  Bit Score: 49.58  E-value: 2.96e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVvSEEPIYIVTEFMDQGSLLEFLKGQY--STMLRLPQLVDF--ASQIASGMAYVERMNY 85
Cdd:cd14067  57 FRQEASMLHSLQHPCIVYLIGI-SIHPLCFALELAPLGSLNTVLEENHkgSSFMPLGHMLTFkiAYQIAAGLAYLHKKNI 135
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd14067 136 IFCDLKSDNILV 147
PTKc_Aatyk3 cd14206
Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 3; PTKs ...
3-101 3.07e-08

Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Aatyk3, also called lemur tyrosine kinase 3 (Lmtk3) is a receptor kinase containing a transmembrane segment and a long C-terminal cytoplasmic tail with a catalytic domain. The function of Aatyk3 is still unknown. The Aatyk3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K).


Pssm-ID: 271108 [Multi-domain]  Cd Length: 276  Bit Score: 49.57  E-value: 3.07e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     3 GTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVD--------FASQI 73
Cdd:cd14206  37 GPLEQRKFISEAQPYRSLQHPNILQCLGLCTETiPFLLIMEFCQLGDLKRYLRAQRKADGMTPDLPTrdlrtlqrMAYEI 116
                        90       100
                ....*....|....*....|....*...
gi 472744    74 ASGMAYVERMNYVHRDLRAANILVGDNL 101
Cdd:cd14206 117 TLGLLHLHKNNYIHSDLALRNCLLTSDL 144
STKc_SnRK3 cd14663
Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein ...
12-97 3.15e-08

Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein kinase subfamily 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The SnRKs form three different subfamilies designated SnRK1-3. SnRK3 is represented in this cd. The SnRK3 group contains members also known as CBL-interacting protein kinase, salt overly sensitive 2, SOS3-interacting proteins and protein kinase S. These kinases interact with calcium-binding proteins such as SOS3, SCaBPs, and CBL proteins, and are involved in responses to salt stress and in sugar and ABA signaling. The SnRKs belong to a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271133 [Multi-domain]  Cd Length: 256  Bit Score: 49.33  E-value: 3.15e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLkgqySTMLRLPQLV--DFASQIASGMAYVERMNYVHR 88
Cdd:cd14663  49 REIAIMKLLRHPNIVELHEVMaTKTKIFFVMELVTGGELFSKI----AKNGRLKEDKarKYFQQLIDAVDYCHSRGVFHR 124

                ....*....
gi 472744    89 DLRAANILV 97
Cdd:cd14663 125 DLKPENLLL 133
STKc_STK36 cd14002
Catalytic domain of Serine/Threonine Kinase 36; STKs catalyze the transfer of the ...
12-103 3.46e-08

Catalytic domain of Serine/Threonine Kinase 36; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK36, also called Fused (or Fu) kinase, is involved in the Hedgehog signaling pathway. It is activated by the Smoothened (SMO) signal transducer, resulting in the stabilization of GLI transcription factors and the phosphorylation of SUFU to facilitate the nuclear accumulation of GLI. In Drosophila, Fused kinase is maternally required for proper segmentation during embryonic development and for the development of legs and wings during the larval stage. In mice, STK36 is not necessary for embryonic development, although mice deficient in STK36 display growth retardation postnatally. The STK36 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270904 [Multi-domain]  Cd Length: 253  Bit Score: 49.17  E-value: 3.46e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMdQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd14002  49 QEIEILRKLNHPNIIEMLdSFETKKEFVVVTEYA-QGELFQIL--EDDGTLPEEEVRSIAKQLVSALHYLHSNRIIHRDM 125
                        90
                ....*....|...
gi 472744    91 RAANILVGDNLVC 103
Cdd:cd14002 126 KPQNILIGKGGVV 138
STKc_MST1_2 cd06612
Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2; ...
8-97 3.61e-08

Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST1, MST2, and related proteins including Drosophila Hippo and Dictyostelium discoideum Krs1 (kinase responsive to stress 1). MST1/2 and Hippo are involved in a conserved pathway that governs cell contact inhibition, organ size control, and tumor development. MST1 activates the mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-terminal kinase (JNK) through MKK7 and MEKK1 by acting as a MAPK kinase kinase kinase. Activation of JNK by MST1 leads to caspase activation and apoptosis. MST1 has also been implicated in cell proliferation and differentiation. Krs1 may regulate cell growth arrest and apoptosis in response to cellular stress. The MST1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132943 [Multi-domain]  Cd Length: 256  Bit Score: 49.19  E-value: 3.61e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYA-VVSEEPIYIVTEFMDQGSLLEFLKgqySTMLRLPQlvdfaSQIAS-------GMAY 79
Cdd:cd06612  43 QEIIKEISILKQCDSPYIVKYYGsYFKNTDLWIVMEYCGAGSVSDIMK---ITNKTLTE-----EEIAAilyqtlkGLEY 114
                        90
                ....*....|....*...
gi 472744    80 VERMNYVHRDLRAANILV 97
Cdd:cd06612 115 LHSNKKIHRDIKAGNILL 132
STKc_MLCK3 cd14192
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 3; STKs catalyze ...
13-96 4.13e-08

Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK3 (or MYLK3) phosphorylates myosin regulatory light chain 2 and controls the contraction of cardiac muscles. It is expressed specifically in both the atrium and ventricle of the heart and its expression is regulated by the cardiac protein Nkx2-5. MLCK3 plays an important role in cardiogenesis by regulating the assembly of cardiac sarcomeres, the repeating contractile unit of striated muscle. MLCK3 contains a single kinase domain near the C-terminus and a unique N-terminal half, and unlike MLCK1/2, it does not appear to be regulated by Ca2+/calmodulin. The MLCK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271094 [Multi-domain]  Cd Length: 261  Bit Score: 48.80  E-value: 4.13e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVdFASQIASGMAYVERMNYVHRDLR 91
Cdd:cd14192  51 EINIMNQLNHVNLIQLYdAFESKTNLTLIMEYVDGGELFDRITDESYQLTELDAIL-FTRQICEGVHYLHQHYILHLDLK 129

                ....*
gi 472744    92 AANIL 96
Cdd:cd14192 130 PENIL 134
STKc_CaMKK2 cd14199
Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 2; ...
8-100 4.39e-08

Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). CaMKK2, also called CaMKK beta, is one of the most versatile CaMKs. It is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. CaMKK2 contains unique N- and C-terminal domains and a central catalytic kinase domain that is followed by a regulatory domain that bears overlapping autoinhibitory and CaM-binding regions. It can be activated by signaling through G-coupled receptors, IP3 receptors, plasma membrane ion channels, and Toll-like receptors. Thus, CaMKK2 acts as a molecular hub that is capable of receiving and decoding signals from diverse pathways. The CaMKK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271101 [Multi-domain]  Cd Length: 286  Bit Score: 48.81  E-value: 4.39e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVV---SEEPIYIVTEFMDQGSLLEF--LKGQYSTMLRLpqlvdFASQIASGMAYVER 82
Cdd:cd14199  70 ERVYQEIAILKKLDHPNVVKLVEVLddpSEDHLYMVFELVKQGPVMEVptLKPLSEDQARF-----YFQDLIKGIEYLHY 144
                        90
                ....*....|....*...
gi 472744    83 MNYVHRDLRAANILVGDN 100
Cdd:cd14199 145 QKIIHRDVKPSNLLVGED 162
PTK_Tyk2_rpt1 cd05076
Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Tyrosine kinase 2; Tyk2 is ...
9-97 4.62e-08

Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Tyrosine kinase 2; Tyk2 is widely expressed in many tissues. It is involved in signaling via the cytokine receptors IFN-alphabeta, IL-6, IL-10, IL-12, IL-13, and IL-23. It mediates cell surface urokinase receptor (uPAR) signaling and plays a role in modulating vascular smooth muscle cell (VSMC) functional behavior in response to injury. Tyk2 is also important in dendritic cell function and T helper (Th)1 cell differentiation. A homozygous mutation of Tyk2 was found in a patient with hyper-IgE syndrome (HIES), a primary immunodeficiency characterized by recurrent skin abscesses, pneumonia, and elevated serum IgE. This suggests that Tyk2 may play important roles in multiple cytokine signaling involved in innate and adaptive immunity. Tyk2 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. The Tyk2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270661 [Multi-domain]  Cd Length: 273  Bit Score: 48.75  E-value: 4.62e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     9 AFLQEAQVMKKLRHEKLVQLYAVVSEEPIYI-VTEFMDQGSLLEFLKGQystMLRLPQLVDF--ASQIASGMAYVERMNY 85
Cdd:cd05076  61 AFFETASLMSQVSHTHLVFVHGVCVRGSENImVEEFVEHGPLDVWLRKE---KGHVPMAWKFvvARQLASALSYLENKNL 137
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd05076 138 VHGNVCAKNILL 149
STKc_WNK cd13983
Catalytic domain of the Serine/Threonine kinase, With No Lysine (WNK) kinase; STKs catalyze ...
10-97 4.89e-08

Catalytic domain of the Serine/Threonine kinase, With No Lysine (WNK) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNKs comprise a subfamily of STKs with an unusual placement of a catalytic lysine relative to all other protein kinases. They are critical in regulating ion balance and are thus, important components in the control of blood pressure. They are also involved in cell signaling, survival, proliferation, and organ development. WNKs are activated by hyperosmotic or low-chloride hypotonic stress and they function upstream of SPAK and OSR1 kinases, which regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. There are four vertebrate WNKs which show varying expression patterns. WNK1 and WNK2 are widely expressed while WNK3 and WNK4 show a more restricted expression pattern. Because mutations in human WNK1 and WNK4 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension (due to increased sodium reabsorption) and hyperkalemia (due to impaired renal potassium secretion), there are more studies conducted on these two proteins, compared to WNK2 and WNK3. The WNK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270885 [Multi-domain]  Cd Length: 258  Bit Score: 48.76  E-value: 4.89e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAV---VSEEPIYIVTEFMDQGSLLEFLKGqySTMLRLPQLVDFASQIASGMAYVERMNY- 85
Cdd:cd13983  47 FKQEIEILKSLKHPNIIKFYDSwesKSKKEVIFITELMTSGTLKQYLKR--FKRLKLKVIKSWCRQILEGLNYLHTRDPp 124
                        90
                ....*....|...
gi 472744    86 -VHRDLRAANILV 97
Cdd:cd13983 125 iIHRDLKCDNIFI 137
PKc_Pek1_like cd06621
Catalytic domain of fungal Pek1-like dual-specificity Mitogen-Activated Protein Kinase Kinases; ...
2-97 4.94e-08

Catalytic domain of fungal Pek1-like dual-specificity Mitogen-Activated Protein Kinase Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include the MAPKKs Pek1/Skh1 from Schizosaccharomyces pombe and MKK2 from Saccharomyces cerevisiae, and related proteins. Both fission yeast Pek1 and baker's yeast MKK2 are components of the cell integrity MAPK pathway. In fission yeast, Pek1 phosphorylates and activates Pmk1/Spm1 and is regulated by the MAPKK kinase Mkh1. In baker's yeast, the pathway involves the MAPK Slt2, the MAPKKs MKK1 and MKK2, and the MAPKK kinase Bck1. The cell integrity MAPK cascade is activated by multiple stress conditions, and is essential in cell wall construction, morphogenesis, cytokinesis, and ion homeostasis. MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270793 [Multi-domain]  Cd Length: 287  Bit Score: 48.96  E-value: 4.94e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     2 PGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEP---IYIVTEFMDQGSLLEFLKGQYSTMLRLPQLV--DFASQIASG 76
Cdd:cd06621  38 PNPDVQKQILRELEINKSCASPYIVKYYGAFLDEQdssIGIAMEYCEGGSLDSIYKKVKKKGGRIGEKVlgKIAESVLKG 117
                        90       100
                ....*....|....*....|.
gi 472744    77 MAYVERMNYVHRDLRAANILV 97
Cdd:cd06621 118 LSYLHSRKIIHRDIKPSNILL 138
STKc_PFTAIRE2 cd07870
Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-2 kinase; STKs catalyze the transfer ...
7-97 5.06e-08

Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-2 kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PFTAIRE-2 is also referred to as ALS2CR7 (amyotrophic lateral sclerosis 2 (juvenile) chromosome region candidate 7). It may be associated with amyotrophic lateral sclerosis 2 (ALS2), an autosomal recessive form of juvenile ALS. The function of PFTAIRE-2 is not yet known. It shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PFTAIRE-2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270852 [Multi-domain]  Cd Length: 286  Bit Score: 48.80  E-value: 5.06e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMdQGSLLEFLK----GQYSTMLRLpqlvdFASQIASGMAYVE 81
Cdd:cd07870  42 PFTAIREASLLKGLKHANIVLLHDIIhTKETLTFVFEYM-HTDLAQYMIqhpgGLHPYNVRL-----FMFQLLRGLAYIH 115
                        90
                ....*....|....*.
gi 472744    82 RMNYVHRDLRAANILV 97
Cdd:cd07870 116 GQHILHRDLKPQNLLI 131
STKc_SGK3 cd05604
Catalytic domain of the Protein Serine/Threonine Kinase, Serum- and Glucocorticoid-induced ...
16-97 5.71e-08

Catalytic domain of the Protein Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGK3 (also called cytokine-independent survival kinase or CISK) is expressed in most tissues and is most abundant in the embryo and adult heart and spleen. It was originally discovered in a screen for antiapoptotic genes. It phosphorylates and inhibits the proapoptotic proteins, Bad and FKHRL1. SGK3 also regulates many transporters, ion channels, and receptors. It plays a critical role in hair follicle morphogenesis and hair cycling. The SGK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270755 [Multi-domain]  Cd Length: 326  Bit Score: 48.81  E-value: 5.71e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    16 VMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLleFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAAN 94
Cdd:cd05604  50 LLKNVKHPFLVGLhYSFQTTDKLYFVLDFVNGGEL--FFHLQRERSFPEPRARFYAAEIASALGYLHSINIVYRDLKPEN 127

                ...
gi 472744    95 ILV 97
Cdd:cd05604 128 ILL 130
STKc_NUAK2 cd14161
Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK 2; STKs ...
12-100 5.88e-08

Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NUAK proteins are classified as AMP-activated protein kinase (AMPK)-related kinases, which like AMPK are activated by the major tumor suppressor LKB1. Vertebrates contain two NUAK proteins, called NUAK1 and NUAK2. NUAK2, also called SNARK (Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase), is involved in energy metabolism. It is activated by hyperosmotic stress, DNA damage, and nutrients such as glucose and glutamine. NUAK2-knockout mice develop obesity, altered serum lipid profiles, hyperinsulinaemia, hyperglycaemia, and impaired glucose tolerance. NUAK2 is implicated in regulating actin stress fiber assembly through its association with myosin phosphatase Rho-interacting protein (MRIP), which leads to an increase in myosin regulatory light chain (MLC) phosphorylation. It is also associated with tumor growth, migration, and oncogenicity of melanoma cells. The NUAK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271063 [Multi-domain]  Cd Length: 255  Bit Score: 48.41  E-value: 5.88e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGqySTMLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd14161  51 REIEIMSSLNHPHIISVYEVFeNSSKIVIVMEYASRGDLYDYISE--RQRLSELEARHFFRQIVSAVHYCHANGIVHRDL 128
                        90
                ....*....|
gi 472744    91 RAANILVGDN 100
Cdd:cd14161 129 KLENILLDAN 138
PTK_Jak2_rpt1 cd05078
Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 2; Jak2 is widely ...
8-97 6.54e-08

Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 2; Jak2 is widely expressed in many tissues. It is essential for the signaling of hormone-like cytokines such as growth hormone, erythropoietin, thrombopoietin, and prolactin, as well as some IFNs and cytokines that signal through the IL-3 and gp130 receptors. Disruption of Jak2 in mice results in an embryonic lethal phenotype with multiple defects including erythropoietic and cardiac abnormalities. It is the only Jak gene that results in a lethal phenotype when disrupted in mice. A mutation in the pseudokinase domain of Jak2, V617F, is present in many myeloproliferative diseases, including almost all patients with polycythemia vera, and 50% of patients with essential thrombocytosis and myelofibrosis. Jak2 is a cytoplasmic (or nonreceptor) PTK containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. Despite this, the presumed pseudokinase (repeat 1) domain of Jak2 exhibits dual-specificity kinase activity, phosphorylating two negative regulatory sites in Jak2: Ser523 and Tyr570. Inactivation of the repeat 1 domain increased Jak2 basal activity, suggesting that it modulates the kinase activity of the C-terminal catalytic (repeat 2) domain. The Jak2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270663 [Multi-domain]  Cd Length: 262  Bit Score: 48.40  E-value: 6.54e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVV--SEEPIyIVTEFMDQGSLLEFLKGQYSTMLRLPQLvDFASQIASGMAYVERMNY 85
Cdd:cd05078  48 ESFFEAASMMSQLSHKHLVLNYGVCvcGDENI-LVQEYVKFGSLDTYLKKNKNCINILWKL-EVAKQLAWAMHFLEEKTL 125
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd05078 126 VHGNVCAKNILL 137
STKc_ASK cd06624
Catalytic domain of the Serine/Threonine Kinase, Apoptosis signal-regulating kinase; STKs ...
12-97 6.80e-08

Catalytic domain of the Serine/Threonine Kinase, Apoptosis signal-regulating kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily are mitogen-activated protein kinase (MAPK) kinase kinases (MAPKKKs or MKKKs) and include ASK1, ASK2, and MAPKKK15. ASK1 (also called MAPKKK5) functions in the c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways by directly activating their respective MAPKKs, MKK4/MKK7 and MKK3/MKK6. It plays important roles in cytokine and stress responses, as well as in reactive oxygen species-mediated cellular responses. ASK1 is implicated in various diseases mediated by oxidative stress including inschemic heart disease, hypertension, vessel injury, brain ischemia, Fanconi anemia, asthma, and pulmonary edema, among others. ASK2 (also called MAPKKK6) functions only in a heteromeric complex with ASK1, and can activate ASK1 by direct phosphorylation. The function of MAPKKK15 is still unknown. The ASK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270794 [Multi-domain]  Cd Length: 268  Bit Score: 48.17  E-value: 6.80e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVSEEPIYIVteFMDQ---GSLLEFLKGQYSTMLRLPQLVDFAS-QIASGMAYVERMNYVH 87
Cdd:cd06624  54 EEIALHSRLSHKNIVQYLGSVSEDGFFKI--FMEQvpgGSLSALLRSKWGPLKDNENTIGYYTkQILEGLKYLHDNKIVH 131
                        90
                ....*....|
gi 472744    88 RDLRAANILV 97
Cdd:cd06624 132 RDIKGDNVLV 141
STKc_RCK1-like cd14096
Catalytic domain of RCK1-like Serine/Threonine Kinases; STKs catalyze the transfer of the ...
4-96 6.86e-08

Catalytic domain of RCK1-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of fungal STKs including Saccharomyces cerevisiae RCK1 and RCK2, Schizosaccharomyces pombe Sty1-regulated kinase 1 (Srk1), and similar proteins. RCK1, RCK2 (or Rck2p), and Srk1 are MAPK-activated protein kinases. RCK1 and RCK2 are involved in oxidative and metal stress resistance in budding yeast. RCK2 also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. Srk1 is activated by Sty1/Spc1 and is involved in negatively regulating cell cycle progression by inhibiting Cdc25. The RCK1-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270998 [Multi-domain]  Cd Length: 295  Bit Score: 48.59  E-value: 6.86e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPEAFLQEAQVMKKLRHEKLVQLYA-VVSEEPIYIVTEFMDQGSLLEflkgqystmlRLPQLVDFA--------SQIA 74
Cdd:cd14096  47 GSSRANILKEVQIMKRLSHPNIVKLLDfQESDEYYYIVLELADGGEIFH----------QIVRLTYFSedlsrhviTQVA 116
                        90       100
                ....*....|....*....|..
gi 472744    75 SGMAYVERMNYVHRDLRAANIL 96
Cdd:cd14096 117 SAVKYLHEIGVVHRDIKPENLL 138
STKc_MST3_like cd06609
Catalytic domain of Mammalian Ste20-like protein kinase 3-like Serine/Threonine Kinases; STKs ...
12-100 7.29e-08

Catalytic domain of Mammalian Ste20-like protein kinase 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST3, MST4, STK25, Schizosaccharomyces pombe Nak1 and Sid1, Saccharomyces cerevisiae sporulation-specific protein 1 (SPS1), and related proteins. Nak1 is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Sid1 is a component in the septation initiation network (SIN) signaling pathway, and plays a role in cytokinesis. SPS1 plays a role in regulating proteins required for spore wall formation. MST4 plays a role in mitogen-activated protein kinase (MAPK) signaling during cytoskeletal rearrangement, morphogenesis, and apoptosis. MST3 phosphorylates the STK NDR and may play a role in cell cycle progression and cell morphology. STK25 may play a role in the regulation of cell migration and polarization. The MST3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270786 [Multi-domain]  Cd Length: 274  Bit Score: 48.40  E-value: 7.29e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYA-VVSEEPIYIVTEFMDQGSLLEFLK------GQYSTMLRlpqlvdfasQIASGMAYVERMN 84
Cdd:cd06609  48 QEIQFLSQCDSPYITKYYGsFLKGSKLWIIMEYCGGGSVLDLLKpgpldeTYIAFILR---------EVLLGLEYLHSEG 118
                        90
                ....*....|....*.
gi 472744    85 YVHRDLRAANILVGDN 100
Cdd:cd06609 119 KIHRDIKAANILLSEE 134
STKc_RIP4_like cd14025
Catalytic domain of the Serine/Threonine kinases, Receptor Interacting Protein 4 and similar ...
11-101 8.10e-08

Catalytic domain of the Serine/Threonine kinases, Receptor Interacting Protein 4 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of RIP4, ankyrin (ANK) repeat and kinase domain containing 1 (ANKK1), and similar proteins, all of which harbor C-terminal ANK repeats. RIP4, also called Protein Kinase C-associated kinase (PKK), regulates keratinocyte differentiation and cutaneous inflammation. It activates NF-kappaB and is important in the survival of diffuse large B-cell lymphoma cells. The ANKK1 protein, also called PKK2, has not been studied extensively. The ANKK1 gene, located less than 10kb downstream of the D2 dopamine receptor (DRD2) locus, is altered in the Taq1 A1 polymorphism, which is related to a reduced DRD2 binding affinity and consequently, to mental disorders. The RIP4-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270927 [Multi-domain]  Cd Length: 267  Bit Score: 48.26  E-value: 8.10e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVVSEePIYIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASGMAYVERMN--YVHR 88
Cdd:cd14025  43 LEEAKKMEMAKFRHILPVYGICSE-PVGLVMEYMETGSLEKLLA---SEPLPWELRFRIIHETAVGMNFLHCMKppLLHL 118
                        90
                ....*....|...
gi 472744    89 DLRAANILVGDNL 101
Cdd:cd14025 119 DLKPANILLDAHY 131
STKc_AGC cd05123
Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ...
13-96 8.58e-08

Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AGC kinases regulate many cellular processes including division, growth, survival, metabolism, motility, and differentiation. Many are implicated in the development of various human diseases. Members of this family include cAMP-dependent Protein Kinase (PKA), cGMP-dependent Protein Kinase (PKG), Protein Kinase C (PKC), Protein Kinase B (PKB), G protein-coupled Receptor Kinase (GRK), Serum- and Glucocorticoid-induced Kinase (SGK), and 70 kDa ribosomal Protein S6 Kinase (p70S6K or S6K), among others. AGC kinases share an activation mechanism based on the phosphorylation of up to three sites: the activation loop (A-loop), the hydrophobic motif (HM) and the turn motif. Phosphorylation at the A-loop is required of most AGC kinases, which results in a disorder-to-order transition of the A-loop. The ordered conformation results in the access of substrates and ATP to the active site. A subset of AGC kinases with C-terminal extensions containing the HM also requires phosphorylation at this site. Phosphorylation at the HM allows the C-terminal extension to form an ordered structure that packs into the hydrophobic pocket of the catalytic domain, which then reconfigures the kinase into an active bi-lobed state. In addition, growth factor-activated AGC kinases such as PKB, p70S6K, RSK, MSK, PKC, and SGK, require phosphorylation at the turn motif (also called tail or zipper site), located N-terminal to the HM at the C-terminal extension. The AGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and Phosphoinositide 3-Kinase.


Pssm-ID: 270693 [Multi-domain]  Cd Length: 250  Bit Score: 47.90  E-value: 8.58e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLkgqySTMLRLP-QLVDF-ASQIASGMAYVERMNYVHRD 89
Cdd:cd05123  43 ERNILERVNHPFIVKLhYAFQTEEKLYLVLDYVPGGELFSHL----SKEGRFPeERARFyAAEIVLALEYLHSLGIIYRD 118

                ....*..
gi 472744    90 LRAANIL 96
Cdd:cd05123 119 LKPENIL 125
STKc_TGFbR1_ACVR1b_ACVR1c cd14143
Catalytic domain of the Serine/Threonine Kinases, Transforming Growth Factor beta Type I ...
16-103 9.52e-08

Catalytic domain of the Serine/Threonine Kinases, Transforming Growth Factor beta Type I Receptor and Activin Type IB/IC Receptors; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TGFbR1, also called Activin receptor-Like Kinase 5 (ALK5), functions as a receptor for TGFbeta and phoshorylates SMAD2/3. TGFbeta proteins are cytokines that regulate cell growth, differentiation, and survival, and are critical in the development and progression of many human cancers. Mutations in TGFbR1 (and TGFbR2) can cause aortic aneurysm disorders such as Loeys-Dietz and Marfan syndromes. ACVR1b (also called ALK4) and ACVR1c (also called ALK7) act as receptors for activin A and B, respectively. TGFbR1, ACVR1b, and ACVR1c belong to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like TGFbR1, ACVR1b, and ACVR1c, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The TGFbR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271045 [Multi-domain]  Cd Length: 288  Bit Score: 47.82  E-value: 9.52e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    16 VMkkLRHEKLVQLYAVVSEE-----PIYIVTEFMDQGSLLEFLkGQY----STMLRLpqlvdfASQIASGMAYVErMNYV 86
Cdd:cd14143  44 VM--LRHENILGFIAADNKDngtwtQLWLVSDYHEHGSLFDYL-NRYtvtvEGMIKL------ALSIASGLAHLH-MEIV 113
                        90       100
                ....*....|....*....|....*.
gi 472744    87 ---------HRDLRAANILVGDNLVC 103
Cdd:cd14143 114 gtqgkpaiaHRDLKSKNILVKKNGTC 139
STKc_obscurin_rpt2 cd14110
Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs ...
8-102 9.96e-08

Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Obscurin, approximately 800 kDa in size, is one of three giant proteins expressed in vetebrate striated muscle, together with titin and nebulin. It is a multidomain protein composed of tandem adhesion and signaling domains, including 49 immunoglobulin (Ig) and 2 fibronectin type III (FN3) domains at the N-terminus followed by a more complex region containing more Ig domains, a conserved SH3 domain near a RhoGEF and PH domains, non-modular regions, as well as IQ and phosphorylation motifs. The obscurin gene also encode two kinase domains, which are not expressed as part of the 800 kDa protein, but as a smaller, alternatively spliced product present mainly in the heart muscle, also called obscurin-MLCK. Obscurin is localized at the peripheries of Z-disks and M-lines, where it is able to communicate with the surrounding myoplasm. It interacts with diverse proteins including sAnk1, myosin, titin, and MyBP-C. It may act as a scaffold for the assembly of elements of the contractile apparatus. The obscurin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271012 [Multi-domain]  Cd Length: 257  Bit Score: 47.99  E-value: 9.96e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFL--KGQYSTMlrlpQLVDFASQIASGMAYVERMN 84
Cdd:cd14110  44 QLVLREYQVLRRLSHPRIAQLHsAYLSPRHLVLIEELCSGPELLYNLaeRNSYSEA----EVTDYLWQILSAVDYLHSRR 119
                        90
                ....*....|....*....
gi 472744    85 YVHRDLRAANILV-GDNLV 102
Cdd:cd14110 120 ILHLDLRSENMIItEKNLL 138
PKc_TNNI3K cd14064
Catalytic domain of the Dual-specificity protein kinase, TNNI3-interacting kinase; ...
10-97 1.19e-07

Catalytic domain of the Dual-specificity protein kinase, TNNI3-interacting kinase; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TNNI3K, also called cardiac ankyrin repeat kinase (CARK), is a cardiac-specific troponin I-interacting kinase that promotes cardiac myogenesis, improves cardiac performance, and protects the myocardium from ischemic injury. It contains N-terminal ankyrin repeats, a catalytic kinase domain, and a C-terminal serine-rich domain. TNNI3K exerts a disease-accelerating effect on cardiac dysfunction and reduced survival in mouse models of cardiomyopathy. The TNNI3K subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270966 [Multi-domain]  Cd Length: 254  Bit Score: 47.52  E-value: 1.19e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSEEP--IYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVdFASQIASGMAYVERMNY-- 85
Cdd:cd14064  38 FCREVSILCRLNHPCVIQFVGACLDDPsqFAIVTQYVSGGSLFSLLHEQKRVIDLQSKLI-IAVDVAKGMEYLHNLTQpi 116
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd14064 117 IHRDLNSHNILL 128
STKc_DAPK cd14105
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase; STKs ...
5-99 1.38e-07

Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK1 is the prototypical member of the subfamily and is also simply referred to as DAPK. DAPK2 is also called DAPK-related protein 1 (DRP-1), while DAPK3 has also been named DAP-like kinase (DLK) and zipper-interacting protein kinase (ZIPk). These proteins are ubiquitously expressed in adult tissues, are capable of cross talk with each other, and may act synergistically in regulating cell death. The DAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271007 [Multi-domain]  Cd Length: 269  Bit Score: 47.48  E-value: 1.38e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     5 MSPEAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERM 83
Cdd:cd14105  50 VSREDIEREVSILRQVLHPNIITLHDVFeNKTDVVLILELVAGGELFDFLAEKES--LSEEEATEFLKQILDGVNYLHTK 127
                        90
                ....*....|....*.
gi 472744    84 NYVHRDLRAANILVGD 99
Cdd:cd14105 128 NIAHFDLKPENIMLLD 143
STKc_MEKK1 cd06630
Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP) ...
8-97 1.42e-07

Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK1 is a MAPK kinase kinase (MAPKKK or MKKK) that phosphorylates and activates activates the ERK1/2 and c-Jun N-terminal kinase (JNK) pathways by activating their respective MAPKKs, MEK1/2 and MKK4/MKK7, respectively. MEKK1 is important in regulating cell survival and apoptosis. MEKK1 also plays a role in cell migration, tissue maintenance and homeostasis, and wound healing. The MEKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270800 [Multi-domain]  Cd Length: 268  Bit Score: 47.42  E-value: 1.42e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIY-IVTEFMDQGSLLEFLK--GQYSTMLrlpqLVDFASQIASGMAYVERMN 84
Cdd:cd06630  48 EAIREEIRMMARLNHPNIVRMLGATQHKSHFnIFVEWMAGGSVASLLSkyGAFSENV----IINYTLQILRGLAYLHDNQ 123
                        90
                ....*....|...
gi 472744    85 YVHRDLRAANILV 97
Cdd:cd06630 124 IIHRDLKGANLLV 136
STKc_Chk1 cd14069
Catalytic domain of the Serine/Threonine kinase, Checkpoint kinase 1; STKs catalyze the ...
6-100 1.49e-07

Catalytic domain of the Serine/Threonine kinase, Checkpoint kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chk1 is implicated in many major checkpoints of the cell cycle, providing a link between upstream sensors and the cell cycle engine. It plays an important role in DNA damage response and maintaining genomic stability. Chk1 acts as an effector of the sensor kinase, ATR (ATM and Rad3-related), a member of the PI3K family, which is activated upon DNA replication stress. Chk1 delays mitotic entry in response to replication blocks by inhibiting cyclin dependent kinase (Cdk) activity. In addition, Chk1 contributes to the function of centrosome and spindle-based checkpoints, inhibits firing of origins of DNA replication (Ori), and represses transcription of cell cycle proteins including cyclin B and Cdk1. The Chk1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270971 [Multi-domain]  Cd Length: 261  Bit Score: 47.33  E-value: 1.49e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPI-YIVTEFMDQGSLLEFLKGQYSTMLRLPQLvdFASQIASGMAYVERMN 84
Cdd:cd14069  43 CPENIKKEVCIQKMLSHKNVVRFYGHRREGEFqYLFLEYASGGELFDKIEPDVGMPEDVAQF--YFQQLMAGLKYLHSCG 120
                        90
                ....*....|....*.
gi 472744    85 YVHRDLRAANILVGDN 100
Cdd:cd14069 121 ITHRDIKPENLLLDEN 136
STKc_CDK4_6_like cd07838
Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases; ...
7-97 1.56e-07

Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK4 and CDK6 partner with D-type cyclins to regulate the early G1 phase of the cell cycle. They are the first kinases activated by mitogenic signals to release cells from the G0 arrested state. CDK4 and CDK6 are both expressed ubiquitously, associate with all three D cyclins (D1, D2 and D3), and phosphorylate the retinoblastoma (pRb) protein. They are also regulated by the INK4 family of inhibitors which associate with either the CDK alone or the CDK/cyclin complex. CDK4 and CDK6 show differences in subcellular localization, sensitivity to some inhibitors, timing in activation, tumor selectivity, and possibly substrate profiles. Although CDK4 and CDK6 seem to show some redundancy, they also have discrete, nonoverlapping functions. CDK6 plays an important role in cell differentiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK4/6-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270831 [Multi-domain]  Cd Length: 287  Bit Score: 47.27  E-value: 1.56e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLR---HEKLVQLYAVV------SEEPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQLVDFASQIASGM 77
Cdd:cd07838  42 PLSTIREIALLKQLEsfeHPNVVRLLDVChgprtdRELKLTLVFEHVDQ-DLATYLDKCPKPGLPPETIKDLMRQLLRGL 120
                        90       100
                ....*....|....*....|
gi 472744    78 AYVERMNYVHRDLRAANILV 97
Cdd:cd07838 121 DFLHSHRIVHRDLKPQNILV 140
STKc_Bck1_like cd06629
Catalytic domain of the Serine/Threonine Kinases, fungal Bck1-like Mitogen-Activated Protein ...
8-103 1.74e-07

Catalytic domain of the Serine/Threonine Kinases, fungal Bck1-like Mitogen-Activated Protein Kinase Kinase Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include the MAPKKKs Saccharomyces cerevisiae Bck1 and Schizosaccharomyces pombe Mkh1, and related proteins. Budding yeast Bck1 is part of the cell integrity MAPK pathway, which is activated by stresses and aggressions to the cell wall. The MAPKKK Bck1, MAPKKs Mkk1 and Mkk2, and the MAPK Slt2 make up the cascade that is important in the maintenance of cell wall homeostasis. Fission yeast Mkh1 is involved in MAPK cascades regulating cell morphology, cell wall integrity, salt resistance, and filamentous growth in response to stress. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The Bck1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270799 [Multi-domain]  Cd Length: 270  Bit Score: 47.38  E-value: 1.74e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQ-LYAVVSEEPIYIVTEFMDQGSLLEFLK--GQYStmlrlPQLV-DFASQIASGMAYVERM 83
Cdd:cd06629  53 DALKSEIDTLKDLDHPNIVQyLGFEETEDYFSIFLEYVPGGSIGSCLRkyGKFE-----EDLVrFFTRQILDGLAYLHSK 127
                        90       100
                ....*....|....*....|
gi 472744    84 NYVHRDLRAANILVGDNLVC 103
Cdd:cd06629 128 GILHRDLKADNILVDLEGIC 147
STKc_TNIK cd06637
Catalytic domain of the Serine/Threonine Kinase, Traf2- and Nck-Interacting Kinase; STKs ...
8-100 2.19e-07

Catalytic domain of the Serine/Threonine Kinase, Traf2- and Nck-Interacting Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TNIK is an effector of Rap2, a small GTP-binding protein from the Ras family. TNIK specifically activates the c-Jun N-terminal kinase (JNK) pathway and plays a role in regulating the actin cytoskeleton. The TNIK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270807 [Multi-domain]  Cd Length: 296  Bit Score: 47.02  E-value: 2.19e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY--AVVSEEP------IYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAY 79
Cdd:cd06637  47 EEIKQEINMLKKYSHHRNIATYygAFIKKNPpgmddqLWLVMEFCGAGSVTDLIKNTKGNTLKEEWIAYICREILRGLSH 126
                        90       100
                ....*....|....*....|.
gi 472744    80 VERMNYVHRDLRAANILVGDN 100
Cdd:cd06637 127 LHQHKVIHRDIKGQNVLLTEN 147
STKc_PLK3 cd14189
Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 3; STKs catalyze the ...
8-101 2.24e-07

Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK3, also called Prk or Fnk (FGF-inducible kinase), regulates angiogenesis and responses to DNA damage. Activated PLK3 mediates Chk2 phosphorylation by ATM and the resulting checkpoint activation. PLK3 phosphorylates DNA polymerase delta and may be involved in DNA repair. It also inhibits Cdc25c, thereby regulating the onset of mitosis. The PLK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271091 [Multi-domain]  Cd Length: 255  Bit Score: 46.84  E-value: 2.24e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd14189  46 EKIVNEIELHRDLHHKHVVKFsHHFEDAENIYIFLELCSRKSLAHIWKARHT--LLEPEVRYYLKQIISGLKYLHLKGIL 123
                        90
                ....*....|....*
gi 472744    87 HRDLRAANILVGDNL 101
Cdd:cd14189 124 HRDLKLGNFFINENM 138
STKc_MAPK4_6 cd07854
Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinases 4 (also ...
11-97 2.38e-07

Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinases 4 (also called ERK4) and 6 (also called ERK3); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK4 (also called ERK4 or p63MAPK) and MAPK6 (also called ERK3 or p97MAPK) are atypical MAPKs that are not regulated by MAPK kinases. MAPK6 is expressed ubiquitously with highest amounts in brain and skeletal muscle. It may be involved in the control of cell differentiation by negatively regulating cell cycle progression in certain conditions. It may also play a role in glucose-induced insulin secretion. MAPK6 and MAPK4 cooperate to regulate the activity of MAPK-activated protein kinase 5 (MK5), leading to its relocation to the cytoplasm and exclusion from the nucleus. The MAPK6/MK5 and MAPK4/MK5 pathways may play critical roles in embryonic and post-natal development. MAPKs are important mediators of cellular responses to extracellular signals. The MAPK4/6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 143359 [Multi-domain]  Cd Length: 342  Bit Score: 47.08  E-value: 2.38e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAV---------------VSEEPIYIVTEFMD--------QGSLLEflkgQYSTMlrlpqlv 67
Cdd:cd07854  50 LREIKIIRRLDHDNIVKVYEVlgpsgsdltedvgslTELNSVYIVQEYMEtdlanvleQGPLSE----EHARL------- 118
                        90       100       110
                ....*....|....*....|....*....|
gi 472744    68 dFASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd07854 119 -FMYQLLRGLKYIHSANVLHRDLKPANVFI 147
STKc_IKK_alpha cd14039
Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase ...
8-99 2.70e-07

Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK) alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IKKalpha is involved in the non-canonical or alternative pathway of regulating Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. The non-canonical pathway functions in cells lacking NEMO (NF-kB Essential MOdulator) and IKKbeta. It is induced by a subset of TNFR family members including CD40, RANK, and B cell-activating factor receptor. IKKalpha processes the Inhibitor of NF-kB (IkB)-like C-terminus of NF-kB2/p100 to produce p52, allowing the p52/RelB dimer to migrate to the nucleus. This pathway is dependent on NIK (NF-kB Inducing Kinase) which phosphorylates and activates IKKalpha. The IKKalpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270941 [Multi-domain]  Cd Length: 289  Bit Score: 46.83  E-value: 2.70e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYI------VTEFMDQGSLLEFL-KGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd14039  36 DRWCHEIQIMKKLNHPNVVKACDVPEEMNFLVndvpllAMEYCSGGDLRKLLnKPENCCGLKESQVLSLLSDIGSGIQYL 115
                        90
                ....*....|....*....
gi 472744    81 ERMNYVHRDLRAANILVGD 99
Cdd:cd14039 116 HENKIIHRDLKPENIVLQE 134
STKc_CDK12 cd07864
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 12; STKs ...
7-97 2.72e-07

Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 12; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK12 is also called Cdc2-related protein kinase 7 (CRK7) or Cdc2-related kinase arginine/serine-rich (CrkRS). It is a unique CDK that contains an RS domain, which is predominantly found in splicing factors. CDK12 is widely expressed in tissues. It interacts with cyclins L1 and L2, and plays roles in regulating transcription and alternative splicing. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK12 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270847 [Multi-domain]  Cd Length: 302  Bit Score: 46.72  E-value: 2.72e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLRHEKLVQLYAVVSE-----------EPIYIVTEFMDQG--SLLEFLKGQYSTmlrlPQLVDFASQI 73
Cdd:cd07864  50 PITAIREIKILRQLNHRSVVNLKEIVTDkqdaldfkkdkGAFYLVFEYMDHDlmGLLESGLVHFSE----DHIKSFMKQL 125
                        90       100
                ....*....|....*....|....
gi 472744    74 ASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd07864 126 LEGLNYCHKKNFLHRDIKCSNILL 149
STKc_SLK_like cd06611
Catalytic domain of Ste20-Like Kinase-like Serine/Threonine Kinases; STKs catalyze the ...
8-97 2.72e-07

Catalytic domain of Ste20-Like Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of the subfamily include SLK, STK10 (also called LOK for Lymphocyte-Oriented Kinase), SmSLK (Schistosoma mansoni SLK), and related proteins. SLK promotes apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and the mitogen-activated protein kinase (MAPK) p38. It also plays a role in mediating actin reorganization. STK10 is responsible in regulating the CD28 responsive element in T cells, as well as leukocyte function associated antigen (LFA-1)-mediated lymphocyte adhesion. SmSLK is capable of activating the MAPK Jun N-terminal kinase (JNK) pathway in human embryonic kidney cells as well as in Xenopus oocytes. It may participate in regulating MAPK cascades during host-parasite interactions. The SLK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132942 [Multi-domain]  Cd Length: 280  Bit Score: 46.66  E-value: 2.72e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSL----LEFLKGqystmLRLPQLVDFASQIASGMAYVER 82
Cdd:cd06611  47 EDFMVEIDILSECKHPNIVGLYEAYFYENkLWILIEFCDGGALdsimLELERG-----LTEPQIRYVCRQMLEALNFLHS 121
                        90
                ....*....|....*
gi 472744    83 MNYVHRDLRAANILV 97
Cdd:cd06611 122 HKVIHRDLKAGNILL 136
STKc_MAP4K3_like cd06613
Catalytic domain of Mitogen-activated protein kinase kinase kinase kinase (MAP4K) 3-like ...
12-100 2.84e-07

Catalytic domain of Mitogen-activated protein kinase kinase kinase kinase (MAP4K) 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes MAP4K3, MAP4K1, MAP4K2, MAP4K5, and related proteins. Vertebrate members contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. MAP4K1, also called haematopoietic progenitor kinase 1 (HPK1), is a hematopoietic-specific STK involved in many cellular signaling cascades including MAPK, antigen receptor, apoptosis, growth factor, and cytokine signaling. It participates in the regulation of T cell receptor signaling and T cell-mediated immune responses. MAP4K2 was referred to as germinal center (GC) kinase because of its preferred location in GC B cells. MAP4K3 plays a role in the nutrient-responsive pathway of mTOR (mammalian target of rapamycin) signaling. It is required in the activation of S6 kinase by amino acids and for the phosphorylation of the mTOR-regulated inhibitor of eukaryotic initiation factor 4E. MAP4K5, also called germinal center kinase-related enzyme (GCKR), has been shown to activate the MAPK c-Jun N-terminal kinase (JNK). The MAP4K3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270788 [Multi-domain]  Cd Length: 259  Bit Score: 46.53  E-value: 2.84e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd06613  46 QEISMLKECRHPNIVAYFgSYLRRDKLWIVMEYCGGGSLQDIY--QVTGPLSELQIAYVCRETLKGLAYLHSTGKIHRDI 123
                        90
                ....*....|
gi 472744    91 RAANILVGDN 100
Cdd:cd06613 124 KGANILLTED 133
STKc_ERK1_2_like cd07849
Catalytic domain of Extracellular signal-Regulated Kinase 1 and 2-like Serine/Threonine ...
11-100 2.93e-07

Catalytic domain of Extracellular signal-Regulated Kinase 1 and 2-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the mitogen-activated protein kinases (MAPKs) ERK1, ERK2, baker's yeast Fus3, and similar proteins. MAPK pathways are important mediators of cellular responses to extracellular signals. ERK1/2 activation is preferentially by mitogenic factors, differentiation stimuli, and cytokines, through a kinase cascade involving the MAPK kinases MEK1/2 and a MAPK kinase kinase from the Raf family. ERK1/2 have numerous substrates, many of which are nuclear and participate in transcriptional regulation of many cellular processes. They regulate cell growth, cell proliferation, and cell cycle progression from G1 to S phase. Although the distinct roles of ERK1 and ERK2 have not been fully determined, it is known that ERK2 can maintain most functions in the absence of ERK1, and that the deletion of ERK2 is embryonically lethal. The MAPK, Fus3, regulates yeast mating processes including mating-specific gene expression, G1 arrest, mating projection, and cell fusion. This ERK1/2-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270839 [Multi-domain]  Cd Length: 336  Bit Score: 46.53  E-value: 2.93e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVV------SEEPIYIVTEFMDQgSLLEFLKGQystmlrlpQLVD-----FASQIASGMAY 79
Cdd:cd07849  51 LREIKILLRFKHENIIGILDIQrpptfeSFKDVYIVQELMET-DLYKLIKTQ--------HLSNdhiqyFLYQILRGLKY 121
                        90       100
                ....*....|....*....|.
gi 472744    80 VERMNYVHRDLRAANILVGDN 100
Cdd:cd07849 122 IHSANVLHRDLKPSNLLLNTN 142
STKc_TEY_MAPK cd07858
Catalytic domain of the Serine/Threonine Kinases, Plant TEY Mitogen-Activated Protein Kinases; ...
11-100 3.54e-07

Catalytic domain of the Serine/Threonine Kinases, Plant TEY Mitogen-Activated Protein Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Plant MAPKs are typed based on the conserved phosphorylation motif present in the activation loop, TEY and TDY. This subfamily represents the TEY subtype of plant MAPKs and is further subdivided into three groups (A, B, and C). Group A is represented by AtMPK3, AtMPK6, Nicotiana tabacum BTF4 (NtNTF4), among others. They are mostly involved in environmental and hormonal responses. AtMPK3 and AtMPK6 are also key regulators for stomatal development and patterning. Group B is represented by AtMPK4, AtMPK13, and NtNTF6, among others. They may be involved in both cell division and environmental stress response. AtMPK4 also participates in regulating innate immunity. Group C is represented by AtMPK1, AtMPK2, NtNTF3, Oryza sativa MAPK4 (OsMAPK4), among others. They may also be involved in stress responses. AtMPK1 and AtMPK2 are activated following mechanical injury and in the presence of stress chemicals such as jasmonic acid, hydrogen peroxide and abscisic acid. OsMAPK4 is also called OsMSRMK3 for Multiple Stress-Responsive MAPK3. In plants, MAPKs are associated with physiological, developmental, hormonal, and stress responses. Some plants show numerous gene duplications of MAPKs; Arabidopsis thaliana harbors at least 20 MAPKs, named AtMPK1-20. The TEY MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 143363 [Multi-domain]  Cd Length: 337  Bit Score: 46.59  E-value: 3.54e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVV------SEEPIYIVTEFMDQgslleflkgQYSTMLRLPQ-LVD-----FASQIASGMA 78
Cdd:cd07858  52 LREIKLLRHLDHENVIAIKDIMppphreAFNDVYIVYELMDT---------DLHQIIRSSQtLSDdhcqyFLYQLLRGLK 122
                        90       100
                ....*....|....*....|..
gi 472744    79 YVERMNYVHRDLRAANILVGDN 100
Cdd:cd07858 123 YIHSANVLHRDLKPSNLLLNAN 144
STKc_TSSK6-like cd14164
Catalytic domain of testis-specific serine/threonine kinase 6 and similar proteins; STKs ...
11-97 3.63e-07

Catalytic domain of testis-specific serine/threonine kinase 6 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK6, also called SSTK, is expressed at the head of elongated sperm. It can phosphorylate histones and associate with heat shock protens HSP90 and HSC70. Male mice deficient in TSSK6 are infertile, showing spermatogenic impairment including reduced sperm counts, impaired DNA condensation, abnormal morphology and decreased motility rates. The TSSK6-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271066 [Multi-domain]  Cd Length: 256  Bit Score: 46.39  E-value: 3.63e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAV--VSEEPIYIVTEFMDQgSLLEFLkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd14164  48 PRELSILRRVNHPNIVQMFECieVANGRLYIVMEAAAT-DLLQKI--QEVHHIPKDLARDMFAQMVGAVNYLHDMNIVHR 124

                ....*....
gi 472744    89 DLRAANILV 97
Cdd:cd14164 125 DLKCENILL 133
STKc_LRRK cd14000
Catalytic domain of the Serine/Threonine kinase, Leucine-Rich Repeat Kinase; STKs catalyze the ...
10-97 3.86e-07

Catalytic domain of the Serine/Threonine kinase, Leucine-Rich Repeat Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LRRKs are also classified as ROCO proteins because they contain a ROC (Ras of complex proteins)/GTPase domain followed by a COR (C-terminal of ROC) domain of unknown function. In addition, LRRKs contain a catalytic kinase domain and protein-protein interaction motifs including a WD40 domain, LRRs and ankyrin (ANK) repeats. LRRKs possess both GTPase and kinase activities, with the ROC domain acting as a molecular switch for the kinase domain, cycling between a GTP-bound state which drives kinase activity and a GDP-bound state which decreases the activity. Vertebrates contain two members, LRRK1 and LRRK2, which show complementary expression in the brain. Mutations in LRRK2 are linked to both familial and sporadic forms of Parkinson's disease. The normal roles of LRRKs are not clearly defined. They may be involved in mitogen-activated protein kinase (MAPK) pathways, protein translation control, programmed cell death pathways, and cytoskeletal dynamics. The LRRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270902 [Multi-domain]  Cd Length: 275  Bit Score: 46.45  E-value: 3.86e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVvSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLV--DFASQIASGMAYVERMNYVH 87
Cdd:cd14000  57 LRQELTVLSHLHHPSIVYLLGI-GIHPLMLVLELAPLGSLDHLLQQDSRSFASLGRTLqqRIALQVADGLRYLHSAMIIY 135
                        90
                ....*....|
gi 472744    88 RDLRAANILV 97
Cdd:cd14000 136 RDLKSHNVLV 145
STKc_MSK_C cd14092
C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ...
12-100 3.98e-07

C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, in response to various stimuli such as growth factors, hormones, neurotransmitters, cellular stress, and pro-inflammatory cytokines. This triggers phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) in the C-terminal extension of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. MSKs are predominantly nuclear proteins. They are widely expressed in many tissues including heart, brain, lung, liver, kidney, and pancreas. There are two isoforms of MSK, called MSK1 and MSK2. The MSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270994 [Multi-domain]  Cd Length: 311  Bit Score: 46.14  E-value: 3.98e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLR-HEKLVQLYAVVSEE-PIYIVTEFMDQGSLLE-------FLKGQYSTMLRlpqlvdfasQIASGMAYVER 82
Cdd:cd14092  47 REVQLLRLCQgHPNIVKLHEVFQDElHTYLVMELLRGGELLErirkkkrFTESEASRIMR---------QLVSAVSFMHS 117
                        90
                ....*....|....*...
gi 472744    83 MNYVHRDLRAANILVGDN 100
Cdd:cd14092 118 KGVVHRDLKPENLLFTDE 135
STKc_PCTAIRE2 cd07872
Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-2 kinase; STKs catalyze the transfer ...
6-99 4.41e-07

Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-2 kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PCTAIRE-2 is specifically expressed in neurons in the central nervous system, mainly in terminally differentiated neurons. It associates with Trap (Tudor repeat associator with PCTAIRE-2) and could play a role in regulating mitochondrial function in neurons. PCTAIRE-2 shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PCTAIRE-2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 143377 [Multi-domain]  Cd Length: 309  Bit Score: 46.14  E-value: 4.41e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQgSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMN 84
Cdd:cd07872  47 APCTAIREVSLLKDLKHANIVTLHDIVhTDKSLTLVFEYLDK-DLKQYMD-DCGNIMSMHNVKIFLYQILRGLAYCHRRK 124
                        90
                ....*....|....*
gi 472744    85 YVHRDLRAANILVGD 99
Cdd:cd07872 125 VLHRDLKPQNLLINE 139
STKc_SGK1 cd05602
Catalytic domain of the Protein Serine/Threonine Kinase, Serum- and Glucocorticoid-induced ...
16-97 5.03e-07

Catalytic domain of the Protein Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGK1 is ubiquitously expressed and is under transcriptional control of numerous stimuli including cell stress (cell shrinkage), serum, hormones (gluco- and mineralocorticoids), gonadotropins, growth factors, interleukin-6, and other cytokines. It plays roles in sodium retention and potassium elimination in the kidney, nutrient transport, salt sensitivity, memory consolidation, and cardiac repolarization. A common SGK1 variant is associated with increased blood pressure and body weight. SGK1 may also contribute to tumor growth, neurodegeneration, fibrosing disease, and ischemia. The SGK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270753 [Multi-domain]  Cd Length: 339  Bit Score: 46.16  E-value: 5.03e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    16 VMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAAN 94
Cdd:cd05602  61 LLKNVKHPFLVGLhFSFQTTDKLYFVLDYINGGELFYHL--QRERCFLEPRARFYAAEIASALGYLHSLNIVYRDLKPEN 138

                ...
gi 472744    95 ILV 97
Cdd:cd05602 139 ILL 141
STKc_PhKG cd14093
Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma subunit; STKs ...
8-101 5.17e-07

Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma subunit; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). Each subunit has tissue-specific isoforms or splice variants. Vertebrates contain two isoforms of the gamma subunit (gamma 1 and gamma 2). The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270995 [Multi-domain]  Cd Length: 272  Bit Score: 45.81  E-value: 5.17e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKL-RHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFL--------KGQYSTMLrlpqlvdfasQIASGM 77
Cdd:cd14093  53 EATRREIEILRQVsGHPNIIELHDVFeSPTFIFLVFELCRKGELFDYLtevvtlseKKTRRIMR----------QLFEAV 122
                        90       100
                ....*....|....*....|....
gi 472744    78 AYVERMNYVHRDLRAANILVGDNL 101
Cdd:cd14093 123 EFLHSLNIVHRDLKPENILLDDNL 146
STKc_ACVR2b cd14140
Catalytic domain of the Serine/Threonine Kinase, Activin Type IIB Receptor; STKs catalyze the ...
20-101 5.81e-07

Catalytic domain of the Serine/Threonine Kinase, Activin Type IIB Receptor; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR2b (or ActRIIB) belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. ACVR2b is one of two ACVR2 receptors found in vertebrates. Type II receptors are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. ACVR2 acts primarily as the receptors for activins, nodal, myostatin, GDF11, and a subset of BMPs. ACVR2 signaling impacts many cellular and physiological processes including reproductive and gonadal functions, myogenesis, bone remodeling and tooth development, kidney organogenesis, apoptosis, fibrosis, inflammation, and neurogenesis. The ACVR2b subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271042 [Multi-domain]  Cd Length: 291  Bit Score: 45.79  E-value: 5.81e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    20 LRHEKLVQLYAVVS-----EEPIYIVTEFMDQGSLLEFLKGQystMLRLPQLVDFASQIASGMAYVE-----------RM 83
Cdd:cd14140  46 MKHENLLQFIAAEKrgsnlEMELWLITAFHDKGSLTDYLKGN---IVSWNELCHIAETMARGLSYLHedvprckgeghKP 122
                        90
                ....*....|....*...
gi 472744    84 NYVHRDLRAANILVGDNL 101
Cdd:cd14140 123 AIAHRDFKSKNVLLKNDL 140
STKc_STK10 cd06644
Catalytic domain of the Serine/Threonine Kinase, STK10 (also called Lymphocyte-Oriented Kinase ...
8-97 6.04e-07

Catalytic domain of the Serine/Threonine Kinase, STK10 (also called Lymphocyte-Oriented Kinase or LOK); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK10/LOK is also called polo-like kinase kinase 1 in Xenopus (xPlkk1). It is highly expressed in lymphocytes and is responsible in regulating leukocyte function associated antigen (LFA-1)-mediated lymphocyte adhesion. It plays a role in regulating the CD28 responsive element in T cells, and may also function as a regulator of polo-like kinase 1 (Plk1), a protein which is overexpressed in multiple tumor types. The STK10 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132975 [Multi-domain]  Cd Length: 292  Bit Score: 45.79  E-value: 6.04e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGS----LLEFLKGqystmLRLPQLVDFASQIASGMAYVER 82
Cdd:cd06644  54 EDYMVEIEILATCNHPYIVKLLgAFYWDGKLWIMIEFCPGGAvdaiMLELDRG-----LTEPQIQVICRQMLEALQYLHS 128
                        90
                ....*....|....*
gi 472744    83 MNYVHRDLRAANILV 97
Cdd:cd06644 129 MKIIHRDLKAGNVLL 143
STKc_RSK_C cd14091
C-terminal catalytic domain of the Serine/Threonine Kinases, Ribosomal S6 kinases; STKs ...
21-99 6.20e-07

C-terminal catalytic domain of the Serine/Threonine Kinases, Ribosomal S6 kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. Mammals possess four RSK isoforms (RSK1-4) from distinct genes. RSK proteins are also referred to as MAP kinase-activated protein kinases (MAPKAPKs), 90 kDa ribosomal protein S6 kinases (p90-RSKs), or p90S6Ks. The RSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270993 [Multi-domain]  Cd Length: 291  Bit Score: 45.70  E-value: 6.20e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    21 RHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEflkgqysTMLRLPQLVDF-ASQI----ASGMAYVERMNYVHRDLRAAN 94
Cdd:cd14091  52 QHPNIITLRDVYDDGNsVYLVTELLRGGELLD-------RILRQKFFSEReASAVmktlTKTVEYLHSQGVVHRDLKPSN 124

                ....*
gi 472744    95 ILVGD 99
Cdd:cd14091 125 ILYAD 129
PTKc_Aatyk2 cd05086
Catalytic domain of the Protein Tyrosine Kinase, Apoptosis-associated tyrosine kinase 2; PTKs ...
8-101 1.01e-06

Catalytic domain of the Protein Tyrosine Kinase, Apoptosis-associated tyrosine kinase 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Aatyk2 is a member of the Aatyk subfamily of proteins, which are receptor kinases containing a transmembrane segment and a long C-terminal cytoplasmic tail with a catalytic domain. Aatyk2 is also called lemur tyrosine kinase 2 (Lmtk2) or brain-enriched kinase (Brek). It is expressed at high levels in early postnatal brain, and has been shown to play a role in nerve growth factor (NGF) signaling. Studies with knockout mice reveal that Aatyk2 is essential for late stage spermatogenesis. Although it is classified as a PTK based on sequence similarity and the phylogenetic tree, Aatyk2 has been functionally characterized as a serine/threonine kinase. The Aatyk2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270669 [Multi-domain]  Cd Length: 271  Bit Score: 45.24  E-value: 1.01e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQ-LYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDF---ASQIASGMAYVERM 83
Cdd:cd05086  42 DDFLQQGEPYYILQHPNILQcVGQCVEAIPYLLVFEFCDLGDLKTYLANQQEKLRGDSQIMLLqrmACEIAAGLAHMHKH 121
                        90
                ....*....|....*...
gi 472744    84 NYVHRDLRAANILVGDNL 101
Cdd:cd05086 122 NFLHSDLALRNCYLTSDL 139
PK_GC cd13992
Pseudokinase domain of membrane Guanylate Cyclase receptors; The pseudokinase domain shows ...
11-103 1.10e-06

Pseudokinase domain of membrane Guanylate Cyclase receptors; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. Membrane (or particulate) GCs consist of an extracellular ligand-binding domain, a single transmembrane region, and an intracellular tail that contains a PK-like domain, an amphiphatic region and a catalytic GC domain that catalyzes the conversion of GTP into cGMP and pyrophosphate. Membrane GCs act as receptors that transduce an extracellular signal to the intracellular production of cGMP, which has been implicated in many processes including cell proliferation, phototransduction, and muscle contractility, through its downstream effectors such as PKG. The PK-like domain of GCs lack a critical aspartate involved in ATP binding and does not exhibit kinase activity. It functions as a negative regulator of the catalytic GC domain and may also act as a docking site for interacting proteins such as GC-activating proteins. The GC subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270894 [Multi-domain]  Cd Length: 268  Bit Score: 45.07  E-value: 1.10e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQYSTMLRLPQLvDFASQIASGMAYVERMN-YVHR 88
Cdd:cd13992  44 LQELNQLKELVHDNLNKFIGICINPPnIAVVTEYCTRGSLQDVLLNREIKMDWMFKS-SFIKDIVKGMNYLHSSSiGYHG 122
                        90
                ....*....|....*
gi 472744    89 DLRAANILVGDNLVC 103
Cdd:cd13992 123 RLKSSNCLVDSRWVV 137
STKc_DAPK1 cd14194
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 1; STKs ...
5-99 1.10e-06

Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK1 is the prototypical member of the subfamily and is also simply referred to as DAPK. It is Ca2+/calmodulin (CaM)-regulated and actin-associated protein that contains an N-terminal kinase domain followed by an autoinhibitory CaM binding region and a large C-terminal extension with multiple functional domains including ankyrin (ANK) repeats, a cytoskeletal binding domain, a Death domain, and a serine-rich tail. Loss of DAPK1 expression, usually because of DNA methylation, is implicated in many tumor types. DAPK1 is highly abundant in the brain and has also been associated with neurodegeneration. The DAPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271096 [Multi-domain]  Cd Length: 269  Bit Score: 45.01  E-value: 1.10e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     5 MSPEAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERM 83
Cdd:cd14194  50 VSREDIEREVSILKEIQHPNVITLHEVYeNKTDVILILELVAGGELFDFLAEKES--LTEEEATEFLKQILNGVYYLHSL 127
                        90
                ....*....|....*.
gi 472744    84 NYVHRDLRAANILVGD 99
Cdd:cd14194 128 QIAHFDLKPENIMLLD 143
STKc_Nek6_7 cd08224
Catalytic domain of the Serine/Threonine Kinases, Never In Mitosis gene A (NIMA)-related ...
11-100 1.17e-06

Catalytic domain of the Serine/Threonine Kinases, Never In Mitosis gene A (NIMA)-related kinase 6 and 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek6 and Nek7 are the shortest Neks, consisting only of the catalytic domain and a very short N-terminal extension. They show distinct expression patterns and both appear to be downstream substrates of Nek9. They are required for mitotic spindle formation and cytokinesis. They may also be regulators of the p70 ribosomal S6 kinase. Nek6/7 is part of a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270863 [Multi-domain]  Cd Length: 262  Bit Score: 44.95  E-value: 1.17e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYA-VVSEEPIYIVTEFMDQGSLLEFLK--GQYSTMLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd08224  48 LKEIDLLQQLNHPNIIKYLAsFIENNELNIVLELADAGDLSRLIKhfKKQKRLIPERTIWKYFVQLCSALEHMHSKRIMH 127
                        90
                ....*....|...
gi 472744    88 RDLRAANILVGDN 100
Cdd:cd08224 128 RDIKPANVFITAN 140
PKc_Byr1_like cd06620
Catalytic domain of fungal Byr1-like dual-specificity Mitogen-activated protein Kinase Kinases; ...
11-97 1.19e-06

Catalytic domain of fungal Byr1-like dual-specificity Mitogen-activated protein Kinase Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include the MAPKKs Byr1 from Schizosaccharomyces pombe, FUZ7 from Ustilago maydis, and related proteins. Byr1 phosphorylates its downstream target, the MAPK Spk1, and is regulated by the MAPKK kinase Byr2. The Spk1 cascade is pheromone-responsive and is essential for sporulation and sexual differentiation in fission yeast. FUZ7 phosphorylates and activates its target, the MAPK Crk1, which is required in mating and virulence in U. maydis. MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The Byr-1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270792 [Multi-domain]  Cd Length: 286  Bit Score: 44.74  E-value: 1.19e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEP-IYIVTEFMDQGSLLEFLK--GQYSTMLrlpqLVDFASQIASGMAYVERMNY- 85
Cdd:cd06620  51 LRELQILHECHSPYIVSFYgAFLNENNnIIICMEYMDCGSLDKILKkkGPFPEEV----LGKIAVAVLEGLTYLYNVHRi 126
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd06620 127 IHRDIKPSNILV 138
STKc_Kin4 cd14076
Catalytic domain of the yeast Serine/Threonine Kinase, Kin4; STKs catalyze the transfer of the ...
11-100 1.24e-06

Catalytic domain of the yeast Serine/Threonine Kinase, Kin4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Kin4 is a central component of the spindle position checkpoint (SPOC), which monitors spindle position and regulates the mitotic exit network (MEN). Kin4 associates with spindle pole bodies in mother cells to inhibit MEN signaling and delay mitosis until the anaphase nucleus is properly positioned along the mother-bud axis. Kin4 activity is regulated by both the bud neck-associated kinase Elm1 and protein phosphatase 2A. The Kin4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270978 [Multi-domain]  Cd Length: 270  Bit Score: 44.78  E-value: 1.24e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEF-LKGQY---STMLRLpqlvdFAsQIASGMAYVERMNY 85
Cdd:cd14076  54 MREINILKGLTHPNIVRLLDVLkTKKYIGIVLEFVSGGELFDYiLARRRlkdSVACRL-----FA-QLISGVAYLHKKGV 127
                        90
                ....*....|....*
gi 472744    86 VHRDLRAANILVGDN 100
Cdd:cd14076 128 VHRDLKLENLLLDKN 142
STKc_TBK1 cd13988
Catalytic domain of the Serine/Threonine kinase, TANK Binding Kinase 1; STKs catalyze the ...
3-96 1.40e-06

Catalytic domain of the Serine/Threonine kinase, TANK Binding Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TBK1 is also called T2K and NF-kB-activating kinase. It is widely expressed in most cell types and acts as an IkappaB kinase (IKK)-activating kinase responsible for NF-kB activation in response to growth factors. It plays a role in modulating inflammatory responses through the NF-kB pathway. TKB1 is also a major player in innate immune responses since it functions as a virus-activated kinase necessary for establishing an antiviral state. It phosphorylates IRF-3 and IRF-7, which are important transcription factors for inducing type I interferon during viral infection. In addition, TBK1 may also play roles in cell transformation and oncogenesis. The TBK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270890 [Multi-domain]  Cd Length: 316  Bit Score: 44.79  E-value: 1.40e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     3 GTMSP-EAFLQEAQVMKKLRHEKLVQLYAVVSEEPI---YIVTEFMDQGSLLEFLKgQYSTMLRLPQ--LVDFASQIASG 76
Cdd:cd13988  30 SFMRPlDVQMREFEVLKKLNHKNIVKLFAIEEELTTrhkVLVMELCPCGSLYTVLE-EPSNAYGLPEseFLIVLRDVVAG 108
                        90       100
                ....*....|....*....|
gi 472744    77 MAYVERMNYVHRDLRAANIL 96
Cdd:cd13988 109 MNHLRENGIVHRDIKPGNIM 128
STKc_LRRK2 cd14068
Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 2; STKs catalyze ...
12-97 1.50e-06

Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LRRK2 is one of two vertebrate LRRKs which show complementary expression in the brain. Mutations in LRRK2, found in the kinase, ROC-COR, and WD40 domains, are linked to both familial and sporadic forms of Parkinson's disease. The most prevalent mutation, G2019S located in the activation loop of the kinase domain, increases kinase activity. The R1441C/G mutations in the GTPase domain have also been reported to influence kinase activity. LRRKs are also classified as ROCO proteins because they contain a ROC (Ras of complex proteins)/GTPase domain followed by a COR (C-terminal of ROC) domain of unknown function. In addition, LRRKs contain a catalytic kinase domain and protein-protein interaction motifs including a WD40 domain, LRRs and ankyrin (ANK) repeats. LRRKs possess both GTPase and kinase activities, with the ROC domain acting as a molecular switch for the kinase domain, cycling between a GTP-bound state which drives kinase activity and a GDP-bound state which decreases the activity. The LRRK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270970 [Multi-domain]  Cd Length: 252  Bit Score: 44.56  E-value: 1.50e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVvSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLvDFASQIASGMAYVERMNYVHRDLR 91
Cdd:cd14068  36 QELVVLSHLHHPSLVALLAA-GTAPRMLVMELAPKGSLDALLQQDNASLTRTLQH-RIALHVADGLRYLHSAMIIYRDLK 113

                ....*.
gi 472744    92 AANILV 97
Cdd:cd14068 114 PHNVLL 119
STKc_BMPR1a cd14220
Catalytic domain of the Serine/Threonine Kinase, Bone Morphogenetic Protein Type IA Receptor; ...
4-103 1.59e-06

Catalytic domain of the Serine/Threonine Kinase, Bone Morphogenetic Protein Type IA Receptor; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BMPR1a, also called Activin receptor-Like Kinase 3 (ALK3), functions as a receptor for bone morphogenetic proteins (BMPs), which are involved in the regulation of cell proliferation, survival, differentiation, and apoptosis. BMPs are able to induce bone, cartilage, ligament, and tendon formation, and may play roles in bone diseases and tumors. Germline mutations in BMPR1a are associated with an increased risk to Juvenile Polyposis Syndrome, a hamartomatous disorder that may lead to gastrointestinal cancer. BMPR1a may also play an indirect role in the development of hematopoietic stem cells (HSCs) as osteoblasts are a major component of the HSC niche within the bone marrow. BMPR1a belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like BMPR1a, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The BMPR1a subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271122 [Multi-domain]  Cd Length: 287  Bit Score: 44.65  E-value: 1.59e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPEAFLQEAQVMKK--LRHEKLVQLYA-----VVSEEPIYIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASG 76
Cdd:cd14220  28 TTEEASWFRETEIYQTvlMRHENILGFIAadikgTGSWTQLYLITDYHENGSLYDFLK---CTTLDTRALLKLAYSAACG 104
                        90       100       110
                ....*....|....*....|....*....|....*
gi 472744    77 MAYVERMNY--------VHRDLRAANILVGDNLVC 103
Cdd:cd14220 105 LCHLHTEIYgtqgkpaiAHRDLKSKNILIKKNGTC 139
STKc_CaMKI cd14083
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ...
13-96 1.66e-06

Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270985 [Multi-domain]  Cd Length: 259  Bit Score: 44.28  E-value: 1.66e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFL--KGQY-----STMLRlpqlvdfasQIASGMAYVERMN 84
Cdd:cd14083  51 EIAVLRKIKHPNIVQLLDIYeSKSHLYLVMELVTGGELFDRIveKGSYtekdaSHLIR---------QVLEAVDYLHSLG 121
                        90
                ....*....|..
gi 472744    85 YVHRDLRAANIL 96
Cdd:cd14083 122 IVHRDLKPENLL 133
STKc_Yank1 cd05578
Catalytic domain of the Serine/Threonine Kinase, Yank1; STKs catalyze the transfer of the ...
11-96 1.98e-06

Catalytic domain of the Serine/Threonine Kinase, Yank1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily contains uncharacterized STKs with similarity to the human protein designated as Yank1 or STK32A. The Yank1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270730 [Multi-domain]  Cd Length: 257  Bit Score: 44.17  E-value: 1.98e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLleflkgQYstmlRLPQLVDF--------ASQIASGMAYVE 81
Cdd:cd05578  48 LNELEILQELEHPFLVNLwYSFQDEEDMYMVVDLLLGGDL------RY----HLQQKVKFseetvkfyICEIVLALDYLH 117
                        90
                ....*....|....*
gi 472744    82 RMNYVHRDLRAANIL 96
Cdd:cd05578 118 SKNIIHRDIKPDNIL 132
STKc_HAL4_like cd13994
Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs ...
10-103 2.04e-06

Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of HAL4, Saccharomyces cerevisiae Ptk2/Stk2, and similar fungal proteins. Proteins in this subfamily are involved in regulating ion transporters. In budding and fission yeast, HAL4 promotes potassium ion uptake, which increases cellular resistance to other cations such as sodium, lithium, and calcium ions. HAL4 stabilizes the major high-affinity K+ transporter Trk1 at the plasma membrane under low K+ conditions, which prevents endocytosis and vacuolar degradation. Budding yeast Ptk2 phosphorylates and regulates the plasma membrane H+ ATPase, Pma1. The HAL4-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270896 [Multi-domain]  Cd Length: 265  Bit Score: 44.22  E-value: 2.04e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQ-LYAVVSEEP-IYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd13994  44 LTSEYIISSKLHHPNIVKvLDLCQDLHGkWCLVMEYCPGGDLFTLIEKADS--LSLEEKDCFFKQILRGVAYLHSHGIAH 121
                        90
                ....*....|....*.
gi 472744    88 RDLRAANILVGDNLVC 103
Cdd:cd13994 122 RDLKPENILLDEDGVL 137
STKc_EIF2AK4_GCN2_rpt2 cd14046
Catalytic domain, repeat 2, of the Serine/Threonine kinase, eukaryotic translation Initiation ...
11-96 2.08e-06

Catalytic domain, repeat 2, of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or General Control Non-derepressible-2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GCN2 (or EIF2AK4) is activated by amino acid or serum starvation and UV irradiation. It induces GCN4, a transcriptional activator of amino acid biosynthetic genes, leading to increased production of amino acids under amino acid-deficient conditions. In serum-starved cells, GCN2 activation induces translation of the stress-responsive transcription factor ATF4, while under UV stress, GCN2 triggers transcriptional rescue via NF-kB signaling. GCN2 contains an N-terminal RWD, a degenerate kinase-like (repeat 1), the catalytic kinase (repeat 2), a histidyl-tRNA synthetase (HisRS)-like, and a C-terminal ribosome-binding and dimerization (RB/DD) domains. Its kinase domain is activated via conformational changes as a result of the binding of uncharged tRNA to the HisRS-like domain. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the overall downregulation of protein synthesis. The GCN2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270948 [Multi-domain]  Cd Length: 278  Bit Score: 44.28  E-value: 2.08e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLK-GQYSTMLRLPQLVdfaSQIASGMAYVERMNYVHR 88
Cdd:cd14046  52 LREVMLLSRLNHQHVVRYYqAWIERANLYIQMEYCEKSTLRDLIDsGLFQDTDRLWRLF---RQILEGLAYIHSQGIIHR 128

                ....*...
gi 472744    89 DLRAANIL 96
Cdd:cd14046 129 DLKPVNIF 136
STKc_Mos cd13979
Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos; STKs catalyze ...
20-103 2.22e-06

Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mos (or c-Mos) is a germ-cell specific kinase that plays roles in both the release of primary arrest and the induction of secondary arrest in oocytes. It is expressed towards the end of meiosis I and is quickly degraded upon fertilization. It is a component of the cytostatic factor (CSF), which is responsible for metaphase II arrest. In addition, Mos activates a phoshorylation cascade that leads to the activation of the p34 subunit of MPF (mitosis-promoting factor or maturation promoting factor), a cyclin-dependent kinase that is responsible for the release of primary arrest in meiosis I. The Mos subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270881 [Multi-domain]  Cd Length: 265  Bit Score: 43.91  E-value: 2.22e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    20 LRHEKLVQLYAVVS----EEPIYIVTEFMDQGSLLEFLKGQYStMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANI 95
Cdd:cd13979  56 LRHENIVRVLAAETgtdfASLGLIIMEYCGNGTLQQLIYEGSE-PLPLAHRILISLDIARALRFCHSHGIVHLDVKPANI 134

                ....*...
gi 472744    96 LVGDNLVC 103
Cdd:cd13979 135 LISEQGVC 142
STKc_PRKX_like cd05612
Catalytic domain of PRKX-like Protein Serine/Threonine Kinases; STKs catalyze the transfer of ...
13-97 2.58e-06

Catalytic domain of PRKX-like Protein Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include human PRKX (X chromosome-encoded protein kinase), Drosophila DC2, and similar proteins. PRKX is present in many tissues including fetal and adult brain, kidney, and lung. The PRKX gene is located in the Xp22.3 subregion and has a homolog called PRKY on the Y chromosome. An abnormal interchange between PRKX aand PRKY leads to the sex reversal disorder of XX males and XY females. PRKX is implicated in granulocyte/macrophage lineage differentiation, renal cell epithelial migration, and tubular morphogenesis in the developing kidney. The PRKX-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270763 [Multi-domain]  Cd Length: 292  Bit Score: 43.96  E-value: 2.58e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLK--GQYS-TMLRLpqlvdFASQIASGMAYVERMNYVHR 88
Cdd:cd05612  51 EKRVLKEVSHPFIIRLFWTEHDQRfLYMLMEYVPGGELFSYLRnsGRFSnSTGLF-----YASEIVCALEYLHSKEIVYR 125

                ....*....
gi 472744    89 DLRAANILV 97
Cdd:cd05612 126 DLKPENILL 134
STKc_MAP4K4_6_N cd06636
N-terminal Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase ...
8-100 2.58e-06

N-terminal Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 and 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. MAP4K4 is also called Nck Interacting kinase (NIK). It facilitates the activation of the MAPKs, extracellular signal-regulated kinase (ERK) 1, ERK2, and c-Jun N-terminal kinase (JNK), by phosphorylating and activating MEKK1. MAP4K4 plays a role in tumor necrosis factor (TNF) alpha-induced insulin resistance. MAP4K4 silencing in skeletal muscle cells from type II diabetic patients restores insulin-mediated glucose uptake. MAP4K4, through JNK, also plays a broad role in cell motility, which impacts inflammation, homeostasis, as well as the invasion and spread of cancer. MAP4K4 is found to be highly expressed in most tumor cell lines relative to normal tissue. MAP4K6 (also called MINK for Misshapen/NIKs-related kinase) is activated after Ras induction and mediates activation of p38 MAPK. MAP4K6 plays a role in cell cycle arrest, cytoskeleton organization, cell adhesion, and cell motility. The MAP4K4/6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270806 [Multi-domain]  Cd Length: 282  Bit Score: 43.84  E-value: 2.58e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY--AVVSEEP------IYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAY 79
Cdd:cd06636  57 EEIKLEINMLKKYSHHRNIATYygAFIKKSPpghddqLWLVMEFCGAGSVTDLVKNTKGNALKEDWIAYICREILRGLAH 136
                        90       100
                ....*....|....*....|.
gi 472744    80 VERMNYVHRDLRAANILVGDN 100
Cdd:cd06636 137 LHAHKVIHRDIKGQNVLLTEN 157
STKc_YSK4 cd06631
Catalytic domain of the Serine/Threonine Kinase, Yeast Sps1/Ste20-related Kinase 4; STKs ...
12-100 2.59e-06

Catalytic domain of the Serine/Threonine Kinase, Yeast Sps1/Ste20-related Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. YSK4 is a putative MAPKKK, whose mammalian gene has been isolated. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The YSK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270801 [Multi-domain]  Cd Length: 266  Bit Score: 43.96  E-value: 2.59e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQ-LYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTmLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd06631  52 EEVDLLKTLKHVNIVGyLGTCLEDNVVSIFMEFVPGGSIASILA-RFGA-LEEPVFCRYTKQILEGVAYLHNNNVIHRDI 129
                        90
                ....*....|
gi 472744    91 RAANILVGDN 100
Cdd:cd06631 130 KGNNIMLMPN 139
STKc_EIF2AK2_PKR cd14047
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ...
13-101 3.80e-06

Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 2 or Protein Kinase regulated by RNA; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKR (or EIF2AK2) contains an N-terminal double-stranded RNA (dsRNA) binding domain and a C-terminal catalytic kinase domain. It is activated by dsRNA, which is produced as a replication intermediate in virally infected cells. It plays a key role in mediating innate immune responses to viral infection. PKR is also directly activated by PACT (protein activator of PKR) and heparin, and is inhibited by viral proteins and RNAs. PKR also regulates transcription and signal transduction in diseased cells, playing roles in tumorigenesis and neurodegenerative diseases. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The PKR subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270949 [Multi-domain]  Cd Length: 267  Bit Score: 43.25  E-value: 3.80e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLY-----------------AVVSEEPIYIVTEFMDQGSLLEFL-KGQYSTMLRLPQLVDFaSQIA 74
Cdd:cd14047  49 EVKALAKLDHPNIVRYNgcwdgfdydpetsssnsSRSKTKCLFIQMEFCEKGTLESWIeKRNGEKLDKVLALEIF-EQIT 127
                        90       100
                ....*....|....*....|....*..
gi 472744    75 SGMAYVERMNYVHRDLRAANILVGDNL 101
Cdd:cd14047 128 KGVEYIHSKKLIHRDLKPSNIFLVDTG 154
STKc_WNK4 cd14033
Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 4; STKs catalyze ...
8-97 3.86e-06

Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK4 shows a restricted expression pattern and is usually found in epithelial cells. It is expressed in nephrons and in extrarenal tissues including intestine, eye, mammary glands, and prostate. WNK4 regulates a variety of ion transport proteins including apical or basolateral ion transporters, ion channels in the transcellular pathway, and claudins in the paracellular pathway. Mutations in WNK4 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension and hyperkalemia. WNK4 inhibits the activity of the thiazide-sensitive Na-Cl cotransporter (NCC), which is responsible for about 15% of NaCl reabsorption in the kidney. It also inhibits the renal outer medullary potassium channel (ROMK) and decreases its surface expression. Hypertension and hyperkalemia in PHAII patients with WNK4 mutations may be partly due to increased NaCl reabsorption through NCC and impaired renal potassium secretion by ROMK, respectively. The WNK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270935 [Multi-domain]  Cd Length: 261  Bit Score: 43.45  E-value: 3.86e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-----AVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQlvDFASQIASGMAYVER 82
Cdd:cd14033  45 QRFSEEVEMLKGLQHPNIVRFYdswksTVRGHKCIILVTELMTSGTLKTYLKRFREMKLKLLQ--RWSRQILKGLHFLHS 122
                        90
                ....*....|....*..
gi 472744    83 MN--YVHRDLRAANILV 97
Cdd:cd14033 123 RCppILHRDLKCDNIFI 139
STKc_IRE1 cd13982
Catalytic domain of the Serine/Threonine kinase, Inositol-requiring protein 1; STKs catalyze ...
22-97 4.23e-06

Catalytic domain of the Serine/Threonine kinase, Inositol-requiring protein 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRE1, also called Endoplasmic reticulum (ER)-to-nucleus signaling protein (or ERN), is an ER-localized type I transmembrane protein with kinase and endoribonuclease domains in the cytoplasmic side. It acts as an ER stress sensor and is the oldest and most conserved component of the unfolded protein response (UPR) in eukaryotes. The UPR is activated when protein misfolding is detected in the ER in order to decrease the synthesis of new proteins and increase the capacity of the ER to cope with the stress. During ER stress, IRE1 dimerizes and forms oligomers, allowing the kinase domain to undergo trans-autophosphorylation. This leads to a conformational change that stimulates its endoribonuclease activity and results in the cleavage of its mRNA substrate, HAC1 in yeast and XBP1 in metazoans, promoting a splicing event that enables translation into a transcription factor which activates the UPR. Mammals contain two IRE1 proteins, IRE1alpha (or ERN1) and IRE1beta (or ERN2). The Ire1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270884 [Multi-domain]  Cd Length: 269  Bit Score: 43.41  E-value: 4.23e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    22 HEKLVQLYAV-VSEEPIYIVTEFMDQgSLLEFLKGQYSTMLRL---PQLVDFASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd13982  54 HPNVIRYFCTeKDRQFLYIALELCAA-SLQDLVESPRESKLFLrpgLEPVRLLRQIASGLAHLHSLNIVHRDLKPQNILI 132
STKc_GRK cd05577
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase; STKs ...
11-99 4.54e-06

Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. GRKs play important roles in the cardiovascular, immune, respiratory, skeletal, and nervous systems. They contain a central catalytic domain, flanked by N- and C-terminal extensions. The N-terminus contains an RGS (regulator of G protein signaling) homology (RH) domain and several motifs. The C-terminus diverges among different groups of GRKs. There are seven types of GRKs, named GRK1 to GRK7, which are subdivided into three main groups: visual (GRK1/7); beta-adrenergic receptor kinases (GRK2/3); and GRK4-like (GRK4/5/6). Expression of GRK2/3/5/6 is widespread while GRK1/4/7 show a limited tissue distribution. The substrate spectrum of the widely expressed GRKs partially overlaps. The GRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270729 [Multi-domain]  Cd Length: 278  Bit Score: 43.28  E-value: 4.54e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd05577  41 LNEKIILEKVSSPFIVSLaYAFETKDKLCLVLTLMNGGDLKYHIYNVGTRGFSEARAIFYAAEIICGLEHLHNRFIVYRD 120
                        90
                ....*....|
gi 472744    90 LRAANILVGD 99
Cdd:cd05577 121 LKPENILLDD 130
PTKc_VEGFR cd05054
Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors; ...
33-102 5.09e-06

Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The VEGFR subfamily consists of VEGFR1 (Flt1), VEGFR2 (Flk1), VEGFR3 (Flt4), and similar proteins. VEGFR subfamily members are receptor PTKss (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. In VEGFR3, the fifth Ig-like domain is replaced by a disulfide bridge. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. There are five VEGF ligands in mammals, which bind, in an overlapping pattern to the three VEGFRs, which can form homo or heterodimers. VEGFRs regulate the cardiovascular system. They are critical for vascular development during embryogenesis and blood vessel formation in adults. They induce cellular functions common to other growth factor receptors such as cell migration, survival, and proliferation. The VEGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270647 [Multi-domain]  Cd Length: 298  Bit Score: 43.25  E-value: 5.09e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    33 SEEPIYIVTEFMDQGSLLEFLKGQ------------------------YSTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd05054  83 PGGPLMVIVEFCKFGNLSNYLRSKreefvpyrdkgardveeeedddelYKEPLTLEDLICYSFQVARGMEFLASRKCIHR 162
                        90
                ....*....|....
gi 472744    89 DLRAANILVGDNLV 102
Cdd:cd05054 163 DLAARNILLSENNV 176
STKc_WNK3 cd14031
Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 3; STKs catalyze ...
8-97 5.22e-06

Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK3 shows a restricted expression pattern; it is found at high levels in the pituary glands and is also expressed in the kidney and brain. It has been shown to regulate many ion transporters including members of the SLC12A family of cation-chloride cotransporters such as NCC and NKCC2, the renal potassium channel ROMK, and the epithelial calcium channels TRPV5 and TRPV6. WNK3 appears to sense low-chloride hypotonic stress and under these conditions, it activates SPAK, which directly interacts and phosphorylates cation-chloride cotransporters. WNK3 has also been shown to promote cell survival, possibly through interaction with procaspase-3 and HSP70. WNKs comprise a subfamily of STKs with an unusual placement of the catalytic lysine relative to all other protein kinases. The WNK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270933 [Multi-domain]  Cd Length: 275  Bit Score: 43.17  E-value: 5.22e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-----AVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMlRLPQLVDFASQIASGMAYVER 82
Cdd:cd14031  54 QRFKEEAEMLKGLQHPNIVRFYdswesVLKGKKCIVLVTELMTSGTLKTYLK-RFKVM-KPKVLRSWCRQILKGLQFLHT 131
                        90
                ....*....|....*..
gi 472744    83 MN--YVHRDLRAANILV 97
Cdd:cd14031 132 RTppIIHRDLKCDNIFI 148
STKc_CaMKII cd14086
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ...
12-96 5.36e-06

Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type II; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKs contain an N-terminal catalytic domain followed by a regulatory domain that harbors a CaM binding site. In addition, CaMKII contains a C-terminal association domain that facilitates oligomerization. There are four CaMKII proteins (alpha, beta, gamma, delta) encoded by different genes; each gene undergoes alternative splicing to produce more than 30 isoforms. CaMKII-alpha and -beta are enriched in neurons while CaMKII-gamma and -delta are predominant in myocardium. CaMKII is a signaling molecule that translates upstream calcium and reactive oxygen species (ROS) signals into downstream responses that play important roles in synaptic function and cardiovascular physiology. It is a major component of the postsynaptic density and is critical in regulating synaptic plasticity including long-term potentiation. It is critical in regulating ion channels and proteins involved in myocardial excitation-contraction and excitation-transcription coupling. Excessive CaMKII activity promotes processes that contribute to heart failure and arrhythmias. The CaMKII subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270988 [Multi-domain]  Cd Length: 292  Bit Score: 43.18  E-value: 5.36e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVSEEPI-YIVTEFMDQGSLLEFLKGQ--YSTmlrlpqlVDfAS----QIASGMAYVERMN 84
Cdd:cd14086  49 REARICRLLKHPNIVRLHDSISEEGFhYLVFDLVTGGELFEDIVARefYSE-------AD-AShciqQILESVNHCHQNG 120
                        90
                ....*....|..
gi 472744    85 YVHRDLRAANIL 96
Cdd:cd14086 121 IVHRDLKPENLL 132
STKc_HUNK cd14070
Catalytic domain of the Serine/Threonine Kinase, Hormonally up-regulated Neu-associated kinase ...
12-100 6.14e-06

Catalytic domain of the Serine/Threonine Kinase, Hormonally up-regulated Neu-associated kinase (also called MAK-V); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HUNK/MAK-V was identified from a mammary tumor in an MMTV-neu transgenic mouse. It is required for the metastasis of c-myc-induced mammary tumors, but is not necessary for c-myc-induced primary tumor formation or normal development. It is required for HER2/neu-induced tumor formation and maintenance of the cells' tumorigenic phenotype. It is over-expressed in aggressive subsets of ovary, colon, and breast carcinomas. HUNK interacts with synaptopodin, and may also play a role in synaptic plasticity. The HUNK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270972 [Multi-domain]  Cd Length: 262  Bit Score: 42.88  E-value: 6.14e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd14070  52 REGRIQQMIRHPNITQLLDILeTENSYYLVMELCPGGNLMHRIYDKKR--LEEREARRYIRQLVSAVEHLHRAGVVHRDL 129
                        90
                ....*....|
gi 472744    91 RAANILVGDN 100
Cdd:cd14070 130 KIENLLLDEN 139
PTK_Jak3_rpt1 cd14208
Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 3; Jak3 is ...
8-97 6.36e-06

Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 3; Jak3 is expressed only in hematopoietic cells. It binds the shared receptor subunit, common gamma chain and thus, is essential in the signaling of cytokines that use it such as IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is important in lymphoid development and myeloid cell differentiation. Inactivating mutations in Jak3 have been reported in humans with severe combined immunodeficiency (SCID). Jak3 is a cytoplasmic (or nonreceptor) PTK containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. Jaks are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The Jak3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271110 [Multi-domain]  Cd Length: 260  Bit Score: 42.97  E-value: 6.36e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYST-MLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd14208  47 ESFLEAASIMSQISHKHLVLLHGVCVGKDSIMVQEFVCHGALDLYLKKQQQKgPVAISWKLQVVKQLAYALNYLEDKQLV 126
                        90
                ....*....|.
gi 472744    87 HRDLRAANILV 97
Cdd:cd14208 127 HGNVSAKKVLL 137
STKc_MAP3K8 cd13995
Catalytic domain of the Serine/Threonine kinase, Mitogen-Activated Protein Kinase (MAPK) ...
13-96 6.60e-06

Catalytic domain of the Serine/Threonine kinase, Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase 8; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP3K8 is also called Tumor progression locus 2 (Tpl2) or Cancer Osaka thyroid (Cot), and was first identified as a proto-oncogene in T-cell lymphoma induced by MoMuL virus and in breast carcinoma induced by MMTV. Activated MAP3K8 induces various MAPK pathways including Extracellular Regulated Kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), and p38. It plays a pivotal role in innate immunity, linking Toll-like receptors to the production of TNF and the activation of ERK in macrophages. It is also required in interleukin-1beta production and is critical in host defense against Gram-positive bacteria. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The MAP3K8 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270897 [Multi-domain]  Cd Length: 256  Bit Score: 42.69  E-value: 6.60e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGqySTMLRLPQLVDFASQIASGMAYVERMNYVHRDLR 91
Cdd:cd13995  46 DVEIQACFRHENIAELYgALLWEETVHLFMEAGEGGSVLEKLES--CGPMREFEIIWVTKHVLKGLDFLHSKNIIHHDIK 123

                ....*
gi 472744    92 AANIL 96
Cdd:cd13995 124 PSNIV 128
STKc_EIF2AK3_PERK cd14048
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ...
8-96 6.75e-06

Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 3 or PKR-like Endoplasmic Reticulum Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PERK (or EIF2AK3) is a type-I ER transmembrane protein containing a luminal domain bound with the chaperone BiP under unstressed conditions and a cytoplasmic catalytic kinase domain. In response to the accumulation of misfolded or unfolded proteins in the ER, PERK is activated through the release of BiP, allowing it to dimerize and autophosphorylate. It functions as the central regulator of translational control during the Unfolded Protein Response (UPR) pathway. In addition to the eIF-2 alpha subunit, PERK also phosphorylates Nrf2, a leucine zipper transcription factor which regulates cellular redox status and promotes cell survival during the UPR. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The PERK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270950 [Multi-domain]  Cd Length: 281  Bit Score: 42.94  E-value: 6.75e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEP------------IYIVTEFMDQGSLLEFLKGQYSTMLR-LPQLVDFASQIA 74
Cdd:cd14048  49 EKVLREVRALAKLDHPGIVRYFNAWLERPpegwqekmdevyLYIQMQLCRKENLKDWMNRRCTMESReLFVCLNIFKQIA 128
                        90       100
                ....*....|....*....|..
gi 472744    75 SGMAYVERMNYVHRDLRAANIL 96
Cdd:cd14048 129 SAVEYLHSKGLIHRDLKPSNVF 150
PK_STRAD_alpha cd08227
Pseudokinase domain of STE20-related kinase adapter protein alpha; The pseudokinase domain ...
10-103 6.94e-06

Pseudokinase domain of STE20-related kinase adapter protein alpha; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. The structure of STRAD-alpha is available and shows that this protein binds ATP, has an ordered activation loop, and adopts a closed conformation typical of fully active protein kinases. It does not possess activity due to nonconservative substitutions of essential catalytic residues. ATP binding enhances the affinity of STRAD for MO25. The conformation of STRAD-alpha, stabilized through ATP and MO25, may be needed to activate LKB1. A mutation which results in a truncation of a C-terminal part of the human STRAD-alpha pseudokinase domain and disrupts its association with LKB1, leads to PMSE (polyhydramnios, megalencephaly, symptomatic epilepsy) syndrome. Several splice variants of STRAD-alpha exist which exhibit different effects on the localization and activation of LKB1. STRAD forms a complex with the scaffolding protein MO25, and the serine/threonine kinase (STK), LKB1, resulting in the activation of the kinase. In the complex, LKB1 phosphorylates and activates adenosine monophosphate-activated protein kinases (AMPKs), which regulate cell energy metabolism and cell polarity. The STRAD alpha subfamily is part of a larger superfamily that includes the catalytic domains of STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173767 [Multi-domain]  Cd Length: 327  Bit Score: 42.62  E-value: 6.94e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQ-EAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd08227  45 FLQgELHVSKLFNHPNIVPYRATfIADNELWVVTSFMAYGSAKDLICTHFMDGMSELAIAYILQGVLKALDYIHHMGYVH 124
                        90
                ....*....|....*..
gi 472744    88 RDLRAANILVG-DNLVC 103
Cdd:cd08227 125 RSVKASHILISvDGKVY 141
STKc_DAPK3 cd14195
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 3; STKs ...
5-99 7.13e-06

Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK3, also called DAP-like kinase (DLK) and zipper-interacting protein kinase (ZIPk), contains an N-terminal kinase domain and a C-terminal region with nuclear localization signals (NLS) and a leucine zipper motif that mediates homodimerization and interaction with other leucine zipper proteins. It interacts with Par-4, a protein that contains a death domain and interacts with actin filaments. DAPK3 is present in both the cytoplasm and nucleus. Its co-expression with Par-4 results in the co-localization of the two proteins to actin filaments. In addition to cell death, DAPK3 is also implicated in mediating cell motility and the contraction of smooth muscles. The DAPK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271097 [Multi-domain]  Cd Length: 271  Bit Score: 42.68  E-value: 7.13e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     5 MSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERM 83
Cdd:cd14195  50 VSREEIEREVNILREIQHPNIITLHDIFENKTdVVLILELVSGGELFDFLAEKES--LTEEEATQFLKQILDGVHYLHSK 127
                        90
                ....*....|....*.
gi 472744    84 NYVHRDLRAANILVGD 99
Cdd:cd14195 128 RIAHFDLKPENIMLLD 143
STKc_ROCK_NDR_like cd05573
Catalytic domain of Rho-associated coiled-coil containing protein kinase (ROCK)- and Nuclear ...
10-98 7.17e-06

Catalytic domain of Rho-associated coiled-coil containing protein kinase (ROCK)- and Nuclear Dbf2-Related (NDR)-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily include ROCK and ROCK-like proteins such as DMPK, MRCK, and CRIK, as well as NDR and NDR-like proteins such as LATS, CBK1 and Sid2p. ROCK and CRIK are effectors of the small GTPase Rho, while MRCK is an effector of the small GTPase Cdc42. NDR and NDR-like kinases contain an N-terminal regulatory (NTR) domain and an insert within the catalytic domain that contains an auto-inhibitory sequence. Proteins in this subfamily are involved in regulating many cellular functions including contraction, motility, division, proliferation, apoptosis, morphogenesis, and cytokinesis. The ROCK/NDR-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270725 [Multi-domain]  Cd Length: 350  Bit Score: 42.66  E-value: 7.17e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLkgqySTMLRLPQ-LVDF-ASQIASGMAYVERMNYV 86
Cdd:cd05573  48 VRAERDILADADSPWIVRLhYAFQDEDHLYLVMEYMPGGDLMNLL----IKYDVFPEeTARFyIAELVLALDSLHKLGFI 123
                        90
                ....*....|..
gi 472744    87 HRDLRAANILVG 98
Cdd:cd05573 124 HRDIKPDNILLD 135
PKc_DYRK_like cd14133
Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like ...
6-100 7.40e-06

Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like protein kinases; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of the dual-specificity DYRKs and YAK1, as well as the S/T kinases (STKs), HIPKs. DYRKs and YAK1 autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. Proteins in this subfamily play important roles in cell proliferation, differentiation, survival, growth, and development. The DYRK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271035 [Multi-domain]  Cd Length: 262  Bit Score: 42.64  E-value: 7.40e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQ---EAQVMKKLR------HEKLVQLY-AVVSEEPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQLVDFASQIAS 75
Cdd:cd14133  35 NKDYLDQsldEIRLLELLNkkdkadKYHIVRLKdVFYFKNHLCIVFELLSQ-NLYEFLKQNKFQYLSLPRIRKIAQQILE 113
                        90       100
                ....*....|....*....|....*
gi 472744    76 GMAYVERMNYVHRDLRAANILVGDN 100
Cdd:cd14133 114 ALVFLHSLGLIHCDLKPENILLASY 138
pknD PRK13184
serine/threonine-protein kinase PknD;
10-98 7.61e-06

serine/threonine-protein kinase PknD;


Pssm-ID: 183880 [Multi-domain]  Cd Length: 932  Bit Score: 42.84  E-value: 7.61e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     10 FLQEAQVMKKLRHEKLVQLYAVVSE-EPIYIVTEFMdQG----SLL------EFLKGQYSTMLRLPQLVDFASQIASGMA 78
Cdd:PRK13184  49 FLREAKIAADLIHPGIVPVYSICSDgDPVYYTMPYI-EGytlkSLLksvwqkESLSKELAEKTSVGAFLSIFHKICATIE 127
                         90       100
                 ....*....|....*....|
gi 472744     79 YVERMNYVHRDLRAANILVG 98
Cdd:PRK13184 128 YVHSKGVLHRDLKPDNILLG 147
STKc_TSSK3-like cd14163
Catalytic domain of testis-specific serine/threonine kinase 3 and similar proteins; STKs ...
6-97 7.83e-06

Catalytic domain of testis-specific serine/threonine kinase 3 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK3 has been reported to be expressed in the interstitial Leydig cells of adult testis. Its mRNA levels is low at birth, increases at puberty, and remains high throughout adulthood. The TSSK3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271065 [Multi-domain]  Cd Length: 257  Bit Score: 42.67  E-value: 7.83e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQ-----EAQVMKKLRHEKLVQLYAVV--SEEPIYIVTEFMDQGSLLEFL-------KGQYSTMLRlpQLVDfas 71
Cdd:cd14163  38 GPEEFIQrflprELQIVERLDHKNIIHVYEMLesADGKIYLVMELAEDGDVFDCVlhggplpEHRAKALFR--QLVE--- 112
                        90       100
                ....*....|....*....|....*.
gi 472744    72 qiasGMAYVERMNYVHRDLRAANILV 97
Cdd:cd14163 113 ----AIRYCHGCGVAHRDLKCENALL 134
STKc_MAP4K5 cd06646
Catalytic domain of the Serine/Threonine Kinase, Mitogen-activated protein kinase kinase ...
12-100 8.73e-06

Catalytic domain of the Serine/Threonine Kinase, Mitogen-activated protein kinase kinase kinase kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP4K5, also called germinal center kinase-related enzyme (GCKR), has been shown to activate the MAPK c-Jun N-terminal kinase (JNK). MAP4K5 also facilitates Wnt signaling in B cells, and may therefore be implicated in the control of cell fate, proliferation, and polarity. MAP4Ks are involved in some MAPK signaling pathways by activating a MAPK kinase kinase. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. The MAP4K5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270813 [Multi-domain]  Cd Length: 268  Bit Score: 42.32  E-value: 8.73e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEF--LKGQYSTMlrlpQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd06646  55 QEIFMVKECKHCNIVAYFgSYLSREKLWICMEYCGGGSLQDIyhVTGPLSEL----QIAYVCRETLQGLAYLHSKGKMHR 130
                        90
                ....*....|..
gi 472744    89 DLRAANILVGDN 100
Cdd:cd06646 131 DIKGANILLTDN 142
STKc_CaMKI_delta cd14168
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ...
13-96 8.92e-06

Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I delta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-delta subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271070 [Multi-domain]  Cd Length: 301  Bit Score: 42.34  E-value: 8.92e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFL--KGQY-----STMLRlpqlvdfasQIASGMAYVERMN 84
Cdd:cd14168  58 EIAVLRKIKHENIVALEDIYeSPNHLYLVMQLVSGGELFDRIveKGFYtekdaSTLIR---------QVLDAVYYLHRMG 128
                        90
                ....*....|..
gi 472744    85 YVHRDLRAANIL 96
Cdd:cd14168 129 IVHRDLKPENLL 140
STKc_GRK7 cd05607
Catalytic domain of the Protein Serine/Threonine Kinase, G protein-coupled Receptor Kinase 7; ...
11-103 8.99e-06

Catalytic domain of the Protein Serine/Threonine Kinase, G protein-coupled Receptor Kinase 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK7 (also called iodopsin kinase) belongs to the visual group of GRKs. It is primarily found in the retina and plays a role in the regulation of opsin light receptors. GRK7 is located in retinal cone outer segments and plays an important role in regulating photoresponse of the cones. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK7 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270758 [Multi-domain]  Cd Length: 286  Bit Score: 42.58  E-value: 8.99e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd05607  50 LLEKEILEKVNSPFIVSLaYAFETKTHLCLVMSLMNGGDLKYHIYNVGERGIEMERVIFYSAQITCGILHLHSLKIVYRD 129
                        90
                ....*....|....
gi 472744    90 LRAANILVGDNLVC 103
Cdd:cd05607 130 MKPENVLLDDNGNC 143
STKc_WNK2_like cd14032
Catalytic domain of With No Lysine (WNK) 2-like Serine/Threonine kinases; STKs catalyze the ...
8-97 9.75e-06

Catalytic domain of With No Lysine (WNK) 2-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK2 is widely expressed and has been shown to be epigenetically silenced in gliomas. It inhibits cell growth by acting as a negative regulator of MEK1-ERK1/2 signaling. WNK2 modulates growth factor-induced cancer cell proliferation, suggesting that it may be a tumor suppressor gene. WNKs comprise a subfamily of STKs with an unusual placement of the catalytic lysine relative to all other protein kinases. They are critical in regulating ion balance and are thus, important components in the control of blood pressure. The WNK2-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270934 [Multi-domain]  Cd Length: 266  Bit Score: 42.37  E-value: 9.75e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-----AVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMlRLPQLVDFASQIASGMAYVER 82
Cdd:cd14032  45 QRFKEEAEMLKGLQHPNIVRFYdfwesCAKGKRCIVLVTELMTSGTLKTYLK-RFKVM-KPKVLRSWCRQILKGLLFLHT 122
                        90
                ....*....|....*..
gi 472744    83 MN--YVHRDLRAANILV 97
Cdd:cd14032 123 RTppIIHRDLKCDNIFI 139
PK_STRAD_beta cd08226
Pseudokinase domain of STE20-related kinase adapter protein beta; The pseudokinase domain ...
11-102 1.08e-05

Pseudokinase domain of STE20-related kinase adapter protein beta; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity.STRAD-beta is also referred to as ALS2CR2 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 2 protein), since the human gene encoding it is located within the juvenile ALS2 critical region on chromosome 2q33-q34. It is not linked to the development of ALS2. STRAD forms a complex with the scaffolding protein MO25, and the serine/threonine kinase (STK), LKB1, resulting in the activation of the kinase. In the complex, LKB1 phosphorylates and activates adenosine monophosphate-activated protein kinases (AMPKs), which regulate cell energy metabolism and cell polarity. LKB1 is a tumor suppressor linked to the rare inherited disease, Peutz-Jeghers syndrome, which is characterized by a predisposition to benign polyps and hyperpigmentation of the buccal mucosa. The STRAD-beta subfamily is part of a larger superfamily that includes the catalytic domains of STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270864 [Multi-domain]  Cd Length: 328  Bit Score: 42.16  E-value: 1.08e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKL-RHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd08226  46 LQNEVVLSHFfRHPNIMTHWTVFTEGSwLWVISPFMAYGSARGLLKTYFPEGMNEALIGNILYGAIKALNYLHQNGCIHR 125
                        90
                ....*....|....*
gi 472744    89 DLRAANILV-GDNLV 102
Cdd:cd08226 126 SVKASHILIsGDGLV 140
STKc_WNK1 cd14030
Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 1; STKs catalyze ...
8-97 1.09e-05

Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK1 is widely expressed and is most abundant in the testis. In hyperosmotic or hypotonic low-chloride stress conditions, WNK1 is activated and it phosphorylates its substrates including SPAK and OSR1 kinases, which regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. Mutations in WNK1 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension and hyperkalemia. WNK1 negates WNK4-mediated inhibition of the sodium-chloride cotransporter NCC and activates the epithelial sodium channel ENaC by activating SGK1. WNK1 also decreases the surface expression of renal outer medullary potassium channel (ROMK) by stimulating their endocytosis. Hypertension and hyperkalemia in PHAII patients with WNK1 mutations may be due partly to increased activity of NCC and ENaC, and impaired renal potassium secretion by ROMK, respectively. In addition, WNK1 interacts with MEKK2/3 and acts as an activator of extracellular signal-regulated kinase (ERK) 5. It also negatively regulates TGFbeta signaling. WNKs comprise a subfamily of STKs with an unusual placement of the catalytic lysine relative to all other protein kinases. The WNK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270932 [Multi-domain]  Cd Length: 289  Bit Score: 42.34  E-value: 1.09e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-----AVVSEEPIYIVTEFMDQGSLLEFLKgQYSTMlRLPQLVDFASQIASGMAYVER 82
Cdd:cd14030  69 QRFKEEAGMLKGLQHPNIVRFYdswesTVKGKKCIVLVTELMTSGTLKTYLK-RFKVM-KIKVLRSWCRQILKGLQFLHT 146
                        90
                ....*....|....*..
gi 472744    83 MN--YVHRDLRAANILV 97
Cdd:cd14030 147 RTppIIHRDLKCDNIFI 163
STKc_PFTAIRE1 cd07869
Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-1 kinase; STKs catalyze the transfer ...
6-99 1.12e-05

Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-1 kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PFTAIRE-1 is widely expressed except in the spleen and thymus. It is highly expressed in the brain, heart, pancreas, testis, and ovary, and is localized in the cytoplasm. It is regulated by cyclin D3 and is inhibited by the p21 cell cycle inhibitor. It has also been shown to interact with the membrane-associated cyclin Y, which recruits the protein to the plasma membrane. PFTAIRE-1 shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PFTAIRE-1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 143374 [Multi-domain]  Cd Length: 303  Bit Score: 42.37  E-value: 1.12e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMdQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMN 84
Cdd:cd07869  46 TPFTAIREASLLKGLKHANIVLLHDIIhTKETLTLVFEYV-HTDLCQYMD-KHPGGLHPENVKLFLFQLLRGLSYIHQRY 123
                        90
                ....*....|....*
gi 472744    85 YVHRDLRAANILVGD 99
Cdd:cd07869 124 ILHRDLKPQNLLISD 138
STKc_Pat1_like cd13993
Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of ...
10-100 1.14e-05

Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Pat1 (also called Ran1), Saccharomyces cerevisiae VHS1 and KSP1, and similar fungal STKs. Pat1 blocks Mei2, an RNA-binding protein which is indispensable in the initiation of meiosis. Pat1 is inactivated and Mei2 activated, which initiates meiosis, under nutrient-deprived conditions through a signaling cascade involving Ste11. Meiosis induced by Pat1 inactivation may show different characteristics than normal meiosis including aberrant positioning of centromeres. VHS1 was identified in a screen for suppressors of cell cycle arrest at the G1/S transition, while KSP1 may be involved in regulating PRP20, which is required for mRNA export and maintenance of nuclear structure. The Pat1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270895 [Multi-domain]  Cd Length: 267  Bit Score: 41.95  E-value: 1.14e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKL-RHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFL--KGQY---STMLRlpqlvDFASQIASGMAYVER 82
Cdd:cd13993  51 QLREIDLHRRVsRHPNIITLHDVFeTEVAIYIVLEYCPNGDLFEAIteNRIYvgkTELIK-----NVFLQLIDAVKHCHS 125
                        90
                ....*....|....*...
gi 472744    83 MNYVHRDLRAANILVGDN 100
Cdd:cd13993 126 LGIYHRDIKPENILLSQD 143
STKc_ACVR1_ALK1 cd14142
Catalytic domain of the Serine/Threonine Kinases, Activin Type I Receptor and Activin ...
20-103 1.41e-05

Catalytic domain of the Serine/Threonine Kinases, Activin Type I Receptor and Activin receptor-Like Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR1, also called Activin receptor-Like Kinase 2 (ALK2), and ALK1 act as receptors for bone morphogenetic proteins (BMPs) and they activate SMAD1/5/8. ACVR1 is widely expressed while ALK1 is limited mainly to endothelial cells. The specificity of BMP binding to type I receptors is affected by type II receptors. ACVR1 binds BMP6/7/9/10 and can also bind anti-Mullerian hormone (AMH) in the presence of AMHR2. ALK1 binds BMP9/10 as well as TGFbeta in endothelial cells. A missense mutation in the GS domain of ACVR1 causes fibrodysplasia ossificans progressiva, a complex and disabling disease characterized by congenital skeletal malformations and extraskeletal bone formation. ACVR1 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors, and AMH, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like ACVR1 and ALK1, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The ACVR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271044 [Multi-domain]  Cd Length: 298  Bit Score: 42.04  E-value: 1.41e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    20 LRHEKLVQLYAV-----VSEEPIYIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASGMAYVE--------RMNYV 86
Cdd:cd14142  56 LRHENILGFIASdmtsrNSCTQLWLITHYHENGSLYDYLQ---RTTLDHQEMLRLALSAASGLVHLHteifgtqgKPAIA 132
                        90
                ....*....|....*..
gi 472744    87 HRDLRAANILVGDNLVC 103
Cdd:cd14142 133 HRDLKSKNILVKSNGQC 149
STKc_KSR1 cd14152
Catalytic domain of the Serine/Threonine Kinase, Kinase Suppressor of Ras 1; STKs catalyze the ...
10-102 1.42e-05

Catalytic domain of the Serine/Threonine Kinase, Kinase Suppressor of Ras 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. KSR1 functions as a transducer of TNFalpha-stimulated C-Raf activation of ERK1/2 and NF-kB. Detected activity of KSR1 is cell type specific and context dependent. It is inactive in normal colon epithelial cells and becomes activated at the onset of inflammatory bowel disease (IBD). Similarly, KSR1 activity is undetectable prior to stimulation by EGF or ceramide in COS-7 or YAMC cells, respectively. KSR proteins are widely regarded as pseudokinases, however, this matter is up for debate as catalytic activity has been detected for KSR1 in some systems. The KSR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271054 [Multi-domain]  Cd Length: 279  Bit Score: 41.88  E-value: 1.42e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:cd14152  43 FKKEVMNYRQTRHENVVLFMGACMHPPhLAIITSFCKGRTLYSFVRDP-KTSLDINKTRQIAQEIIKGMGYLHAKGIVHK 121
                        90
                ....*....|....
gi 472744    89 DLRAANILVGDNLV 102
Cdd:cd14152 122 DLKSKNVFYDNGKV 135
STK_BAK1_like cd14664
Catalytic domain of the Serine/Threonine Kinase, BRI1 associated kinase 1 and related STKs; ...
10-97 1.61e-05

Catalytic domain of the Serine/Threonine Kinase, BRI1 associated kinase 1 and related STKs; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes three leucine-rich repeat receptor-like kinases (LRR-RLKs): Arabidopsis thaliana BAK1 and CLAVATA1 (CLV1), and Physcomitrella patens CLL1B clavata1-like receptor S/T protein kinase. BAK1 functions in various signaling pathways. It plays a role in BR (brassinosteroid)-regulated plant development as a co-receptor of BRASSINOSTEROID (BR) INSENSITIVE 1 (BRI1), the receptor for BRs, and is required for full activation of BR signaling. It also modulates pathways involved in plant resistance to pathogen infection (pattern-triggered immunity, PTI) and herbivore attack (wound- or herbivore feeding-induced accumulation of jasmonic acid (JA) and JA-isoleucine. CLV1, directly binds small signaling peptides, CLAVATA3 (CLV3) and CLAVATA3/EMBRYO SURROUNDING REGI0N (CLE), to restrict stem cell proliferation: the CLV3-CLV1-WUS (WUSCHEL) module influences stem cell maintenance in the shoot apical meristem, and the CLE40 (CLAVATA3/EMBRYO SURROUNDING REGION40) -ACR4 (CRINKLY4) -CLV1- WOX5 (WUSCHEL-RELATED HOMEOBOX5) module at the root apical meristem. The STK_BAK1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271134 [Multi-domain]  Cd Length: 270  Bit Score: 41.71  E-value: 1.61e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFLKGQYSTMLRL--PQLVDFASQIASGMAYVER---M 83
Cdd:cd14664  37 FQAEIQTLGMIRHRNIVRLRGYCSnPTTNLLVYEYMPNGSLGELLHSRPESQPPLdwETRQRIALGSARGLAYLHHdcsP 116
                        90
                ....*....|....
gi 472744    84 NYVHRDLRAANILV 97
Cdd:cd14664 117 LIIHRDVKSNNILL 130
STKc_MAST_like cd05579
Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins; STKs ...
11-100 1.70e-05

Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes MAST kinases, MAST-like (MASTL) kinases (also called greatwall kinase or Gwl), and fungal kinases with similarity to Saccharomyces cerevisiae Rim15 and Schizosaccharomyces pombe cek1. MAST kinases contain an N-terminal domain of unknown function, a central catalytic domain, and a C-terminal PDZ domain that mediates protein-protein interactions. MASTL kinases carry only a catalytic domain which contains a long insert relative to other kinases. The fungal kinases in this subfamily harbor other domains in addition to a central catalytic domain, which like in MASTL, also contains an insert relative to MAST kinases. Rim15 contains a C-terminal signal receiver (REC) domain while cek1 contains an N-terminal PAS domain. MAST kinases are cytoskeletal associated kinases of unknown function that are also expressed at neuromuscular junctions and postsynaptic densities. MASTL/Gwl is involved in the regulation of mitotic entry, mRNA stabilization, and DNA checkpoint recovery. The fungal proteins Rim15 and cek1 are involved in the regulation of meiosis and mitosis, respectively. The MAST-like kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270731 [Multi-domain]  Cd Length: 272  Bit Score: 41.43  E-value: 1.70e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFM---DQGSLLEFLKGQYSTMLRLpqlvdFASQIASGMAYVERMNYV 86
Cdd:cd05579  41 LAERNILSQAQNPFVVKLyYSFQGKKNLYLVMEYLpggDLYSLLENVGALDEDVARI-----YIAEIVLALEYLHSHGII 115
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:cd05579 116 HRDLKPDNILIDAN 129
STKc_GRK6 cd05630
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 6; STKs ...
11-100 1.72e-05

Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK6 is widely expressed in many tissues and is expressed as multiple splice variants with different domain architectures. It is post-translationally palmitoylated and localized in the membrane. GRK6 plays important roles in the regulation of dopamine, M3 muscarinic, opioid, and chemokine receptor signaling. It also plays maladaptive roles in addiction and Parkinson's disease. GRK6-deficient mice exhibit altered dopamine receptor regulation, decreased lymphocyte chemotaxis, and increased acute inflammation and neutrophil chemotaxis. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270779 [Multi-domain]  Cd Length: 285  Bit Score: 41.55  E-value: 1.72e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd05630  48 LNEKQILEKVNSRFVVSLaYAYETKDALCLVLTLMNGGDLKFHIYHMGQAGFPEARAVFYAAEICCGLEDLHRERIVYRD 127
                        90
                ....*....|.
gi 472744    90 LRAANILVGDN 100
Cdd:cd05630 128 LKPENILLDDH 138
PTKc_VEGFR2 cd05103
Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 2; ...
57-102 1.74e-05

Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR2 (or Flk1) binds the ligands VEGFA, VEGFC, VEGFD and VEGFE. VEGFR2 signaling is implicated in all aspects of normal and pathological vascular endothelial cell biology. It induces a variety of cellular effects including migration, survival, and proliferation. It is critical in regulating embryonic vascular development and angiogenesis. VEGFR2 is the major signal transducer in pathological angiogenesis including cancer and diabetic retinopathy, and is a target for inhibition in cancer therapy. The carboxyl terminus of VEGFR2 plays an important role in its autophosphorylation and activation. VEGFR2 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270681 [Multi-domain]  Cd Length: 343  Bit Score: 41.50  E-value: 1.74e-05
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*.
gi 472744    57 YSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05103 172 YKDFLTLEDLICYSFQVAKGMEFLASRKCIHRDLAARNILLSENNV 217
PTKc_CSF-1R cd05106
Catalytic domain of the Protein Tyrosine Kinase, Colony-Stimulating Factor-1 Receptor; PTKs ...
61-102 1.77e-05

Catalytic domain of the Protein Tyrosine Kinase, Colony-Stimulating Factor-1 Receptor; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. CSF-1R, also called c-Fms, is a member of the Platelet Derived Growth Factor Receptor (PDGFR) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of CSF-1R to its ligand, CSF-1, leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. CSF-1R signaling is critical in the regulation of macrophages and osteoclasts. It leads to increases in gene transcription and protein translation, and induces cytoskeletal remodeling. CSF-1R signaling leads to a variety of cellular responses including survival, proliferation, and differentiation of target cells. It plays an important role in innate immunity, tissue development and function, and the pathogenesis of some diseases including atherosclerosis and cancer. CSF-1R signaling is also implicated in mammary gland development during pregnancy and lactation. Aberrant CSF-1/CSF-1R expression correlates with tumor cell invasiveness, poor clinical prognosis, and bone metastasis in breast cancer. Although the structure of the human CSF-1R catalytic domain is known, it is excluded from this specific alignment model because it contains a deletion in its sequence. The CSF-1R subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133237 [Multi-domain]  Cd Length: 374  Bit Score: 41.75  E-value: 1.77e-05
                        10        20        30        40
                ....*....|....*....|....*....|....*....|..
gi 472744    61 LRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05106 209 LDLDDLLRFSSQVAQGMDFLASKNCIHRDVAARNVLLTDGRV 250
PKc_Mps1 cd14131
Catalytic domain of the Dual-specificity Mitotic checkpoint protein kinase, Monopolar spindle ...
8-101 1.90e-05

Catalytic domain of the Dual-specificity Mitotic checkpoint protein kinase, Monopolar spindle 1 (also called TTK); Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TTK/Mps1 is a spindle checkpoint kinase that was first discovered due to its necessity in centrosome duplication in budding yeast. It was later found to function in the spindle assembly checkpoint, which monitors the proper attachment of chromosomes to the mitotic spindle. In yeast, substrates of Mps1 include the spindle pole body components Spc98p, Spc110p, and Spc42p. The TTK/Mps1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271033 [Multi-domain]  Cd Length: 271  Bit Score: 41.43  E-value: 1.90e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEK-LVQLY-AVVSEEP--IYIVTEFMDqGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERM 83
Cdd:cd14131  44 QSYKNEIELLKKLKGSDrIIQLYdYEVTDEDdyLYMVMECGE-IDLATILKKKRPKPIDPNFIRYYWKQMLEAVHTIHEE 122
                        90
                ....*....|....*....
gi 472744    84 NYVHRDLRAAN-ILVGDNL 101
Cdd:cd14131 123 GIVHSDLKPANfLLVKGRL 141
STKc_MLCK1 cd14191
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 1; STKs catalyze ...
8-96 1.90e-05

Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK1 (or MYLK1) phosphorylates myosin regulatory light chain and controls the contraction of smooth muscles. The MLCK1 gene expresses three transcripts in a cell-specific manner: a short MLCK1 which contains three immunoglobulin (Ig)-like and one fibronectin type III (FN3) domains, PEVK and actin-binding regions, and a kinase domain near the C-terminus followed by a regulatory segment containing an autoinhibitory Ca2+/calmodulin binding site; a long MLCK1 containing six additional Ig-like domains at the N-terminus compared to the short MLCK1; and the C-terminal Ig module which results in the expression of telokin in phasic smooth muscles, leading to Ca2+ desensitization by cyclic nucleotides of smooth muscle force. MLCK1 is also responsible for myosin regulatory light chain phosphorylation in nonmuscle cells and may play a role in regulating myosin II ATPase activity. The MLCK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271093 [Multi-domain]  Cd Length: 259  Bit Score: 41.53  E-value: 1.90e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLE-FLKGQYSTMLRlpQLVDFASQIASGMAYVERMNY 85
Cdd:cd14191  44 ENIRQEISIMNCLHHPKLVQCVDAFEEKAnIVMVLEMVSGGELFErIIDEDFELTER--ECIKYMRQISEGVEYIHKQGI 121
                        90
                ....*....|.
gi 472744    86 VHRDLRAANIL 96
Cdd:cd14191 122 VHLDLKPENIM 132
PK_GC_unk cd14045
Pseudokinase domain of the unknown subfamily of membrane Guanylate Cyclase receptors; The ...
12-103 1.91e-05

Pseudokinase domain of the unknown subfamily of membrane Guanylate Cyclase receptors; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. Membrane (or particulate) GCs consist of an extracellular ligand-binding domain, a single transmembrane region, and an intracellular tail that contains a PK-like domain, an amphiphatic region and a catalytic GC domain that catalyzes the conversion of GTP into cGMP and pyrophosphate. Membrane GCs act as receptors that transduce an extracellular signal to the intracellular production of cGMP, which has been implicated in many processes including cell proliferation, phototransduction, and muscle contractility, through its downstream effectors such as PKG. The PK-like domain of GCs lack a critical aspartate involved in ATP binding and does not exhibit kinase activity. It functions as a negative regulator of the catalytic GC domain and may also act as a docking site for interacting proteins such as GC-activating proteins. The GC subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270947 [Multi-domain]  Cd Length: 269  Bit Score: 41.38  E-value: 1.91e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd14045  51 KEVKQVRELDHPNLCKFIGGCIEVPnVAIITEYCPKGSLNDVLLNE-DIPLNWGFRFSFATDIARGMAYLHQHKIYHGRL 129
                        90
                ....*....|...
gi 472744    91 RAANILVGDNLVC 103
Cdd:cd14045 130 KSSNCVIDDRWVC 142
STKc_GRK5 cd05632
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 5; STKs ...
11-99 1.91e-05

Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK5 is widely expressed in many tissues. It associates with the membrane though an N-terminal PIP2 binding domain and also binds phospholipids via its C-terminus. GRK5 deficiency is associated with early Alzheimer's disease in humans and mouse models. GRK5 also plays a crucial role in the pathogenesis of sporadic Parkinson's disease. It participates in the regulation and desensitization of PDGFRbeta, a receptor tyrosine kinase involved in a variety of downstream cellular effects including cell growth, chemotaxis, apoptosis, and angiogenesis. GRK5 also regulates Toll-like receptor 4, which is involved in innate and adaptive immunity. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270780 [Multi-domain]  Cd Length: 313  Bit Score: 41.50  E-value: 1.91e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd05632  50 LNEKQILEKVNSQFVVNLaYAYETKDALCLVLTIMNGGDLKFHIYNMGNPGFEEERALFYAAEILCGLEDLHRENTVYRD 129
                        90
                ....*....|
gi 472744    90 LRAANILVGD 99
Cdd:cd05632 130 LKPENILLDD 139
STKc_DCKL3 cd14185
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called ...
13-100 1.95e-05

Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called Doublecortin-like and CAM kinase-like 3); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL3 (or DCAMKL3) belongs to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. DCKL3 contains a single DCX domain (instead of a tandem) and a C-terminal kinase domain with similarity to CAMKs. It has been shown to interact with tubulin and JIP1/2. The DCKL3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271087 [Multi-domain]  Cd Length: 258  Bit Score: 41.47  E-value: 1.95e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLKgqYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLR 91
Cdd:cd14185  48 EILIIKSLSHPNIVKLFEVYeTEKEIYLILEYVRGGDLFDAII--ESVKFTEHDAALMIIDLCEALVYIHSKHIVHRDLK 125

                ....*....
gi 472744    92 AANILVGDN 100
Cdd:cd14185 126 PENLLVQHN 134
PTKc_PDGFR_beta cd05107
Catalytic domain of the Protein Tyrosine Kinase, Platelet Derived Growth Factor Receptor beta; ...
58-97 2.00e-05

Catalytic domain of the Protein Tyrosine Kinase, Platelet Derived Growth Factor Receptor beta; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. PDGFR beta is a receptor PTK (RTK) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding to its ligands, the PDGFs, leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. PDGFR beta forms homodimers or heterodimers with PDGFR alpha, depending on the nature of the PDGF ligand. PDGF-BB and PDGF-DD induce PDGFR beta homodimerization. PDGFR signaling plays many roles in normal embryonic development and adult physiology. PDGFR beta signaling leads to a variety of cellular effects including the stimulation of cell growth and chemotaxis, as well as the inhibition of apoptosis and GAP junctional communication. It is critical in normal angiogenesis as it is involved in the recruitment of pericytes and smooth muscle cells essential for vessel stability. Aberrant PDGFR beta expression is associated with some human cancers. The continuously-active fusion proteins of PDGFR beta with COL1A1 and TEL are associated with dermatofibrosarcoma protuberans (DFSP) and a subset of chronic myelomonocytic leukemia (CMML), respectively. The PDGFR beta subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 133238 [Multi-domain]  Cd Length: 401  Bit Score: 41.53  E-value: 2.00e-05
                        10        20        30        40
                ....*....|....*....|....*....|....*....|
gi 472744    58 STMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd05107 233 SPALSYMDLVGFSYQVANGMEFLASKNCVHRDLAARNVLI 272
PKc_PBS2_like cd06622
Catalytic domain of fungal PBS2-like dual-specificity Mitogen-Activated Protein Kinase Kinases; ...
11-100 2.04e-05

Catalytic domain of fungal PBS2-like dual-specificity Mitogen-Activated Protein Kinase Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include the MAPKKs Polymyxin B resistance protein 2 (PBS2) from Saccharomyces cerevisiae, Wis1 from Schizosaccharomyces pombe, and related proteins. PBS2 and Wis1 are components of stress-activated MAPK cascades in budding and fission yeast, respectively. PBS2 is the specific activator of the MAPK Hog1, which plays a central role in the response of budding yeast to stress including exposure to arsenite and hyperosmotic environments. Wis1 phosphorylates and activates the MAPK Sty1 (also called Spc1 or Phh1), which stimulates a transcriptional response to a wide range of cellular insults through the bZip transcription factors Atf1, Pcr1, and Pap1. The PBS2 subfamily is part of a larger superfamily that includes the catalytic domains of STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132953 [Multi-domain]  Cd Length: 286  Bit Score: 41.37  E-value: 2.04e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLlEFLKGQYSTMLRLP--QLVDFASQIASGMAYV-ERMNYV 86
Cdd:cd06622  47 IMELDILHKAVSPYIVDFYgAFFIEGAVYMCMEYMDAGSL-DKLYAGGVATEGIPedVLRRITYAVVKGLKFLkEEHNII 125
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:cd06622 126 HRDVKPTNVLVNGN 139
STKc_DAPK2 cd14196
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 2; STKs ...
5-99 2.24e-05

Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK2, also called DAPK-related protein 1 (DRP-1), is a Ca2+/calmodulin (CaM)-regulated protein containing an N-terminal kinase domain, a CaM autoinhibitory site and a dimerization module. It lacks the cytoskeletal binding regions of DAPK1 and the exogenous protein has been shown to be soluble and cytoplasmic. FLAG-tagged DAPK2, however, accumulated within membrane-enclosed autophagic vesicles. It is unclear where endogenous DAPK2 is localized. DAPK2 participates in TNF-alpha and FAS-receptor induced cell death and enhances neutrophilic maturation in myeloid leukemic cells. It contributes to the induction of anoikis and its down-regulation is implicated in the beta-catenin induced resistance of malignant epithelial cells to anoikis. The DAPK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271098 [Multi-domain]  Cd Length: 269  Bit Score: 41.10  E-value: 2.24e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     5 MSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERM 83
Cdd:cd14196  50 VSREEIEREVSILRQVLHPNIITLHDVYENRTdVVLILELVSGGELFDFLAQKES--LSEEEATSFIKQILDGVNYLHTK 127
                        90
                ....*....|....*.
gi 472744    84 NYVHRDLRAANILVGD 99
Cdd:cd14196 128 KIAHFDLKPENIMLLD 143
PKc_like cd13968
Catalytic domain of the Protein Kinase superfamily; The PK superfamily contains the large ...
8-99 2.26e-05

Catalytic domain of the Protein Kinase superfamily; The PK superfamily contains the large family of typical PKs that includes serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins, as well as pseudokinases that lack crucial residues for catalytic activity and/or ATP binding. It also includes phosphoinositide 3-kinases (PI3Ks), aminoglycoside 3'-phosphotransferases (APHs), choline kinase (ChoK), Actin-Fragmin Kinase (AFK), and the atypical RIO and Abc1p-like protein kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to their target substrates; these include serine/threonine/tyrosine residues in proteins for typical or atypical PKs, the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives for PI3Ks, the 4-hydroxyl of PtdIns for PI4Ks, and other small molecule substrates for APH/ChoK and similar proteins such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine.


Pssm-ID: 270870 [Multi-domain]  Cd Length: 136  Bit Score: 40.50  E-value: 2.26e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLR-HEKLVQLYAVVSE--EPIYIVTEFMDQGSLLEFLKGQYSTMLrlpQLVDFASQIASGMAYVERMN 84
Cdd:cd13968  35 EDLESEMDILRRLKgLELNIPKVLVTEDvdGPNILLMELVKGGTLIAYTQEEELDEK---DVESIMYQLAECMRLLHSFH 111
                        90
                ....*....|....*
gi 472744    85 YVHRDLRAANILVGD 99
Cdd:cd13968 112 LIHRDLNNDNILLSE 126
STKc_16 cd13986
Catalytic domain of Serine/Threonine Kinase 16; STKs catalyze the transfer of the ...
11-100 2.46e-05

Catalytic domain of Serine/Threonine Kinase 16; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK16 is associated with many names including Myristylated and Palmitylated Serine/threonine Kinase 1 (MPSK1), Kinase related to cerevisiae and thaliana (Krct), and Protein Kinase expressed in day 12 fetal liver (PKL12). It is widely expressed in mammals with highest levels found in liver, testis, and kidney. It is localized in the Golgi but is translocated to the nucleus upon disorganization of the Golgi. STK16 is constitutively active and is capable of phosphorylating itself and other substrates. It may be involved in regulating stromal-epithelial interactions during mammary gland ductal morphogenesis. It may also function as a transcriptional co-activator of type-C natriuretic peptide and VEGF. The STK16 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270888 [Multi-domain]  Cd Length: 282  Bit Score: 41.13  E-value: 2.46e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQL--YAVVSEEP----IYIVTEFMDQGSLLEFL-----KGQYstmLRLPQLVDFASQIASGMAY 79
Cdd:cd13986  45 MREIENYRLFNHPNILRLldSQIVKEAGgkkeVYLLLPYYKRGSLQDEIerrlvKGTF---FPEDRILHIFLGICRGLKA 121
                        90       100
                ....*....|....*....|....
gi 472744    80 V---ERMNYVHRDLRAANILVGDN 100
Cdd:cd13986 122 MhepELVPYAHRDIKPGNVLLSED 145
PKc_MEK1 cd06650
Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein (MAP) ...
11-97 2.57e-05

Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase 1; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MEK1 is a dual-specificity PK and a MAPK kinase (MAPKK or MKK) that phosphorylates and activates the downstream targets, ERK1 and ERK2, on specific threonine and tyrosine residues. The ERK cascade starts with extracellular signals including growth factors, hormones, and neurotransmitters, which act through receptors and ion channels to initiate intracellular signaling that leads to the activation at the MAPKKK (Raf-1 or MOS) level, which leads to the transmission of signals to MEK1, and finally to ERK1/2. The ERK cascade plays an important role in cell proliferation, differentiation, oncogenic transformation, and cell cycle control, as well as in apoptosis and cell survival under certain conditions. Gain-of-function mutations in genes encoding ERK cascade proteins, including MEK1, cause cardiofaciocutaneous (CFC) syndrome, a condition leading to multiple congenital anomalies and mental retardation in patients. MEK1 also plays a role in cell cycle control. The MEK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270816 [Multi-domain]  Cd Length: 319  Bit Score: 41.19  E-value: 2.57e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKgqysTMLRLPQLVDFASQIA--SGMAYV-ERMNYV 86
Cdd:cd06650  51 IRELQVLHECNSPYIVGFYgAFYSDGEISICMEHMDGGSLDQVLK----KAGRIPEQILGKVSIAviKGLTYLrEKHKIM 126
                        90
                ....*....|.
gi 472744    87 HRDLRAANILV 97
Cdd:cd06650 127 HRDVKPSNILV 137
STKc_phototropin_like cd05574
Catalytic domain of Phototropin-like Serine/Threonine Kinases; STKs catalyze the transfer of ...
11-97 2.71e-05

Catalytic domain of Phototropin-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phototropins are blue-light receptors that control responses such as phototropism, stromatal opening, and chloroplast movement in order to optimize the photosynthetic efficiency of plants. They are light-activated STKs that contain an N-terminal photosensory domain and a C-terminal catalytic domain. The N-terminal domain contains two LOV (Light, Oxygen or Voltage) domains that binds FMN. Photoexcitation of the LOV domains results in autophosphorylation at multiple sites and activation of the catalytic domain. In addition to plant phototropins, included in this subfamily are predominantly uncharacterized fungal STKs whose catalytic domains resemble the phototropin kinase domain. One protein from Neurospora crassa is called nrc-2, which plays a role in growth and development by controlling entry into the conidiation program. The phototropin-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270726 [Multi-domain]  Cd Length: 316  Bit Score: 41.07  E-value: 2.71e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRlPQLVDF-ASQIASGMAYVERMNYVHR 88
Cdd:cd05574  49 LTEREILATLDHPFLPTLYASfQTSTHLCFVMDYCPGGELFRLLQKQPGKRLP-EEVARFyAAEVLLALEYLHLLGFVYR 127

                ....*....
gi 472744    89 DLRAANILV 97
Cdd:cd05574 128 DLKPENILL 136
PKc_MEK cd06615
Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein (MAP) ...
11-97 2.71e-05

Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MEK1 and MEK2 are MAPK kinases (MAPKKs or MKKs), and are dual-specificity PKs that phosphorylate and activate the downstream targets, ERK1 and ERK2, on specific threonine and tyrosine residues. The ERK cascade starts with extracellular signals including growth factors, hormones, and neurotransmitters, which act through receptors and ion channels to initiate intracellular signaling that leads to the activation at the MAPKKK (Raf-1 or MOS) level, which leads to the transmission of signals to MEK1/2, and finally to ERK1/2. The ERK cascade plays an important role in cell proliferation, differentiation, oncogenic transformation, and cell cycle control, as well as in apoptosis and cell survival under certain conditions. This cascade has also been implicated in synaptic plasticity, migration, morphological determination, and stress response immunological reactions. Gain-of-function mutations in genes encoding ERK cascade proteins, including MEK1/2, cause cardiofaciocutaneous (CFC) syndrome, a condition leading to multiple congenital anomalies and mental retardation in patients. The MEK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132946 [Multi-domain]  Cd Length: 308  Bit Score: 40.88  E-value: 2.71e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKgqysTMLRLPQ--LVDFASQIASGMAYV-ERMNYV 86
Cdd:cd06615  47 IRELKVLHECNSPYIVGFYgAFYSDGEISICMEHMDGGSLDQVLK----KAGRIPEniLGKISIAVLRGLTYLrEKHKIM 122
                        90
                ....*....|.
gi 472744    87 HRDLRAANILV 97
Cdd:cd06615 123 HRDVKPSNILV 133
STKc_BMPR1 cd14144
Catalytic domain of the Serine/Threonine Kinase, Bone Morphogenetic Protein Type I Receptor; ...
20-103 2.81e-05

Catalytic domain of the Serine/Threonine Kinase, Bone Morphogenetic Protein Type I Receptor; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BMPR1 functions as a receptor for morphogenetic proteins (BMPs), which are involved in the regulation of cell proliferation, survival, differentiation, and apoptosis. BMPs are able to induce bone, cartilage, ligament, and tendon formation, and may play roles in bone diseases and tumors. Vertebrates contain two type I BMP receptors, BMPR1a and BMPR1b. BMPR1 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that also includes TGFbeta, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like BMPR1, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The BMPR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271046 [Multi-domain]  Cd Length: 287  Bit Score: 40.92  E-value: 2.81e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    20 LRHEKLVQLYAV-----VSEEPIYIVTEFMDQGSLLEFLKGqysTMLRLPQLVDFASQIASGMAYVERMNY--------V 86
Cdd:cd14144  46 MRHENILGFIAAdikgtGSWTQLYLITDYHENGSLYDFLRG---NTLDTQSMLKLAYSAACGLAHLHTEIFgtqgkpaiA 122
                        90
                ....*....|....*..
gi 472744    87 HRDLRAANILVGDNLVC 103
Cdd:cd14144 123 HRDIKSKNILVKKNGTC 139
STKc_IRAK1 cd14159
Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 1; ...
8-101 3.00e-05

Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain, and a C-terminal domain; IRAK-4 lacks the C-terminal domain. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK1 plays a role in the activation of IRF3/7, STAT, and NFkB. It mediates IL-6 and IFN-gamma responses following IL-1 and IL-18 stimulation, respectively. It also plays an essential role in IFN-alpha induction downstream of TLR7 and TLR9. The IRAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271061 [Multi-domain]  Cd Length: 296  Bit Score: 40.96  E-value: 3.00e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIY-IVTEFMDQGSLLEFLKGQYSTM-LRLPQLVDFASQIASGMAYVERMN- 84
Cdd:cd14159  37 NSFLTEVEKLSRFRHPNIVDLAGYSAQQGNYcLIYVYLPNGSLEDRLHCQVSCPcLSWSQRLHVLLGTARAIQYLHSDSp 116
                        90
                ....*....|....*...
gi 472744    85 -YVHRDLRAANILVGDNL 101
Cdd:cd14159 117 sLIHGDVKSSNILLDAAL 134
STKc_MOK cd07831
Catalytic domain of the Serine/Threonine Kinase, MAPK/MAK/MRK Overlapping Kinase; STKs ...
11-102 3.19e-05

Catalytic domain of the Serine/Threonine Kinase, MAPK/MAK/MRK Overlapping Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MOK, also called Renal tumor antigen 1 (RAGE-1), is widely expressed and is enriched in testis, kidney, lung, and brain. It is expressed in approximately 50% of renal cell carcinomas (RCC) and is a potential target for immunotherapy. MOK is stabilized by its association with the HSP90 molecular chaperone. It is induced by the transcription factor Cdx2 and may be involved in regulating intestinal epithelial development and differentiation. The MOK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270825 [Multi-domain]  Cd Length: 282  Bit Score: 40.72  E-value: 3.19e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLR-HEKLVQLYAVVSEEP---IYIVTEFMDQgSLLEFLKG--QYstmlrLPQLV--DFASQIASGMAYVER 82
Cdd:cd07831  45 LREIQALRRLSpHPNILRLIEVLFDRKtgrLALVFELMDM-NLYELIKGrkRP-----LPEKRvkNYMYQLLKSLDHMHR 118
                        90       100
                ....*....|....*....|
gi 472744    83 MNYVHRDLRAANILVGDNLV 102
Cdd:cd07831 119 NGIFHRDIKPENILIKDDIL 138
STKc_CaMKI_gamma cd14166
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ...
13-96 3.55e-05

Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I gamma; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-gamma subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271068 [Multi-domain]  Cd Length: 285  Bit Score: 40.75  E-value: 3.55e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFL--KGQYSTmlRLPQLVdfASQIASGMAYVERMNYVHRD 89
Cdd:cd14166  50 EIAVLKRIKHENIVTLEDIYeSTTHYYLVMQLVSGGELFDRIleRGVYTE--KDASRV--INQVLSAVKYLHENGIVHRD 125

                ....*..
gi 472744    90 LRAANIL 96
Cdd:cd14166 126 LKPENLL 132
PKc_MEK2 cd06649
Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein (MAP) ...
11-97 3.62e-05

Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase 2; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MEK2 is a dual-specificity PK and a MAPK kinase (MAPKK or MKK) that phosphorylates and activates the downstream targets, ERK1 and ERK2, on specific threonine and tyrosine residues. The ERK cascade starts with extracellular signals including growth factors, hormones, and neurotransmitters, which act through receptors and ion channels to initiate intracellular signaling that leads to the activation at the MAPKKK (Raf-1 or MOS) level, which leads to the transmission of signals to MEK2, and finally to ERK1/2. The ERK cascade plays an important role in cell proliferation, differentiation, oncogenic transformation, and cell cycle control, as well as in apoptosis and cell survival under certain conditions. Gain-of-function mutations in genes encoding ERK cascade proteins, including MEK2, cause cardiofaciocutaneous (CFC) syndrome, a condition leading to multiple congenital anomalies and mental retardation in patients. The MEK subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132980 [Multi-domain]  Cd Length: 331  Bit Score: 40.80  E-value: 3.62e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKgqysTMLRLPQLVDFASQIA--SGMAYV-ERMNYV 86
Cdd:cd06649  51 IRELQVLHECNSPYIVGFYgAFYSDGEISICMEHMDGGSLDQVLK----EAKRIPEEILGKVSIAvlRGLAYLrEKHQIM 126
                        90
                ....*....|.
gi 472744    87 HRDLRAANILV 97
Cdd:cd06649 127 HRDVKPSNILV 137
STKc_PKA_like cd05580
Catalytic subunit of the Serine/Threonine Kinases, cAMP-dependent protein kinases; STKs ...
13-98 4.33e-05

Catalytic subunit of the Serine/Threonine Kinases, cAMP-dependent protein kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the cAMP-dependent protein kinases, PKA and PRKX, and similar proteins. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. PRKX is also reulated by the R subunit and is is present in many tissues including fetal and adult brain, kidney, and lung. It is implicated in granulocyte/macrophage lineage differentiation, renal cell epithelial migration, and tubular morphogenesis in the developing kidney. The PKA-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270732 [Multi-domain]  Cd Length: 290  Bit Score: 40.25  E-value: 4.33e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKgqysTMLRLPQLVD--FASQIASGMAYVERMNYVHRD 89
Cdd:cd05580  51 EKRILSEVRHPFIVNLLGSFQDDRnLYMVMEYVPGGELFSLLR----RSGRFPNDVAkfYAAEVVLALEYLHSLDIVYRD 126

                ....*....
gi 472744    90 LRAANILVG 98
Cdd:cd05580 127 LKPENLLLD 135
STKc_TLK cd13990
Catalytic domain of the Serine/Threonine kinase, Tousled-Like Kinase; STKs catalyze the ...
11-103 4.37e-05

Catalytic domain of the Serine/Threonine kinase, Tousled-Like Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TLKs play important functions during the cell cycle and are implicated in chromatin remodeling, DNA replication and repair, and mitosis. They phosphorylate and regulate Anti-silencing function 1 protein (Asf1), a histone H3/H4 chaperone that helps facilitate the assembly of chromatin following DNA replication during S phase. TLKs also phosphorylate the H3 histone tail and are essential in transcription. Vertebrates contain two subfamily members, TLK1 and TLK2. The TLK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270892 [Multi-domain]  Cd Length: 279  Bit Score: 40.38  E-value: 4.37e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVVSEEPIYIVT--EFMDQGSLLEFLKGQYSTMLRLPQLVDFasQIASGMAYV-ERMNYV- 86
Cdd:cd13990  52 LREYEIHKSLDHPRIVKLYDVFEIDTDSFCTvlEYCDGNDLDFYLKQHKSIPEREARSIIM--QVVSALKYLnEIKPPIi 129
                        90
                ....*....|....*..
gi 472744    87 HRDLRAANILVGDNLVC 103
Cdd:cd13990 130 HYDLKPGNILLHSGNVS 146
STKc_PLK4 cd14186
Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 4; STKs catalyze the ...
12-101 4.39e-05

Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK4, also called SAK or STK18, is structurally different from other PLKs in that it contains only one polo box that can form two adjacent polo boxes and a functional PDB by homodimerization. It is required for late mitotic progression, cell survival, and embryonic development. It localizes to centrosomes and is required for centriole duplication and chromosomal stability. Overexpression of PLK4 may be associated with colon tumors. The PLK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271088 [Multi-domain]  Cd Length: 256  Bit Score: 40.23  E-value: 4.39e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQYSTMLRlPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd14186  50 NEVEIHCQLKHPSILELYNYFEDSNyVYLVLEMCHNGEMSRYLKNRKKPFTE-DEARHFMHQIVTGMLYLHSHGILHRDL 128
                        90
                ....*....|.
gi 472744    91 RAANILVGDNL 101
Cdd:cd14186 129 TLSNLLLTRNM 139
STKc_PSKH1 cd14087
Catalytic domain of the Protein Serine/Threonine kinase H1; STKs catalyze the transfer of the ...
8-96 4.43e-05

Catalytic domain of the Protein Serine/Threonine kinase H1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PSKH1 is an autophosphorylating STK that is expressed ubiquitously and exhibits multiple intracellular localizations including the centrosome, Golgi apparatus, and splice factor compartments. It contains a catalytic kinase domain and an N-terminal SH4-like motif that is acylated to facilitate membrane attachment. PSKH1 plays a rile in the maintenance of the Golgi apparatus, an important organelle within the secretory pathway. It may also function as a novel splice factor and a regulator of prostate cancer cell growth. The PSKH1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270989 [Multi-domain]  Cd Length: 259  Bit Score: 40.59  E-value: 4.43e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFL--KGQYST--MLRLPQLVdfasqiASGMAYVER 82
Cdd:cd14087  42 EVCESELNVLRRVRHTNIIQLIEVFeTKERVYMVMELATGGELFDRIiaKGSFTErdATRVLQMV------LDGVKYLHG 115
                        90
                ....*....|....
gi 472744    83 MNYVHRDLRAANIL 96
Cdd:cd14087 116 LGITHRDLKPENLL 129
PTKc_Kit cd05104
Catalytic domain of the Protein Tyrosine Kinase, Kit; PTKs catalyze the transfer of the ...
42-97 4.87e-05

Catalytic domain of the Protein Tyrosine Kinase, Kit; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Kit is important in the development of melanocytes, germ cells, mast cells, hematopoietic stem cells, the interstitial cells of Cajal, and the pacemaker cells of the GI tract. Kit signaling is involved in major cellular functions including cell survival, proliferation, differentiation, adhesion, and chemotaxis. Mutations in Kit, which result in constitutive ligand-independent activation, are found in human cancers such as gastrointestinal stromal tumor (GIST) and testicular germ cell tumor (TGCT). The aberrant expression of Kit and/or SCF is associated with other tumor types such as systemic mastocytosis and cancers of the breast, neurons, lung, prostate, colon, and rectum. Although the structure of the human Kit catalytic domain is known, it is excluded from this specific alignment model because it contains a deletion in its sequence. Kit is a member of the Platelet Derived Growth Factor Receptor (PDGFR) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of Kit to its ligand, the stem-cell factor (SCF), leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. The Kit subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270682 [Multi-domain]  Cd Length: 375  Bit Score: 40.27  E-value: 4.87e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*.
gi 472744    42 EFMDQGSLLEFLKgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd05104 193 SYVDQDVTSEILE-EDELALDTEDLLSFSYQVAKGMEFLASKNCIHRDLAARNILL 247
STKc_CaMKI_alpha cd14167
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ...
13-96 5.30e-05

Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271069 [Multi-domain]  Cd Length: 263  Bit Score: 40.40  E-value: 5.30e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFL--KGQYsTMLRLPQLVdfaSQIASGMAYVERMNYVHRD 89
Cdd:cd14167  51 EIAVLHKIKHPNIVALDDIYeSGGHLYLIMQLVSGGELFDRIveKGFY-TERDASKLI---FQILDAVKYLHDMGIVHRD 126

                ....*..
gi 472744    90 LRAANIL 96
Cdd:cd14167 127 LKPENLL 133
PTKc_VEGFR1 cd14207
Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors; ...
57-102 5.65e-05

Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR1 (or Flt1) binds VEGFA, VEGFB, and placenta growth factor (PLGF). It regulates monocyte and macrophage migration, vascular permeability, haematopoiesis, and the recruitment of haematopietic progenitor cells from the bone marrow. VEGFR1 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271109 [Multi-domain]  Cd Length: 340  Bit Score: 40.37  E-value: 5.65e-05
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*.
gi 472744    57 YSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd14207 173 YKRPLTMEDLISYSFQVARGMEFLSSRKCIHRDLAARNILLSENNV 218
STKc_CDK4 cd07863
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 4; STKs ...
7-97 5.68e-05

Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK4 partners with all three D-type cyclins (D1, D2, and D3) and is also regulated by INK4 inhibitors. It is active towards the retinoblastoma (pRb) protein and plays a role in regulating the early G1 phase of the cell cycle. It is expressed ubiquitously and is localized in the nucleus. CDK4 also shows kinase activity towards Smad3, a signal transducer of TGF-beta signaling which modulates transcription and plays a role in cell proliferation and apoptosis. CDK4 is inhibited by the p21 inhibitor and is specifically mutated in human melanoma. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 143368 [Multi-domain]  Cd Length: 288  Bit Score: 40.33  E-value: 5.68e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLR---HEKLVQLYAVVS------EEPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQLVDFASQIASGM 77
Cdd:cd07863  43 PLSTVREVALLKRLEafdHPNIVRLMDVCAtsrtdrETKVTLVFEHVDQ-DLRTYLDKVPPPGLPAETIKDLMRQFLRGL 121
                        90       100
                ....*....|....*....|
gi 472744    78 AYVERMNYVHRDLRAANILV 97
Cdd:cd07863 122 DFLHANCIVHRDLKPENILV 141
STKc_BMPR1b cd14219
Catalytic domain of the Serine/Threonine Kinase, Bone Morphogenetic Protein Type IB; STKs ...
4-103 6.15e-05

Catalytic domain of the Serine/Threonine Kinase, Bone Morphogenetic Protein Type IB; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BMPR1b, also called Activin receptor-Like Kinase 6 (ALK6), functions as a receptor for bone morphogenetic proteins (BMPs), which are involved in the regulation of cell proliferation, survival, differentiation, and apoptosis. BMPs are able to induce bone, cartilage, ligament, and tendon formation, and may play roles in bone diseases and tumors. Mutations in BMPR1b that led to inhibition of chondrogenesis can cause Brachydactyly (BD) type A2, a dominant hand malformation characterized by shortening and lateral deviation of the index fingers. A point mutation in the BMPR1b kinase domain is also associated with the Booroola phenotype, characterized by precocious differentiation of ovarian follicles. BMPR1b belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like BMPR1b, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The BMPR1b subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271121 [Multi-domain]  Cd Length: 305  Bit Score: 40.03  E-value: 6.15e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPEAFLQEAQVMKK--LRHEKLVQLYA-----VVSEEPIYIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASG 76
Cdd:cd14219  38 TTEEASWFRETEIYQTvlMRHENILGFIAadikgTGSWTQLYLITDYHENGSLYDYLK---STTLDTKAMLKLAYSSVSG 114
                        90       100       110
                ....*....|....*....|....*....|....*
gi 472744    77 MAYVE--------RMNYVHRDLRAANILVGDNLVC 103
Cdd:cd14219 115 LCHLHteifstqgKPAIAHRDLKSKNILVKKNGTC 149
STKc_NAK_like cd14037
Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases; STKs catalyze ...
12-100 8.03e-05

Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Drosophila melanogaster NAK, human BMP-2-inducible protein kinase (BMP2K or BIKe) and similar vertebrate proteins, as well as the Saccharomyces cerevisiae proteins Prk1, Actin-regulating kinase 1 (Ark1), and Akl1. NAK was the first characterized member of this subfamily. It plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. BMP2K contains a nuclear localization signal and a kinase domain that is capable of phosphorylating itself and myelin basic protein. The expression of the BMP2K gene is increase during BMP-2-induced osteoblast differentiation. It may function to control the rate of differentiation. Prk1, Ark1, and Akl1 comprise a subfamily of yeast proteins that are important regulators of the actin cytoskeleton and endocytosis. They share an N-terminal kinase domain but no significant homology in other regions of their sequences. The NAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270939 [Multi-domain]  Cd Length: 277  Bit Score: 39.57  E-value: 8.03e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLR-HEKLVQL---YAVVSEEPIY---IVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAyveRMN 84
Cdd:cd14037  49 REIEIMKRLSgHKNIVGYidsSANRSGNGVYevlLLMEYCKGGGVIDLMNQRLQTGLTESEILKIFCDVCEAVA---AMH 125
                        90       100
                ....*....|....*....|.
gi 472744    85 Y-----VHRDLRAANILVGDN 100
Cdd:cd14037 126 YlkpplIHRDLKVENVLISDS 146
STKc_Trio_C cd14113
C-terminal kinase domain of the Large Serine/Threonine Kinase and Rho Guanine Nucleotide ...
5-101 8.20e-05

C-terminal kinase domain of the Large Serine/Threonine Kinase and Rho Guanine Nucleotide Exchange Factor, Triple functional domain protein; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Triple functional domain protein (Trio), also called PTPRF-interacting protein, is a large multidomain protein containing a series of spectrin-like repeats, two each of RhoGEF and SH3 domains, an immunoglobulin-like (Ig) domain and a C-terminal kinase. Trio plays important roles in neuronal cell migration and axon guidance. It was originally identified as an interacting partner of the of the receptor-like tyrosine phosphatase (RPTP) LAR (leukocyte-antigen-related protein), a family of receptors that function in the signaling to the actin cytoskeleton during development. Trio functions as a GEF for Rac1, RhoG, and RhoA, and is involved in the regulation of lamellipodia formation, mediating Rac1-dependent cell spreading and migration. The Trio subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271015 [Multi-domain]  Cd Length: 263  Bit Score: 39.57  E-value: 8.20e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     5 MSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYI-VTEFMDQGSLLEFLKgQYSTMLRlPQLVDFASQIASGMAYVERM 83
Cdd:cd14113  45 MKRDQVTHELGVLQSLQHPQLVGLLDTFETPTSYIlVLEMADQGRLLDYVV-RWGNLTE-EKIRFYLREILEALQYLHNC 122
                        90
                ....*....|....*...
gi 472744    84 NYVHRDLRAANILVGDNL 101
Cdd:cd14113 123 RIAHLDLKPENILVDQSL 140
STKc_MST4 cd06640
Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 4; STKs ...
8-100 8.69e-05

Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MST4 is sometimes referred to as MASK (MST3 and SOK1-related kinase). It plays a role in mitogen-activated protein kinase (MAPK) signaling during cytoskeletal rearrangement, morphogenesis, and apoptosis. It influences cell growth and transformation by modulating the extracellular signal-regulated kinase (ERK) pathway. MST4 may also play a role in tumor formation and progression. It localizes in the Golgi apparatus by interacting with the Golgi matrix protein GM130 and may play a role in cell migration. The MST4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132971 [Multi-domain]  Cd Length: 277  Bit Score: 39.65  E-value: 8.69e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKG------QYSTMLRlpqlvdfasQIASGMAYV 80
Cdd:cd06640  47 EDIQQEITVLSQCDSPYVTKYYgSYLKGTKLWIIMEYLGGGSALDLLRAgpfdefQIATMLK---------EILKGLDYL 117
                        90       100
                ....*....|....*....|
gi 472744    81 ERMNYVHRDLRAANILVGDN 100
Cdd:cd06640 118 HSEKKIHRDIKAANVLLSEQ 137
STKc_MAP4K3 cd06645
Catalytic domain of the Serine/Threonine Kinase, Mitogen-activated protein kinase kinase ...
12-100 8.86e-05

Catalytic domain of the Serine/Threonine Kinase, Mitogen-activated protein kinase kinase kinase kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP4K3 plays a role in the nutrient-responsive pathway of mTOR (mammalian target of rapamycin) signaling. MAP4K3 is required in the activation of S6 kinase by amino acids and for the phosphorylation of the mTOR-regulated inhibitor of eukaryotic initiation factor 4E. mTOR regulates ribosome biogenesis and protein translation, and is frequently deregulated in cancer. MAP4Ks are involved in MAPK signaling pathways by activating a MAPK kinase kinase. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. The MAP4K3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270812 [Multi-domain]  Cd Length: 272  Bit Score: 39.64  E-value: 8.86e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd06645  57 QEIIMMKDCKHSNIVAYFgSYLRRDKLWICMEFCGGGSLQDIY--HVTGPLSESQIAYVSRETLQGLYYLHSKGKMHRDI 134
                        90
                ....*....|
gi 472744    91 RAANILVGDN 100
Cdd:cd06645 135 KGANILLTDN 144
STKc_CaMKI_beta cd14169
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ...
8-96 9.63e-05

Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I beta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-beta subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271071 [Multi-domain]  Cd Length: 277  Bit Score: 39.49  E-value: 9.63e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQ-EAQVMKKLRHEKLVQLYAVVsEEP--IYIVTEFMDQGSLLE-FLKGQYSTMLRLPQLVdfaSQIASGMAYVERM 83
Cdd:cd14169  45 EAMVEnEIAVLRRINHENIVSLEDIY-ESPthLYLAMELVTGGELFDrIIERGSYTEKDASQLI---GQVLQAVKYLHQL 120
                        90
                ....*....|...
gi 472744    84 NYVHRDLRAANIL 96
Cdd:cd14169 121 GIVHRDLKPENLL 133
STKc_IKK_beta cd14038
Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase ...
13-97 9.73e-05

Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK) beta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IKKbeta is involved in the classical pathway of regulating Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. The classical pathway regulates the majority of genes activated by NF-kB including those encoding cytokines, chemokines, leukocyte adhesion molecules, and anti-apoptotic factors. It involves NEMO (NF-kB Essential MOdulator)- and IKKbeta-dependent phosphorylation and degradation of the Inhibitor of NF-kB (IkB), which liberates NF-kB dimers (typified by the p50-p65 heterodimer) from an inactive IkB/dimeric NF-kB complex, enabling them to migrate to the nucleus where they regulate gene transcription. The IKKbeta subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270940 [Multi-domain]  Cd Length: 290  Bit Score: 39.56  E-value: 9.73e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLV-------QLYAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTM--LRLPQLVDFASQIASGMAYVERM 83
Cdd:cd14038  42 EIQIMKRLNHPNVVaardvpeGLQKLAPNDLPLLAMEYCQGGDLRKYLN-QFENCcgLREGAILTLLSDISSALRYLHEN 120
                        90
                ....*....|....
gi 472744    84 NYVHRDLRAANILV 97
Cdd:cd14038 121 RIIHRDLKPENIVL 134
STKc_MST3 cd06641
Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 3; STKs ...
8-100 9.73e-05

Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MST3 phosphorylates the STK NDR and may play a role in cell cycle progression and cell morphology. It may also regulate paxillin and consequently, cell migration. MST3 is present in human placenta, where it plays an essential role in the oxidative stress-induced apoptosis of trophoblasts in normal spontaneous delivery. Dysregulation of trophoblast apoptosis may result in pregnancy complications such as preeclampsia and intrauterine growth retardation. The MST3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270809 [Multi-domain]  Cd Length: 277  Bit Score: 39.67  E-value: 9.73e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLK------GQYSTMLRlpqlvdfasQIASGMAYV 80
Cdd:cd06641  47 EDIQQEITVLSQCDSPYVTKYYgSYLKDTKLWIIMEYLGGGSALDLLEpgpldeTQIATILR---------EILKGLDYL 117
                        90       100
                ....*....|....*....|
gi 472744    81 ERMNYVHRDLRAANILVGDN 100
Cdd:cd06641 118 HSEKKIHRDIKAANVLLSEH 137
STKc_CNK2-like cd08530
Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar ...
37-100 9.74e-05

Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii CNK2 has both cilliary and cell cycle functions. It influences flagellar length through promoting flagellar disassembly, and it regulates cell size, through influencing the size threshold at which cells commit to mitosis. This subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily includes CNK1, and -2. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270869 [Multi-domain]  Cd Length: 256  Bit Score: 39.30  E-value: 9.74e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 472744    37 IYIVTEFMDQGSLLEFLKGQYSTMLRLPQ--LVDFASQIASGMAYVERMNYVHRDLRAANILVGDN 100
Cdd:cd08530  74 LCIVMEYAPFGDLSKLISKRKKKRRLFPEddIWRIFIQMLRGLKALHDQKILHRDLKSANILLSAG 139
STKc_SPEG_rpt2 cd14111
Catalytic kinase domain, second repeat, of Giant Serine/Threonine Kinase Striated muscle ...
11-102 1.05e-04

Catalytic kinase domain, second repeat, of Giant Serine/Threonine Kinase Striated muscle preferentially expressed protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Striated muscle preferentially expressed gene (SPEG) generates 4 different isoforms through alternative promoter use and splicing in a tissue-specific manner: SPEGalpha and SPEGbeta are expressed in cardiac and skeletal striated muscle; Aortic Preferentially Expressed Protein-1 (APEG-1) is expressed in vascular smooth muscle; and Brain preferentially expressed gene (BPEG) is found in the brain and aorta. SPEG proteins have mutliple immunoglobulin (Ig), 2 fibronectin type III (FN3), and two kinase domains. They are necessary for cardiac development and survival. The SPEG subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271013 [Multi-domain]  Cd Length: 257  Bit Score: 39.42  E-value: 1.05e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFL--KGQYSTmlrlPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd14111  47 LQEYEILKSLHHERIMALHeAYITPRYLVLIAEFCSGKELLHSLidRFRYSE----DDVVGYLVQILQGLEYLHGRRVLH 122
                        90
                ....*....|....*.
gi 472744    88 RDLRAANILV-GDNLV 102
Cdd:cd14111 123 LDIKPDNIMVtNLNAI 138
STKc_MAPKAPK5 cd14171
Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated ...
22-100 1.09e-04

Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated protein kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK-activated protein kinase 5 (MAPKAP5 or MK5) is also called PRAK (p38-regulated/activated protein kinase). It contains a catalytic kinase domain followed by a C-terminal autoinhibitory region that contains nuclear localization (NLS) and nuclear export (NES) signals with a p38 MAPK docking motif that overlaps the NLS. MK5 is a ubiquitous protein that is implicated in neuronal morphogenesis, cell migration, and tumor angiogenesis. It interacts with PKA, which induces cytoplasmic translocation of MK5. Its substrates includes p53, ERK3/4, Hsp27, and cytosolic phospholipase A2 (cPLA2). The MAPKAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271073 [Multi-domain]  Cd Length: 289  Bit Score: 39.37  E-value: 1.09e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    22 HEKLVQLYAV-----------VSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRlpQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd14171  58 HPNIVQIYDVyansvqfpgesSPRARLLIVMELMEGGELFDRISQHRHFTEK--QAAQYTKQIALAVQHCHSLNIAHRDL 135
                        90
                ....*....|
gi 472744    91 RAANILVGDN 100
Cdd:cd14171 136 KPENLLLKDN 145
STKc_NIK cd13991
Catalytic domain of the Serine/Threonine kinase, NF-kappaB Inducing Kinase (NIK); STKs ...
11-100 1.17e-04

Catalytic domain of the Serine/Threonine kinase, NF-kappaB Inducing Kinase (NIK); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NIK, also called mitogen activated protein kinase kinase kinase 14 (MAP3K14), phosphorylates and activates Inhibitor of NF-KappaB Kinase (IKK) alpha, which is a regulator of NF-kB proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. NIK is essential in the IKKalpha-mediated non-canonical NF-kB signaling pathway, in which IKKalpha processes the IkB-like C-terminus of NF-kB2/p100 to produce p52, allowing the p52/RelB dimer to migrate to the nucleus where it regulates gene transcription. NIK also plays an important role in Toll-like receptor 7/9 signaling cascades. The NIK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270893 [Multi-domain]  Cd Length: 268  Bit Score: 39.03  E-value: 1.17e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKgqysTMLRLPQ--LVDFASQIASGMAYVERMNYVH 87
Cdd:cd13991  46 AEELMACAGLTSPRVVPLYGAVREGPwVNIFMDLKEGGSLGQLIK----EQGCLPEdrALHYLGQALEGLEYLHSRKILH 121
                        90
                ....*....|...
gi 472744    88 RDLRAANILVGDN 100
Cdd:cd13991 122 GDVKADNVLLSSD 134
PKc_CLK cd14134
Catalytic domain of the Dual-specificity protein kinases, CDC-like kinases; Dual-specificity ...
8-100 1.32e-04

Catalytic domain of the Dual-specificity protein kinases, CDC-like kinases; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. CLKs are involved in the phosphorylation and regulation of serine/arginine-rich (SR) proteins, which play a crucial role in pre-mRNA splicing by directing splice site selection. SR proteins are phosphorylated first by SR protein kinases (SRPKs) at the N-terminus, which leads to its assembly into nuclear speckles where splicing factors are stored. CLKs phosphorylate the C-terminal part of SR proteins, causing the nuclear speckles to dissolve and splicing factors to be recruited at sites of active transcription. Based on a conserved "EHLAMMERILG" signature motif which may be crucial for substrate specificity, CLKs are also referred to as LAMMER kinases. CLKs autophosphorylate at tyrosine residues and phosphorylate their substrates exclusively on S/T residues. In Drosophila, the CLK homolog DOA (Darkener of apricot) is essential for embryogenesis and its mutation leads to defects in sexual differentiation, eye formation, and neuronal development. In fission yeast, the CLK homolog Lkh1 is a negative regulator of filamentous growth and asexual flocculation, and is also involved in oxidative stress response. Vertebrates contain mutliple CLK proteins and mammals have four (CLK1-4). The CLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271036 [Multi-domain]  Cd Length: 332  Bit Score: 39.09  E-value: 1.32e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVS-------EEPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYV 80
Cdd:cd14134  53 EAAKIEIDVLETLAEKDPNGKSHCVQlrdwfdyRGHMCIVFELLGP-SLYDFLKKNNYGPFPLEHVQHIAKQLLEAVAFL 131
                        90       100
                ....*....|....*....|
gi 472744    81 ERMNYVHRDLRAANILVGDN 100
Cdd:cd14134 132 HDLKLTHTDLKPENILLVDS 151
STKc_myosinIII_N_like cd06608
N-terminal Catalytic domain of Class III myosin-like Serine/Threonine Kinases; STKs catalyze ...
8-100 1.35e-04

N-terminal Catalytic domain of Class III myosin-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Class III myosins are motor proteins with an N-terminal kinase catalytic domain and a C-terminal actin-binding motor domain. Class III myosins are present in the photoreceptors of invertebrates and vertebrates and in the auditory hair cells of mammals. The kinase domain of myosin III can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, and can autophosphorylate the C-terminal motor domain. Myosin III may play an important role in maintaining the structural integrity of photoreceptor cell microvilli. It may also function as a cargo carrier during light-dependent translocation, in photoreceptor cells, of proteins such as transducin and arrestin. The Drosophila class III myosin, called NinaC (Neither inactivation nor afterpotential protein C), is critical in normal adaptation and termination of photoresponse. Vertebrates contain two isoforms of class III myosin, IIIA and IIIB. This subfamily also includes mammalian NIK-like embryo-specific kinase (NESK), Traf2- and Nck-interacting kinase (TNIK), and mitogen-activated protein kinase (MAPK) kinase kinase kinase 4/6. MAP4Ks are involved in some MAPK signaling pathways by activating a MAPK kinase kinase. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The class III myosin-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270785 [Multi-domain]  Cd Length: 275  Bit Score: 39.21  E-value: 1.35e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKL-RHEKLVQLYAV-------VSEEPIYIVTEFMDQGSLLEFLKG--QYSTMLRLPQLVDFASQIASGM 77
Cdd:cd06608  47 EEIKLEINILRKFsNHPNIATFYGAfikkdppGGDDQLWLVMEYCGGGSVTDLVKGlrKKGKRLKEEWIAYILRETLRGL 126
                        90       100
                ....*....|....*....|...
gi 472744    78 AYVERMNYVHRDLRAANILVGDN 100
Cdd:cd06608 127 AYLHENKVIHRDIKGQNILLTEE 149
STKc_PhKG1 cd14182
Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma 1 subunit; STKs ...
8-101 1.38e-04

Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma 1 subunit; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). The gamma 1 subunit (PhKG1) is also referred to as the muscle gamma isoform. The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271084 [Multi-domain]  Cd Length: 276  Bit Score: 39.13  E-value: 1.38e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLR-HEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:cd14182  54 EATLKEIDILRKVSgHPNIIQLKdTYETNTFFFLVFDLMKKGELFDYLTEKVT--LSEKETRKIMRALLEVICALHKLNI 131
                        90
                ....*....|....*.
gi 472744    86 VHRDLRAANILVGDNL 101
Cdd:cd14182 132 VHRDLKPENILLDDDM 147
STKc_IRAK2 cd14157
Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 2; ...
6-102 1.61e-04

Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain, and a C-terminal domain; IRAK-4 lacks the C-terminal domain. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK2 plays a role in mediating NFkB activation by TLR3, TLR4, and TLR8. It is specifically targeted by the viral protein A52, which is important for virulence, to inhibit all IL-1/TLR pathways, indicating that IRAK2 has a predominant role in NFkB activation. It is redundant with IRAK1 in early signaling but is critical for late and sustained activation. The IRAK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271059 [Multi-domain]  Cd Length: 289  Bit Score: 38.66  E-value: 1.61e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQ-EAQVMKKLRHEKLVQL--YAVVSEEPIYIvTEFMDQGSLLEFLKGQY-STMLRLPQLVDFASQIASGMAYVE 81
Cdd:cd14157  34 STERFFQtEVQICFRCCHPNILPLlgFCVESDCHCLI-YPYMPNGSLQDRLQQQGgSHPLPWEQRLSISLGLLKAVQHLH 112
                        90       100
                ....*....|....*....|.
gi 472744    82 RMNYVHRDLRAANILVGDNLV 102
Cdd:cd14157 113 NFGILHGNIKSSNVLLDGNLL 133
STKc_SLK cd06643
Catalytic domain of the Serine/Threonine Kinase, Ste20-Like Kinase; STKs catalyze the transfer ...
8-96 1.63e-04

Catalytic domain of the Serine/Threonine Kinase, Ste20-Like Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SLK promotes apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and the mitogen-activated protein kinase (MAPK) p38. It acts as a MAPK kinase kinase by phosphorylating ASK1, resulting in the phosphorylation of p38. SLK also plays a role in mediating actin reorganization. It is part of a microtubule-associated complex that is targeted at adhesion sites, and is required in focal adhesion turnover and in regulating cell migration. The SLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270811 [Multi-domain]  Cd Length: 283  Bit Score: 38.85  E-value: 1.63e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLleflkgqYSTMLRL------PQLVDFASQIASGMAYV 80
Cdd:cd06643  47 EDYMVEIDILASCDHPNIVKLLdAFYYENNLWILIEFCAGGAV-------DAVMLELerpltePQIRVVCKQTLEALVYL 119
                        90
                ....*....|....*.
gi 472744    81 ERMNYVHRDLRAANIL 96
Cdd:cd06643 120 HENKIIHRDLKAGNIL 135
STKc_ACVR2a cd14141
Catalytic domain of the Serine/Threonine Kinase, Activin Type IIA Receptor; STKs catalyze the ...
20-101 1.65e-04

Catalytic domain of the Serine/Threonine Kinase, Activin Type IIA Receptor; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR2a (or ActRIIA) belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. ACVR2b is one of two ACVR2 receptors found in vertebrates. Type II receptors are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. ACVR2 acts primarily as the receptors for activins, nodal, myostatin, GDF11, and a subset of BMPs. ACVR2 signaling impacts many cellular and physiological processes including reproductive and gonadal functions, myogenesis, bone remodeling and tooth development, kidney organogenesis, apoptosis, fibrosis, inflammation, and neurogenesis. The ACVR2a subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271043 [Multi-domain]  Cd Length: 290  Bit Score: 38.87  E-value: 1.65e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    20 LRHEKLVQLYAVVS-----EEPIYIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASGMAYVE----------RMN 84
Cdd:cd14141  46 MKHENILQFIGAEKrgtnlDVDLWLITAFHEKGSLTDYLK---ANVVSWNELCHIAQTMARGLAYLHedipglkdghKPA 122
                        90
                ....*....|....*..
gi 472744    85 YVHRDLRAANILVGDNL 101
Cdd:cd14141 123 IAHRDIKSKNVLLKNNL 139
PKc_MKK5 cd06619
Catalytic domain of the dual-specificity Protein Kinase, Mitogen-activated protein Kinase ...
11-97 2.16e-04

Catalytic domain of the dual-specificity Protein Kinase, Mitogen-activated protein Kinase Kinase 5; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MKK5 (also called MEK5) is a dual-specificity PK that phosphorylates its downstream target, extracellular signal-regulated kinase 5 (ERK5), on specific threonine and tyrosine residues. MKK5 is activated by MEKK2 and MEKK3 in response to mitogenic and stress stimuli. The ERK5 cascade promotes cell proliferation, differentiation, neuronal survival, and neuroprotection. This cascade plays an essential role in heart development. Mice deficient in either ERK5 or MKK5 die around embryonic day 10 due to cardiovascular defects including underdevelopment of the myocardium. In addition, MKK5 is associated with metastasis and unfavorable prognosis in prostate cancer. The MKK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132950 [Multi-domain]  Cd Length: 279  Bit Score: 38.32  E-value: 2.16e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLpqlvdfASQIASGMAYVERMNYVHRD 89
Cdd:cd06619  47 MSELEILYKCDSPYIIGFYgAFFVENRISICTEFMDGGSLDVYRKIPEHVLGRI------AVAVVKGLTYLWSLKILHRD 120

                ....*...
gi 472744    90 LRAANILV 97
Cdd:cd06619 121 VKPSNMLV 128
PTKc_PDGFR_alpha cd05105
Catalytic domain of the Protein Tyrosine Kinase, Platelet Derived Growth Factor Receptor alpha; ...
44-97 2.27e-04

Catalytic domain of the Protein Tyrosine Kinase, Platelet Derived Growth Factor Receptor alpha; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. PDGFR alpha is a receptor PTK (RTK) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding to its ligands, the PDGFs, leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. PDGFR alpha forms homodimers or heterodimers with PDGFR beta, depending on the nature of the PDGF ligand. PDGF-AA, PDGF-AB, and PDGF-CC induce PDGFR alpha homodimerization. PDGFR signaling plays many roles in normal embryonic development and adult physiology. PDGFR alpha signaling is important in the formation of lung alveoli, intestinal villi, mesenchymal dermis, and hair follicles, as well as in the development of oligodendrocytes, retinal astrocytes, neural crest cells, and testicular cells. Aberrant PDGFR alpha expression is associated with some human cancers. Mutations in PDGFR alpha have been found within a subset of gastrointestinal stromal tumors (GISTs). An active fusion protein FIP1L1-PDGFR alpha, derived from interstitial deletion, is associated with idiopathic hypereosinophilic syndrome and chronic eosinophilic leukemia. The PDGFR alpha subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173653 [Multi-domain]  Cd Length: 400  Bit Score: 38.47  E-value: 2.27e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 472744    44 MDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd05105 217 SNDSEVKNLLSDDGSEGLTTLDLLSFTYQVARGMEFLASKNCVHRDLAARNVLL 270
PK_KSR2 cd14153
Pseudokinase domain of Kinase Suppressor of Ras 2; The pseudokinase domain shows similarity to ...
8-96 2.34e-04

Pseudokinase domain of Kinase Suppressor of Ras 2; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. KSR2 interacts with the protein phosphatase calcineurin and functions in calcium-mediated ERK signaling. It also functions in energy metabolism by regulating AMP kinase and AMPK-dependent processes such as glucose uptake and fatty acid oxidation. KSR proteins act as scaffold proteins that function downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. KSR proteins regulate the assembly and activation of the Raf/MEK/ERK module upon Ras activation at the membrane by direct association of its components. They are widely regarded as pseudokinases. The KSR2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271055 [Multi-domain]  Cd Length: 270  Bit Score: 38.45  E-value: 2.34e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd14153  41 KAFKREVMAYRQTRHENVVLFMGACMSPPHLAIITSLCKGRTLYSVVRDAKVVLDVNKTRQIAQEIVKGMGYLHAKGILH 120

                ....*....
gi 472744    88 RDLRAANIL 96
Cdd:cd14153 121 KDLKSKNVF 129
PHA03209 PHA03209
serine/threonine kinase US3; Provisional
11-103 2.45e-04

serine/threonine kinase US3; Provisional


Pssm-ID: 177557 [Multi-domain]  Cd Length: 357  Bit Score: 38.32  E-value: 2.45e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     11 LQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEFMDQGSLLEFLKGQySTMLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:PHA03209 105 LIEAMLLQNVNHPSVIRMKDTLVSGAITCMVLPHYSSDLYTYLTKR-SRPLPIDQALIIEKQILEGLRYLHAQRIIHRDV 183
                         90
                 ....*....|....
gi 472744     91 RAANILVGD-NLVC 103
Cdd:PHA03209 184 KTENIFINDvDQVC 197
PKc_MKK3_6 cd06617
Catalytic domain of the dual-specificity Protein Kinases, Mitogen-activated protein Kinase ...
26-100 2.47e-04

Catalytic domain of the dual-specificity Protein Kinases, Mitogen-activated protein Kinase Kinases 3 and 6; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MKK3 and MKK6 are dual-specificity PKs that phosphorylate and activate their downstream target, p38 MAPK, on specific threonine and tyrosine residues. MKK3/6 play roles in the regulation of cell cycle progression, cytokine- and stress-induced apoptosis, oncogenic transformation, and adult tissue regeneration. In addition, MKK6 plays a critical role in osteoclast survival in inflammatory disease while MKK3 is associated with tumor invasion, progression, and poor patient survival in glioma. The MKK3/6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173729 [Multi-domain]  Cd Length: 283  Bit Score: 38.17  E-value: 2.47e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 472744    26 VQLY-AVVSEEPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQ--LVDFASQIASGMAYV-ERMNYVHRDLRAANILVGDN 100
Cdd:cd06617  63 VTFYgALFREGDVWICMEVMDT-SLDKFYKKVYDKGLTIPEdiLGKIAVSIVKALEYLhSKLSVIHRDVKPSNVLINRN 140
STKc_CdkB_plant cd07837
Catalytic domain of the Serine/Threonine Kinase, Plant B-type Cyclin-Dependent protein Kinase; ...
7-103 2.51e-04

Catalytic domain of the Serine/Threonine Kinase, Plant B-type Cyclin-Dependent protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The plant-specific B-type CDKs are expressed from the late S to the M phase of the cell cycle. They are characterized by the cyclin binding motif PPT[A/T]LRE. They play a role in controlling mitosis and integrating developmental pathways, such as stomata and leaf development. CdkB has been shown to associate with both cyclin B, which controls G2/M transition, and cyclin D, which acts as a mediator in linking extracellular signals to the cell cycle. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CdkB subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270830 [Multi-domain]  Cd Length: 294  Bit Score: 38.28  E-value: 2.51e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLRHE-KLVQLYAV--VSEEP---IYIVTEFMDQgSLLEFLKGQ---YSTMLRLPQLVDFASQIASGM 77
Cdd:cd07837  44 PSTALREVSLLQMLSQSiYIVRLLDVehVEENGkplLYLVFEYLDT-DLKKFIDSYgrgPHNPLPAKTIQSFMYQLCKGV 122
                        90       100
                ....*....|....*....|....*.
gi 472744    78 AYVERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd07837 123 AHCHSHGVMHRDLKPQNLLVDKQKGL 148
STKc_MAPK15-like cd07852
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase 15 and ...
10-97 2.71e-04

Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase 15 and similar MAPKs; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Human MAPK15 is also called Extracellular signal Regulated Kinase 8 (ERK8) while the rat protein is called ERK7. ERK7 and ERK8 display both similar and different biochemical properties. They autophosphorylate and activate themselves and do not require upstream activating kinases. ERK7 is constitutively active and is not affected by extracellular stimuli whereas ERK8 shows low basal activity and is activated by DNA-damaging agents. ERK7 and ERK8 also have different substrate profiles. Genome analysis shows that they are orthologs with similar gene structures. ERK7 and ERK 8 may be involved in the signaling of some nuclear receptor transcription factors. ERK7 regulates hormone-dependent degradation of estrogen receptor alpha while ERK8 down-regulates the transcriptional co-activation androgen and glucocorticoid receptors. MAPKs are important mediators of cellular responses to extracellular signals. The MAPK15 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270841 [Multi-domain]  Cd Length: 337  Bit Score: 38.31  E-value: 2.71e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEaqvmkkLR-HEKLVQLYAVVSEE---PIYIVTEFMD-------QGSLLEFLKGQYstmlrlpqlvdFASQIASGMA 78
Cdd:cd07852  59 FLQE------LNdHPNIIKLLNVIRAEndkDIYLVFEYMEtdlhaviRANILEDIHKQY-----------IMYQLLKALK 121
                        90
                ....*....|....*....
gi 472744    79 YVERMNYVHRDLRAANILV 97
Cdd:cd07852 122 YLHSGGVIHRDLKPSNILL 140
STKc_CASK cd14094
Catalytic domain of the Serine/Threonine Kinase, Calcium/calmodulin-dependent serine protein ...
2-97 2.75e-04

Catalytic domain of the Serine/Threonine Kinase, Calcium/calmodulin-dependent serine protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CASK belongs to the MAGUK (membrane-associated guanylate kinase) protein family, which functions as multiple domain adaptor proteins and is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The enzymatically inactive GuK domain in MAGUK proteins mediates protein-protein interactions and associates intramolecularly with the SH3 domain. In addition, CASK contains a catalytic kinase and two L27 domains. It is highly expressed in the nervous system and plays roles in synaptic protein targeting, neural development, and regulation of gene expression. Binding partners include parkin (a Parkinson's disease molecule), neurexin (adhesion molecule), syndecans, calcium channel proteins, CINAP (nucleosome assembly protein), transcription factor Tbr-1, and the cytoplasmic adaptor proteins Mint1, Veli/mLIN-7/MALS, SAP97, caskin, and CIP98. Deletion or mutations in the CASK gene have been implicated in X-linked mental retardation. The CASK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270996 [Multi-domain]  Cd Length: 300  Bit Score: 38.29  E-value: 2.75e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     2 PGtMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEP-IYIVTEFMDQGSL-LEFLKGQYSTMLRLPQLVD-FASQIASGMA 78
Cdd:cd14094  45 PG-LSTEDLKREASICHMLKHPHIVELLETYSSDGmLYMVFEFMDGADLcFEIVKRADAGFVYSEAVAShYMRQILEALR 123
                        90
                ....*....|....*....
gi 472744    79 YVERMNYVHRDLRAANILV 97
Cdd:cd14094 124 YCHDNNIIHRDVKPHCVLL 142
STKc_CK1 cd14016
Catalytic domain of the Serine/Threonine protein kinase, Casein Kinase 1; STKs catalyze the ...
11-98 2.79e-04

Catalytic domain of the Serine/Threonine protein kinase, Casein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK1 phosphorylates a variety of substrates including enzymes, transcription and splice factors, cytoskeletal proteins, viral oncogenes, receptors, and membrane-associated proteins. There are mutliple isoforms of CK1 and in mammals, seven isoforms (alpha, beta, gamma1-3, delta, and epsilon) have been characterized. These isoforms differ mainly in the length and structure of their C-terminal non-catalytic region. Some isoforms have several splice variants such as the long (L) and short (S) variants of CK1alpha. CK1 proteins are involved in the regulation of many cellular processes including membrane transport processes, circadian rhythm, cell division, apoptosis, and the development of cancer and neurodegenerative diseases. The CK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270918 [Multi-domain]  Cd Length: 266  Bit Score: 38.21  E-value: 2.79e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLV-QLYAVVSEEPI-YIVTEFMDQ--GSLLEFLKGQYS--TMLRLpqlvdfASQIASGMAYVERMN 84
Cdd:cd14016  43 EYEAKVYKLLQGGPGIpRLYWFGQEGDYnVMVMDLLGPslEDLFNKCGRKFSlkTVLML------ADQMISRLEYLHSKG 116
                        90
                ....*....|....
gi 472744    85 YVHRDLRAANILVG 98
Cdd:cd14016 117 YIHRDIKPENFLMG 130
STKc_IKK cd13989
Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase ...
13-95 3.12e-04

Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The IKK complex functions as a master regulator of Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. It is composed of two kinases, IKKalpha and IKKbeta, and the regulatory subunit IKKgamma or NEMO (NF-kB Essential MOdulator). IKKs facilitate the release of NF-kB dimers from an inactive state, allowing them to migrate to the nucleus where they regulate gene transcription. There are two IKK pathways that regulate NF-kB signaling, called the classical (involving IKKbeta and NEMO) and non-canonical (involving IKKalpha) pathways. The classical pathway regulates the majority of genes activated by NF-kB. The IKK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K).


Pssm-ID: 270891 [Multi-domain]  Cd Length: 289  Bit Score: 38.20  E-value: 3.12e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQlyAVVSEEPIYIVT---------EFMDQGSLLEFL-KGQYSTMLRLPQLVDFASQIASGMAYVER 82
Cdd:cd13989  43 EVQIMKKLNHPNVVS--ARDVPPELEKLSpndlpllamEYCSGGDLRKVLnQPENCCGLKESEVRTLLSDISSAISYLHE 120
                        90
                ....*....|...
gi 472744    83 MNYVHRDLRAANI 95
Cdd:cd13989 121 NRIIHRDLKPENI 133
STKc_RSK1_C cd14175
C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 1 (also called ...
12-99 3.14e-04

C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 1 (also called Ribosomal protein S6 kinase alpha-1 or 90kDa ribosomal protein S6 kinase 1); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK1 is also called S6K-alpha-1, RPS6KA1, p90RSK1 or MAPK-activated protein kinase 1a (MAPKAPK-1a). It is a component of the insulin transduction pathway, regulating the function of IRS1. It also interacts with PKA and promotes its inactivation. RSK1 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271077 [Multi-domain]  Cd Length: 291  Bit Score: 38.08  E-value: 3.14e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKL-RHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFAsqIASGMAYVERMNYVHRD 89
Cdd:cd14175  43 EEIEILLRYgQHPNIITLKDVYDDgKHVYLVTELMRGGELLDKILRQKFFSEREASSVLHT--ICKTVEYLHSQGVVHRD 120
                        90
                ....*....|
gi 472744    90 LRAANILVGD 99
Cdd:cd14175 121 LKPSNILYVD 130
PKc_Myt1 cd14050
Catalytic domain of the Dual-specificity protein kinase, Myt1; Dual-specificity PKs catalyze ...
6-103 3.33e-04

Catalytic domain of the Dual-specificity protein kinase, Myt1; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. Myt1 is a cytoplasmic cell cycle checkpoint kinase that can keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of N-terminal thr (T14) and tyr (Y15) residues, leading to the delay of meiosis I entry. Meiotic progression is ensured by a two-step inhibition and downregulation of Myt1 by CDK1/XRINGO and p90Rsk during oocyte maturation. In addition, Myt1 targets cyclin B1/B2 and is essential for Golgi and ER assembly during telophase. In Drosophila, Myt1 may be a downstream target of Notch during eye development. The Myt1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270952 [Multi-domain]  Cd Length: 249  Bit Score: 38.06  E-value: 3.33e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     6 SPEAFLQEAQVMKKL----RHEKL------VQLYAVVSEEPI-YIVTEFMDQgSLLEFLKGQYSTMLRlpQLVDFASQIA 74
Cdd:cd14050  34 SRSRFRGEKDRKRKLeeveRHEKLgehpncVRFIKAWEEKGIlYIQTELCDT-SLQQYCEETHSLPES--EVWNILLDLL 110
                        90       100
                ....*....|....*....|....*....
gi 472744    75 SGMAYVERMNYVHRDLRAANILVGDNLVC 103
Cdd:cd14050 111 KGLKHLHDHGLIHLDIKPANIFLSKDGVC 139
STKc_PDIK1L cd13977
Catalytic domain of the Serine/Threonine kinase, PDLIM1 interacting kinase 1 like; STKs ...
8-97 3.39e-04

Catalytic domain of the Serine/Threonine kinase, PDLIM1 interacting kinase 1 like; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PDIK1L is also called STK35 or CLIK-1. It is predominantly a nuclear protein which is capable of autophosphorylation. Through its interaction with the PDZ-LIM protein CLP-36, it is localized to actin stress fibers. The PDIK1L subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K).


Pssm-ID: 270879 [Multi-domain]  Cd Length: 322  Bit Score: 37.92  E-value: 3.39e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRH-EKLVQLYAVVSE------------EPIYI--VTEFMDQGSLLEFLkgqystMLRLPQL---VDF 69
Cdd:cd13977  66 ECVLQRDGLAQRMSHgSSKSDLYLLLVEtslkgercfdprSACYLwfVMEFCDGGDMNEYL------LSRRPDRqtnTSF 139
                        90       100
                ....*....|....*....|....*...
gi 472744    70 ASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd13977 140 MLQLSSALAFLHRNQIVHRDLKPDNILI 167
STKc_CRIK cd05601
Catalytic domain of the Serine/Threonine Kinase, Citron Rho-interacting kinase; STKs catalyze ...
10-97 3.45e-04

Catalytic domain of the Serine/Threonine Kinase, Citron Rho-interacting kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CRIK (also called citron kinase) is an effector of the small GTPase Rho. It plays an important function during cytokinesis and affects its contractile process. CRIK-deficient mice show severe ataxia and epilepsy as a result of abnormal cytokinesis and massive apoptosis in neuronal precursors. A Down syndrome critical region protein TTC3 interacts with CRIK and inhibits CRIK-dependent neuronal differentiation and neurite extension. CRIK contains a catalytic domain, a central coiled-coil domain, and a C-terminal region containing a Rho-binding domain (RBD), a zinc finger, and a pleckstrin homology (PH) domain, in addition to other motifs. The CRIK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270752 [Multi-domain]  Cd Length: 328  Bit Score: 38.06  E-value: 3.45e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFL---KGQYS-TMLRLpqlvdFASQIASGMAYVERMN 84
Cdd:cd05601  48 FEEERDIMAKANSPWITKLqYAFQDSENLYLVMEYHPGGDLLSLLsryDDIFEeSMARF-----YLAELVLAIHSLHSMG 122
                        90
                ....*....|...
gi 472744    85 YVHRDLRAANILV 97
Cdd:cd05601 123 YVHRDIKPENILI 135
STKc_MAPKAPK cd14089
Catalytic domain of the Serine/Threonine kinases, Mitogen-activated protein kinase-activated ...
39-100 3.51e-04

Catalytic domain of the Serine/Threonine kinases, Mitogen-activated protein kinase-activated protein kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the MAPK-activated protein kinases MK2, MK3, MK5 (also called PRAK for p38-regulated/activated protein kinase), and related proteins. These proteins contain a catalytic kinase domain followed by a C-terminal autoinhibitory region that contains nuclear localization (NLS) and nuclear export (NES) signals with a p38 MAPK docking motif that overlaps the NLS. In addition, MK2 and MK3 contain an N-terminal proline-rich region that can bind to SH3 domains. MK2 and MK3 are bonafide substrates for the MAPK p38, while MK5 plays a functional role in the p38 MAPK pathway although their direct interaction has been difficult to detect. MK2 and MK3 are closely related and show, thus far, indistinguishable substrate specificity, while MK5 shows a distinct spectrum of substrates. MK2 and MK3 are mainly involved in the regulation of gene expression and they participate in diverse cellular processes such as endocytosis, cytokine production, cytoskeletal reorganization, cell migration, cell cycle control and chromatin remodeling. They are implicated in inflammation and cance and their substrates include mRNA-AU-rich-element (ARE)-binding proteins (TTP and hnRNP A0), Hsp proteins (Hsp27 and Hsp25) and RSK, among others. MK2/3 are both expressed ubiquitously but MK2 is expressed at significantly higher levels. MK5 is a ubiquitous protein that is implicated in neuronal morphogenesis, cell migration, and tumor angiogenesis. It interacts with PKA, which induces cytoplasmic translocation of MK5. Its substrates includes p53, ERK3/4, Hsp27, and cytosolic phospholipase A2 (cPLA2). The MAPKAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270991 [Multi-domain]  Cd Length: 263  Bit Score: 37.65  E-value: 3.51e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 472744    39 IVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILVGDN 100
Cdd:cd14089  75 VVMECMEGGELFSRIQERADSAFTEREAAEIMRQIGSAVAHLHSMNIAHRDLKPENLLYSSK 136
STKc_GAK cd14036
Catalytic domain of the Serine/Threonine protein kinase, cyclin G-Associated Kinase; STKs ...
9-98 3.72e-04

Catalytic domain of the Serine/Threonine protein kinase, cyclin G-Associated Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GAK, also called auxilin-2, contains an N-terminal kinase domain that phosphorylates the mu subunits of adaptor protein (AP) 1 and AP2. In addition, it contains an auxilin-1-like domain structure consisting of PTEN-like, clathrin-binding, and J domains. Like auxilin-1, GAK facilitates Hsc70-mediated dissociation of clathrin from clathrin-coated vesicles. GAK is expressed ubiquitously and is enriched in the Golgi, unlike auxilin-1 which is nerve-specific. GAK also plays regulatory roles outside of clathrin-mediated membrane traffic including the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses through interaction with the interleukin 12 receptor. It also interacts with the androgen receptor, acting as a transcriptional coactivator, and its expression is significantly increased with the progression of prostate cancer. The GAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270938 [Multi-domain]  Cd Length: 282  Bit Score: 37.87  E-value: 3.72e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     9 AFLQEAQVMKKLR-HEKLVQLYAVVS---EEPIYIVTEFMD-----QGSLLEFLKGQYS-TMLRLPQLVDFASQIASGMA 78
Cdd:cd14036  43 AIIQEINFMKKLSgHPNIVQFCSAASigkEESDQGQAEYLLltelcKGQLVDFVKKVEApGPFSPDTVLKIFYQTCRAVQ 122
                        90       100
                ....*....|....*....|..
gi 472744    79 YVERMN--YVHRDLRAANILVG 98
Cdd:cd14036 123 HMHKQSppIIHRDLKIENLLIG 144
PHA03211 PHA03211
serine/threonine kinase US3; Provisional
12-97 4.08e-04

serine/threonine kinase US3; Provisional


Pssm-ID: 223009 [Multi-domain]  Cd Length: 461  Bit Score: 37.95  E-value: 4.08e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     12 QEAQVMKKLRHEKLVQLYAV--VSEEPIYIVTEFmdQGSLLEFLkGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:PHA03211 209 HEARLLRRLSHPAVLALLDVrvVGGLTCLVLPKY--RSDLYTYL-GARLRPLGLAQVTAVARQLLSAIDYIHGEGIIHRD 285

                 ....*...
gi 472744     90 LRAANILV 97
Cdd:PHA03211 286 IKTENVLV 293
STKc_SnRK2-3 cd14665
Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein ...
18-97 4.33e-04

Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein kinase subfamily 2, group 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The SnRKs form three different subfamilies designated SnRK1-3. SnRK2 is represented in this cd. SnRK2s are involved in plant response to abiotic stresses and abscisic acid (ABA)-dependent plant development. The SnRK2s subfamily is in turn classed into three subgroups, all 3 of which are represented in this CD. Group 1 comprises kinases not activated by ABA, group 2 - kinases not activated or activated very weakly by ABA (depending on plant species), and group 3 - kinases strongly activated by ABA. The SnRKs belong to a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271135 [Multi-domain]  Cd Length: 257  Bit Score: 37.66  E-value: 4.33e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    18 KKLRHEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFL--KGQYSTmlrlPQLVDFASQIASGMAYVERMNYVHRDLRAAN 94
Cdd:cd14665  51 RSLRHPNIVRFKEVIlTPTHLAIVMEYAAGGELFERIcnAGRFSE----DEARFFFQQLISGVSYCHSMQICHRDLKLEN 126

                ...
gi 472744    95 ILV 97
Cdd:cd14665 127 TLL 129
PTKc_Wee1b cd14139
Catalytic domain of the Protein Tyrosine Kinase, Wee1b; PTKs catalyze the transfer of the ...
22-97 4.54e-04

Catalytic domain of the Protein Tyrosine Kinase, Wee1b; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of human Wee1b (also called Wee2), Xenopus laevis Wee1a (XeWee1a) and similar vertebrate proteins. XeWee1a accumulates after exiting the metaphase II stage in oocytes and in early mitotic cells. It functions during the first zygotic cell division and not during subsequent divisions. Mammalian Wee2/Wee1b is an oocyte-specific inhibitor of meiosis that functions downstream of cAMP. Wee1 is a cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. The Wee1b subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271041 [Multi-domain]  Cd Length: 274  Bit Score: 37.60  E-value: 4.54e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    22 HEKLVQLYAVVSEEPIYIV-TEFMDQGSLLEFL-----KGQYSTMlrlPQLVDFASQIASGMAYVERMNYVHRDLRAANI 95
Cdd:cd14139  59 HPHVVRYYSAWAEDDHMIIqNEYCNGGSLQDAIsentkSGNHFEE---PELKDILLQVSMGLKYIHNSGLVHLDIKPSNI 135

                ..
gi 472744    96 LV 97
Cdd:cd14139 136 FI 137
STKc_BMPR2_AMHR2 cd14054
Catalytic domain of the Serine/Threonine Kinases, Bone Morphogenetic Protein and ...
20-103 4.60e-04

Catalytic domain of the Serine/Threonine Kinases, Bone Morphogenetic Protein and Anti-Muellerian Hormone Type II Receptors; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BMPR2 and AMHR2 belong to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors (GDFs), and AMH, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. Type II receptors are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. BMPR2 and AMHR2 act primarily as a receptor for BMPs and AMH, respectively. BMPs induce bone and cartilage formation, as well as regulate tooth, kidney, skin, hair, haematopoietic, and neuronal development. Mutations in BMPR2A is associated with familial pulmonary arterial hypertension. AMH is mainly responsible for the regression of Mullerian ducts during male sex differentiation. It is expressed exclusively by somatic cells of the gonads. Mutations in either AMH or AMHR2 cause persistent Mullerian duct syndrome (PMDS), a rare form of male pseudohermaphroditism characterized by the presence of Mullerian derivatives (ovary and tubes) in otherwise normally masculine males. The BMPR2/AMHR2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270956 [Multi-domain]  Cd Length: 300  Bit Score: 37.73  E-value: 4.60e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    20 LRHEKLVQLYAvvSEEPIY--------IVTEFMDQGSLLEFLKgQYS----TMLRLpqlvdfASQIASGMAY---VERMN 84
Cdd:cd14054  46 MEHSNILRFIG--ADERPTadgrmeylLVLEYAPKGSLCSYLR-ENTldwmSSCRM------ALSLTRGLAYlhtDLRRG 116
                        90       100
                ....*....|....*....|....*
gi 472744    85 ------YVHRDLRAANILVGDNLVC 103
Cdd:cd14054 117 dqykpaIAHRDLNSRNVLVKADGSC 141
STKc_cGK cd05572
Catalytic domain of the Serine/Threonine Kinase, cGMP-dependent protein kinase (cGK or PKG); ...
4-100 4.62e-04

Catalytic domain of the Serine/Threonine Kinase, cGMP-dependent protein kinase (cGK or PKG); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mammals have two cGK isoforms from different genes, cGKI and cGKII. cGKI exists as two splice variants, cGKI-alpha and cGKI-beta. cGK consists of an N-terminal regulatory domain containing a dimerization and an autoinhibitory pseudosubstrate region, two cGMP-binding domains, and a C-terminal catalytic domain. Binding of cGMP to both binding sites releases the inhibition of the catalytic center by the pseudosubstrate region, allowing autophosphorylation and activation of the kinase. cGKI is a soluble protein expressed in all smooth muscles, platelets, cerebellum, and kidney. It is also expressed at lower concentrations in other tissues. cGKII is a membrane-bound protein that is most abundantly expressed in the intestine. It is also present in the brain nuclei, adrenal cortex, kidney, lung, and prostate. cGKI is involved in the regulation of smooth muscle tone, smooth cell proliferation, and platelet activation. cGKII plays a role in the regulation of secretion, such as renin secretion by the kidney and aldosterone secretion by the adrenal. It also regulates bone growth and the circadian rhythm. The cGK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270724 [Multi-domain]  Cd Length: 262  Bit Score: 37.59  E-value: 4.62e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPEAFLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVTEFMDQGSLLEFL--KGQYSTmlrlpQLVDF-ASQIASGMAY 79
Cdd:cd05572  34 TRQQEHIFSEKEILEECNSPFIVKLYRTFKdKKYLYMLMEYCLGGELWTILrdRGLFDE-----YTARFyTACVVLAFEY 108
                        90       100
                ....*....|....*....|.
gi 472744    80 VERMNYVHRDLRAANILVGDN 100
Cdd:cd05572 109 LHSRGIIYRDLKPENLLLDSN 129
STKc_NLK cd07853
Catalytic domain of the Serine/Threonine Kinase, Nemo-Like Kinase; STKs catalyze the transfer ...
35-102 4.99e-04

Catalytic domain of the Serine/Threonine Kinase, Nemo-Like Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NLK is an atypical mitogen-activated protein kinase (MAPK) that is not regulated by a MAPK kinase. It functions downstream of the MAPK kinase kinase Tak1, which also plays a role in activating the JNK and p38 MAPKs. The Tak1/NLK pathways are regulated by Wnts, a family of secreted proteins that is critical in the control of asymmetric division and cell polarity. NLK can phosphorylate transcription factors from the TCF/LEF family, inhibiting their ability to activate the transcription of target genes. In prostate cancer cells, NLK is involved in regulating androgen receptor-mediated transcription and its expression is altered during cancer progression. MAPKs are important mediators of cellular responses to extracellular signals. The NLK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173748 [Multi-domain]  Cd Length: 372  Bit Score: 37.42  E-value: 4.99e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 472744    35 EPIYIVTEFMdQGSLleflkgqYSTMLRLPQLVD-----FASQIASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd07853  77 EEIYVVTELM-QSDL-------HKIIVSPQPLSSdhvkvFLYQILRGLKYLHSAGILHRDIKPGNLLVNSNCV 141
PTKc_VEGFR3 cd05102
Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 3; ...
57-102 5.48e-04

Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR3 (or Flt4) preferentially binds the ligands VEGFC and VEGFD. VEGFR3 is essential for lymphatic endothelial cell (EC) development and function. It has been shown to regulate adaptive immunity during corneal transplantation. VEGFR3 is upregulated on blood vascular ECs in pathological conditions such as vascular tumors and the periphery of solid tumors. It plays a role in cancer progression and lymph node metastasis. Missense mutations in the VEGFR3 gene are associated with primary human lymphedema. VEGFR3 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. In VEGFR3, the fifth Ig-like domain is replaced by a disulfide bridge. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270680 [Multi-domain]  Cd Length: 336  Bit Score: 37.27  E-value: 5.48e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*.
gi 472744    57 YSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd05102 165 WQSPLTMEDLICYSFQVARGMEFLASRKCIHRDLAARNILLSENNV 210
STKc_DMPK_like cd05597
Catalytic domain of Myotonic Dystrophy protein kinase (DMPK)-like Serine/Threonine Kinases; ...
10-100 5.53e-04

Catalytic domain of Myotonic Dystrophy protein kinase (DMPK)-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The DMPK-like subfamily is composed of DMPK and DMPK-related cell division control protein 42 (Cdc42) binding kinase (MRCK). DMPK is expressed in skeletal and cardiac muscles, and in central nervous tissues. The functional role of DMPK is not fully understood. It may play a role in the signal transduction and homeostasis of calcium. The DMPK gene is implicated in myotonic dystrophy 1 (DM1), an inherited multisystemic disorder with symptoms that include muscle hyperexcitability, progressive muscle weakness and wasting, cataract development, testicular atrophy, and cardiac conduction defects. The genetic basis for DM1 is the mutational expansion of a CTG repeat in the 3'-UTR of DMPK. MRCK is activated via interaction with the small GTPase Cdc42. MRCK/Cdc42 signaling mediates myosin-dependent cell motility. Three isoforms of MRCK are known, named alpha, beta and gamma. MRCKgamma is expressed in heart and skeletal muscles, unlike MRCKalpha and MRCKbeta, which are expressed ubiquitously. The DMPK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270748 [Multi-domain]  Cd Length: 331  Bit Score: 37.33  E-value: 5.53e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLeflkgqysTML-----RLPQ-LVDF-ASQIASGMAYVE 81
Cdd:cd05597  48 FREERDVLVNGDRRWITKLhYAFQDENYLYLVMDYYCGGDLL--------TLLskfedRLPEeMARFyLAEMVLAIDSIH 119
                        90
                ....*....|....*....
gi 472744    82 RMNYVHRDLRAANILVGDN 100
Cdd:cd05597 120 QLGYVHRDIKPDNVLLDRN 138
STKc_Titin cd14104
Catalytic domain of the Giant Serine/Threonine Kinase Titin; STKs catalyze the transfer of the ...
12-96 5.90e-04

Catalytic domain of the Giant Serine/Threonine Kinase Titin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Titin, also called connectin, is a muscle-specific elastic protein and is the largest known protein to date. It contains multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains, and a single kinase domain near the C-terminus. It spans half of the sarcomere, the repeating contractile unit of striated muscle, and performs mechanical and catalytic functions. Titin contributes to the passive force generated when muscle is stretched during relaxation. Its kinase domain phosphorylates and regulates the muscle protein telethonin, which is required for sarcomere formation in differentiating myocytes. In addition, titin binds many sarcomere proteins and acts as a molecular scaffold for filament formation during myofibrillogenesis. The Titin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271006 [Multi-domain]  Cd Length: 277  Bit Score: 37.15  E-value: 5.90e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLkGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDL 90
Cdd:cd14104  45 KEISILNIARHRNILRLHeSFESHEELVMIFEFISGVDIFERI-TTARFELNEREIVSYVRQVCEALEFLHSKNIGHFDI 123

                ....*.
gi 472744    91 RAANIL 96
Cdd:cd14104 124 RPENII 129
STKc_Nek7 cd08229
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ...
11-97 6.14e-04

Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek7 is required for mitotic spindle formation and cytokinesis. It is enriched in the centrosome and is critical for microtubule nucleation. Nek7 is activated by Nek9 during mitosis, and may regulate the p70 ribosomal S6 kinase. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270866 [Multi-domain]  Cd Length: 292  Bit Score: 37.32  E-value: 6.14e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYA-VVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQ--LVDFASQIASGMAYVERMNYVH 87
Cdd:cd08229  72 IKEIDLLKQLNHPNVIKYYAsFIEDNELNIVLELADAGDLSRMIKHFKKQKRLIPEktVWKYFVQLCSALEHMHSRRVMH 151
                        90
                ....*....|
gi 472744    88 RDLRAANILV 97
Cdd:cd08229 152 RDIKPANVFI 161
PK_ILK cd14057
Pseudokinase domain of Integrin Linked Kinase; The pseudokinase domain shows similarity to ...
19-103 6.76e-04

Pseudokinase domain of Integrin Linked Kinase; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. ILK contains N-terminal ankyrin repeats, a Pleckstrin Homology (PH) domain, and a C-terminal pseudokinase domain. It is a component of the IPP (ILK/PINCH/Parvin) complex that couples beta integrins to the actin cytoskeleton, and plays important roles in cell adhesion, spreading, invasion, and migration. ILK was initially thought to be an active kinase despite the lack of key conserved residues because of in vitro studies showing that it can phosphorylate certain protein substrates. However, in vivo experiments in Caenorhabditis elegans, Drosophila melanogaster, and mice (ILK-null and knock-in) proved that ILK is not an active kinase. In addition to actin cytoskeleton regulation, ILK also influences the microtubule network and mitotic spindle orientation. The pseudokinase domain of ILK binds several adaptor proteins including the parvins and paxillin. The ILK subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270959 [Multi-domain]  Cd Length: 251  Bit Score: 37.08  E-value: 6.76e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    19 KLR---HEKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYV---ERMNYVHRdLR 91
Cdd:cd14057  45 RLRifsHPNVLPVLGACNSPPnLVVISQYMPYGSLYNVLHEGTGVVVDQSQAVKFALDIARGMAFLhtlEPLIPRHH-LN 123
                        90
                ....*....|..
gi 472744    92 AANILVGDNLVC 103
Cdd:cd14057 124 SKHVMIDEDMTA 135
STKc_GRK4 cd05631
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 4; STKs ...
11-99 7.12e-04

Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK4 has a limited tissue distribution. It is mainly found in the testis, but is also present in the cerebellum and kidney. It is expressed as multiple splice variants with different domain architectures and is post-translationally palmitoylated and localized in the membrane. GRK4 polymorphisms are associated with hypertension and salt sensitivity, as they cause hyperphosphorylation, desensitization, and internalization of the dopamine 1 (D1) receptor while increasing the expression of the angiotensin II type 1 receptor. GRK4 plays a crucial role in the D1 receptor regulation of sodium excretion and blood pressure. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173720 [Multi-domain]  Cd Length: 285  Bit Score: 36.89  E-value: 7.12e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd05631  48 LNEKRILEKVNSRFVVSLaYAYETKDALCLVLTIMNGGDLKFHIYNMGNPGFDEQRAIFYAAELCCGLEDLQRERIVYRD 127
                        90
                ....*....|
gi 472744    90 LRAANILVGD 99
Cdd:cd05631 128 LKPENILLDD 137
STKc_TAO2 cd06634
Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 2; STKs catalyze ...
11-99 7.36e-04

Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Human TAO2 is also known as prostate-derived Ste20-like kinase (PSK) and was identified in a screen for overexpressed RNAs in prostate cancer. TAO2 possesses mitogen-activated protein kinase (MAPK) kinase kinase activity and activates both p38 and c-Jun N-terminal kinase (JNK), by phosphorylating and activating their respective MAP/ERK kinases, MEK3/MEK6 and MKK4/MKK7. It contains a long C-terminal extension with autoinhibitory segments, and is activated by the release of this inhibition and the phosphorylation of its activation loop serine. TAO2 functions as a regulator of actin cytoskeletal and microtubule organization. In addition, it regulates the transforming growth factor-activated kinase 1 (TAK1), which is a MAPKKK that plays an essential role in the signaling pathways of tumor necrosis factor, interleukin 1, and Toll-like receptor. The TAO2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270804 [Multi-domain]  Cd Length: 308  Bit Score: 36.92  E-value: 7.36e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFM--DQGSLLEFLKGQYSTMlrlpQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd06634  63 IKEVKFLQKLRHPNTIEYRGCyLREHTAWLVMEYClgSASDLLEVHKKPLQEV----EIAAITHGALQGLAYLHSHNMIH 138
                        90
                ....*....|..
gi 472744    88 RDLRAANILVGD 99
Cdd:cd06634 139 RDVKAGNILLTE 150
STKc_PAK_I cd06647
Catalytic domain of the Serine/Threonine Kinase, Group I p21-activated kinase; STKs catalyze ...
8-98 7.44e-04

Catalytic domain of the Serine/Threonine Kinase, Group I p21-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Group I PAKs, also called conventional PAKs, include PAK1, PAK2, and PAK3. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). They interact with the SH3 domain containing proteins Nck, Grb2 and PIX. Binding of group I PAKs to activated GTPases leads to conformational changes that destabilize the AID, allowing autophosphorylation and full activation of the kinase domain. Known group I PAK substrates include MLCK, Bad, Raf, MEK1, LIMK, Merlin, Vimentin, Myc, Stat5a, and Aurora A, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs are implicated in the regulation of many cellular processes including growth factor receptor-mediated proliferation, cell polarity, cell motility, cell death and survival, and actin cytoskeleton organization. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270814 [Multi-domain]  Cd Length: 261  Bit Score: 36.83  E-value: 7.44e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLYA--VVSEEpIYIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:cd06647  49 ELIINEILVMRENKNPNIVNYLDsyLVGDE-LWVVMEYLAGGSLTDVVT---ETCMDEGQIAAVCRECLQALEFLHSNQV 124
                        90
                ....*....|...
gi 472744    86 VHRDLRAANILVG 98
Cdd:cd06647 125 IHRDIKSDNILLG 137
STKc_PhKG2 cd14181
Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma 2 subunit; STKs ...
2-102 7.63e-04

Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma 2 subunit; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). The gamma 2 subunit (PhKG2) is also referred to as the testis/liver gamma isoform. Mutations in its gene cause autosomal-recessive glycogenosis of the liver. The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271083 [Multi-domain]  Cd Length: 279  Bit Score: 36.87  E-value: 7.63e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     2 PGTMSPE-------AFLQEAQVMKKLR-HEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKGQYStmLRLPQLVDFASQ 72
Cdd:cd14181  47 AERLSPEqleevrsSTLKEIHILRQVSgHPSIITLIdSYESSTFIFLVFDLMRRGELFDYLTEKVT--LSEKETRSIMRS 124
                        90       100       110
                ....*....|....*....|....*....|
gi 472744    73 IASGMAYVERMNYVHRDLRAANILVGDNLV 102
Cdd:cd14181 125 LLEAVSYLHANNIVHRDLKPENILLDDQLH 154
STKc_MSK2_C cd14180
C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ...
22-99 7.87e-04

C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK2 and MSK1 play nonredundant roles in activating histone H3 kinases, which play pivotal roles in compaction of the chromatin fiber. MSK2 is the required H3 kinase in response to stress stimuli and activation of the p38 MAPK pathway. MSK2 also plays a role in the pathogenesis of psoriasis. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family, similar to 90 kDa ribosomal protein S6 kinases (RSKs). MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271082 [Multi-domain]  Cd Length: 309  Bit Score: 36.77  E-value: 7.87e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 472744    22 HEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEFLKGQysTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILVGD 99
Cdd:cd14180  60 HPNIVALHEVLHDQyHTYLVMELLRGGELLDRIKKK--ARFSESEASQLMRSLVSAVSFMHEAGVVHRDLKPENILYAD 136
STKc_Nek2 cd08217
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ...
3-102 8.07e-04

Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek2 subfamily includes Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants prevented from entering mitosis. NIMA is essential for mitotic entry and progression through mitosis, and its degradation is essential for mitotic exit. NIMA is involved in nuclear membrane fission. Vertebrate Nek2 is a cell cycle-regulated STK, localized in centrosomes and kinetochores, that regulates centrosome splitting at the G2/M phase. It also interacts with other mitotic kinases such as Polo-like kinase 1 and may play a role in spindle checkpoint. An increase in the expression of the human NEK2 gene is strongly associated with the progression of non-Hodgkin lymphoma. Nek2 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. It The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270857 [Multi-domain]  Cd Length: 265  Bit Score: 36.75  E-value: 8.07e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     3 GTMSP---EAFLQEAQVMKKLRHEKLVQLY---AVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQ--LVDFASQIA 74
Cdd:cd08217  36 GKMSEkekQQLVSEVNILRELKHPNIVRYYdriVDRANTTLYIVMEYCEGGDLAQLIKKCKKENQYIPEefIWKIFTQLL 115
                        90       100       110
                ....*....|....*....|....*....|....
gi 472744    75 SGMAYVERMNY-----VHRDLRAANI-LVGDNLV 102
Cdd:cd08217 116 LALYECHNRSVgggkiLHRDLKPANIfLDSDNNV 149
STKc_p38 cd07851
Catalytic domain of the Serine/Threonine Kinase, p38 Mitogen-Activated Protein Kinase; STKs ...
13-100 8.27e-04

Catalytic domain of the Serine/Threonine Kinase, p38 Mitogen-Activated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38 kinases are mitogen-activated protein kinases (MAPKs), serving as important mediators of cellular responses to extracellular signals. They function in the regulation of the cell cycle, cell development, cell differentiation, senescence, tumorigenesis, apoptosis, pain development and pain progression, and immune responses. p38 kinases are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. p38 substrates include other protein kinases and factors that regulate transcription, nuclear export, mRNA stability and translation. p38 kinases are drug targets for the inflammatory diseases psoriasis, rheumatoid arthritis, and chronic pulmonary disease. Vertebrates contain four isoforms of p38, named alpha, beta, gamma, and delta, which show varying substrate specificity and expression patterns. p38alpha and p38beta are ubiquitously expressed, p38gamma is predominantly found in skeletal muscle, and p38delta is found in the heart, lung, testis, pancreas, and small intestine. The p38 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 143356 [Multi-domain]  Cd Length: 343  Bit Score: 36.89  E-value: 8.27e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVVSE-------EPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQLVdfaSQIASGMAYVERMNY 85
Cdd:cd07851  64 ELRLLKHMKHENVIGLLDVFTPassledfQDVYLVTHLMGA-DLNNIVKCQKLSDDHIQFLV---YQILRGLKYIHSAGI 139
                        90
                ....*....|....*
gi 472744    86 VHRDLRAANILVGDN 100
Cdd:cd07851 140 IHRDLKPSNLAVNED 154
STKc_PKA cd14209
Catalytic subunit of the Serine/Threonine Kinase, cAMP-dependent protein kinase; STKs catalyze ...
11-97 8.35e-04

Catalytic subunit of the Serine/Threonine Kinase, cAMP-dependent protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. The PKA subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271111 [Multi-domain]  Cd Length: 290  Bit Score: 36.61  E-value: 8.35e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLK--GQYSTmlrlPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd14209  49 LNEKRILQAINFPFLVKLeYSFKDNSNLYMVMEYVPGGEMFSHLRriGRFSE----PHARFYAAQIVLAFEYLHSLDLIY 124
                        90
                ....*....|
gi 472744    88 RDLRAANILV 97
Cdd:cd14209 125 RDLKPENLLI 134
STKc_STK25 cd06642
Catalytic domain of Serine/Threonine Kinase 25 (also called Yeast Sps1/Ste20-related kinase 1); ...
8-99 8.54e-04

Catalytic domain of Serine/Threonine Kinase 25 (also called Yeast Sps1/Ste20-related kinase 1); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK25 is also called Ste20/oxidant stress response kinase 1 (SOK1) or yeast Sps1/Ste20-related kinase 1 (YSK1). It is localized in the Golgi apparatus through its interaction with the Golgi matrix protein GM130. It may be involved in the regulation of cell migration and polarization. STK25 binds and phosphorylates CCM3 (cerebral cavernous malformation 3), also called PCD10 (programmed cell death 10), and may play a role in apoptosis. Human STK25 is a candidate gene responsible for pseudopseudohypoparathyroidism (PPHP), a disease that shares features with the Albright hereditary osteodystrophy (AHO) phenotype. The STK25 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270810 [Multi-domain]  Cd Length: 277  Bit Score: 36.96  E-value: 8.54e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLK------GQYSTMLRlpqlvdfasQIASGMAYV 80
Cdd:cd06642  47 EDIQQEITVLSQCDSPYITRYYgSYLKGTKLWIIMEYLGGGSALDLLKpgpleeTYIATILR---------EILKGLDYL 117
                        90
                ....*....|....*....
gi 472744    81 ERMNYVHRDLRAANILVGD 99
Cdd:cd06642 118 HSERKIHRDIKAANVLLSE 136
STKc_RSK4_C cd14177
C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 4 (also called ...
16-100 9.27e-04

C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 4 (also called Ribosomal protein S6 kinase alpha-6 or 90kDa ribosomal protein S6 kinase 6); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK4 is also called S6K-alpha-6, RPS6KA6, p90RSK6 or pp90RSK4. RSK4 is a substrate of ERK and is a modulator of p53-dependent proliferation arrest in human cells. Deletion of the RSK4 gene, RPS6KA6, frequently occurs in patients of X-linked deafness type 3, mental retardation and choroideremia. Studies of RSK4 in cancer cells and tissues suggest that it may be oncogenic or tumor suppressive depending on many factors. RSK4 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271079 [Multi-domain]  Cd Length: 295  Bit Score: 36.53  E-value: 9.27e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    16 VMKKLRHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQYSTMLRlpQLVDFASQIASGMAYVERMNYVHRDLRAAN 94
Cdd:cd14177  51 LMRYGQHPNIITLKDVYDDgRYVYLVTELMKGGELLDRILRQKFFSER--EASAVLYTITKTVDYLHCQGVVHRDLKPSN 128

                ....*.
gi 472744    95 ILVGDN 100
Cdd:cd14177 129 ILYMDD 134
PTZ00263 PTZ00263
protein kinase A catalytic subunit; Provisional
11-97 9.55e-04

protein kinase A catalytic subunit; Provisional


Pssm-ID: 140289 [Multi-domain]  Cd Length: 329  Bit Score: 36.72  E-value: 9.55e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKgqysTMLRLPQLVD--FASQIASGMAYVERMNYVH 87
Cdd:PTZ00263  66 AQEKSILMELSHPFIVNMMcSFQDENRVYFLLEFVVGGELFTHLR----KAGRFPNDVAkfYHAELVLAFEYLHSKDIIY 141
                         90
                 ....*....|
gi 472744     88 RDLRAANILV 97
Cdd:PTZ00263 142 RDLKPENLLL 151
STKc_TAO cd06607
Catalytic domain of the Serine/Threonine Kinases, Thousand-and-One Amino acids proteins; STKs ...
11-100 9.66e-04

Catalytic domain of the Serine/Threonine Kinases, Thousand-and-One Amino acids proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO proteins possess mitogen-activated protein kinase (MAPK) kinase kinase activity. They activate the MAPKs, p38 and c-Jun N-terminal kinase (JNK), by phosphorylating and activating the respective MAP/ERK kinases (MEKs, also known as MKKs or MAPKKs), MEK3/MEK6 and MKK4/MKK7. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. Vertebrates contain three TAO subfamily members, named TAO1, TAO2, and TAO3. The TAO subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270784 [Multi-domain]  Cd Length: 258  Bit Score: 36.66  E-value: 9.66e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAV-VSEEPIYIVTEFMdQGS---LLEFLKgqysTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd06607  49 IKEVKFLRQLRHPNTIEYKGCyLREHTAWLVMEYC-LGSasdIVEVHK----KPLQEVEIAAICHGALQGLAYLHSHNRI 123
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:cd06607 124 HRDVKAGNILLTEP 137
STKc_CaMKIV cd14085
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ...
4-99 9.87e-04

Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type IV; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKIV is found predominantly in neurons and immune cells. It is activated by the binding of calcium/CaM and phosphorylation by CaMKK (alpha or beta). The CaMKK-CaMKIV cascade participates in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors. It also is implicated in T-cell development and signaling, cytokine secretion, and signaling through Toll-like receptors, and is thus, pivotal in immune response and inflammation. The CaMKIV subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270987 [Multi-domain]  Cd Length: 294  Bit Score: 36.73  E-value: 9.87e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     4 TMSPEAFLQEAQVMKKLRHE---KLVQLYAVVSEepIYIVTEFMDQGSLLEFL--KGQYSTMlrlpQLVDFASQIASGMA 78
Cdd:cd14085  39 TVDKKIVRTEIGVLLRLSHPniiKLKEIFETPTE--ISLVLELVTGGELFDRIveKGYYSER----DAADAVKQILEAVA 112
                        90       100
                ....*....|....*....|.
gi 472744    79 YVERMNYVHRDLRAANILVGD 99
Cdd:cd14085 113 YLHENGIVHRDLKPENLLYAT 133
STKc_PAK2 cd06655
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 2; STKs catalyze the ...
8-98 1.08e-03

Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK2 plays a role in pro-apoptotic signaling. It is cleaved and activated by caspases leading to morphological changes during apoptosis. PAK2 is also activated in response to a variety of stresses including DNA damage, hyperosmolarity, serum starvation, and contact inhibition, and may play a role in coordinating the stress response. PAK2 also contributes to cancer cell invasion through a mechanism distinct from that of PAK1. It belongs to the group I PAKs, which contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132986 [Multi-domain]  Cd Length: 296  Bit Score: 36.63  E-value: 1.08e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQ-LYAVVSEEPIYIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASGMAYVERMNYV 86
Cdd:cd06655  61 ELIINEILVMKELKNPNIVNfLDSFLVGDELFVVMEYLAGGSLTDVVT---ETCMDEAQIAAVCRECLQALEFLHANQVI 137
                        90
                ....*....|..
gi 472744    87 HRDLRAANILVG 98
Cdd:cd06655 138 HRDIKSDNVLLG 149
STKc_SGK cd05575
Catalytic domain of the Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase; ...
17-96 1.08e-03

Catalytic domain of the Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGKs are activated by insulin and growth factors via phosphoinositide 3-kinase and PDK1. They activate ion channels, ion carriers, and the Na-K-ATPase, as well as regulate the activity of enzymes and transcription factors. SGKs play important roles in transport, hormone release, neuroexcitability, cell proliferation, and apoptosis. There are three isoforms of SGK, named SGK1, SGK2, and SGK3 (also called cytokine-independent survival kinase CISK). The SGK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270727 [Multi-domain]  Cd Length: 323  Bit Score: 36.53  E-value: 1.08e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    17 MKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLleFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANI 95
Cdd:cd05575  50 LKNVKHPFLVGLhYSFQTKDKLYFVLDYVNGGEL--FFHLQRERHFPEPRARFYAAEIASALGYLHSLNIIYRDLKPENI 127

                .
gi 472744    96 L 96
Cdd:cd05575 128 L 128
STKc_CDKL1_4 cd07847
Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 1 and 4; ...
11-97 1.32e-03

Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 1 and 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKL1, also called p42 KKIALRE, is a glial protein that is upregulated in gliosis. It is present in neuroblastoma and A431 human carcinoma cells, and may be implicated in neoplastic transformation. The function of CDKL4 is unknown. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL1/4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270837 [Multi-domain]  Cd Length: 286  Bit Score: 36.20  E-value: 1.32e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVVSEE-PIYIVTEFMDQGSLLEflkgqystMLRLPQLVDFAS------QIASGMAYVERM 83
Cdd:cd07847  48 LREIRMLKQLKHPNLVNLIEVFRRKrKLHLVFEYCDHTVLNE--------LEKNPRGVPEHLikkiiwQTLQAVNFCHKH 119
                        90
                ....*....|....
gi 472744    84 NYVHRDLRAANILV 97
Cdd:cd07847 120 NCIHRDVKPENILI 133
RIO2 COG0478
RIO-like serine/threonine protein kinase fused to N-terminal HTH domain [Signal transduction ...
12-100 1.34e-03

RIO-like serine/threonine protein kinase fused to N-terminal HTH domain [Signal transduction mechanisms];


Pssm-ID: 440246 [Multi-domain]  Cd Length: 183  Bit Score: 36.04  E-value: 1.34e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVqlyavVSEePI-----YIVTEFMDqGSLLeflkgqYSTMLRLPQlvDFASQIASGMAYVERMNYV 86
Cdd:COG0478  48 REFRALERLYPAGLP-----VPR-PIaanrhAIVMERIE-GVEL------ARLKLEDPE--EVLDKILEEIRRAHDAGIV 112
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:COG0478 113 HADLSEYNILVDDD 126
STKc_Bub1_BubR1 cd13981
Catalytic domain of the Serine/Threonine kinases, Spindle assembly checkpoint proteins Bub1 ...
15-100 1.37e-03

Catalytic domain of the Serine/Threonine kinases, Spindle assembly checkpoint proteins Bub1 and BubR1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Bub1 (Budding uninhibited by benzimidazoles 1), BubR1, and similar proteins. They contain an N-terminal Bub1/Mad3 homology domain essential for Cdc20 binding and a C-terminal kinase domain. Bub1 and BubR1 are involved in SAC, a surveillance system that delays metaphase to anaphase transition by blocking the activity of APC/C (the anaphase promoting complex) until all chromosomes achieve proper attachments to the mitotic spindle, to avoid chromosome missegregation. Impaired SAC leads to genomic instabilities and tumor development. Bub1 and BubR1 facilitate the localization of SAC proteins to kinetochores and regulate kinetochore-microtubule (K-MT) attachments. Repression studies of Bub1 and BubR1 show that they exert an additive effect in misalignment phenotypes and may function cooperatively or in parallel pathways in regulating K-MT attachments. The Bub1/BubR1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270883 [Multi-domain]  Cd Length: 298  Bit Score: 36.18  E-value: 1.37e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    15 QVMKKLRHEKLVQLYAVVSEEPIY-----IVTEFMDQGSLLEFLKGQYSTMLRLPQ---LVDFASQIASGMAYVERMNYV 86
Cdd:cd13981  49 QLHSRLKNSRLRESISGAHSAHLFqdesiLVMDYSSQGTLLDVVNKMKNKTGGGMDeplAMFFTIELLKVVEALHEVGII 128
                        90
                ....*....|....
gi 472744    87 HRDLRAANILVGDN 100
Cdd:cd13981 129 HGDIKPDNFLLRLE 142
PKc_TOPK cd14001
Catalytic domain of the Dual-specificity protein kinase, Lymphokine-activated killer ...
13-99 1.46e-03

Catalytic domain of the Dual-specificity protein kinase, Lymphokine-activated killer T-cell-originated protein kinase; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TOPK, also called PDZ-binding kinase (PBK), is activated at the early stage of mitosis and plays a critical role in cytokinesis. It partly functions as a mitogen-activated protein kinase (MAPK) kinase and is capable of phosphorylating p38, JNK1, and ERK2. TOPK also plays a role in DNA damage sensing and repair through its phosphorylation of histone H2AX. It contributes to cancer development and progression by downregulating the function of tumor suppressor p53 and reducing cell-cycle regulatory proteins. TOPK is found highly expressed in breast and skin cancer cells. The TOPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270903 [Multi-domain]  Cd Length: 292  Bit Score: 36.22  E-value: 1.46e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVVSEE--PIYIVTEFMDQgSLLEFLKGQYSTML-RLP--QLVDFASQIASGMAYVERMNYV- 86
Cdd:cd14001  55 EAKILKSLNHPNIVGFRAFTKSEdgSLCLAMEYGGK-SLNDLIEERYEAGLgPFPaaTILKVALSIARALEYLHNEKKIl 133
                        90
                ....*....|....
gi 472744    87 HRDLRAANILV-GD 99
Cdd:cd14001 134 HGDIKSGNVLIkGD 147
STKc_nPKC_theta cd05619
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta; STKs catalyze ...
22-97 1.77e-03

Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. Although T-cells also express other PKC isoforms, PKC-theta is unique in that upon antigen stimulation, it is translocated to the plasma membrane at the immunological synapse, where it mediates signals essential for T-cell activation. It is essential for TCR-induced proliferation, cytokine production, T-cell survival, and the differentiation and effector function of T-helper (Th) cells, particularly Th2 and Th17. PKC-theta is being developed as a therapeutic target for Th2-mediated allergic inflammation and Th17-mediated autoimmune diseases. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270770 [Multi-domain]  Cd Length: 331  Bit Score: 36.05  E-value: 1.77e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 472744    22 HEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd05619  65 HPFLTHLFCTFqTKENLFFVMEYLNGGDLMFHI--QSCHKFDLPRATFYAAEIICGLQFLHSKGIVYRDLKLDNILL 139
Bud32 COG3642
tRNA A-37 threonylcarbamoyl transferase component Bud32 [Translation, ribosomal structure and ...
12-100 1.78e-03

tRNA A-37 threonylcarbamoyl transferase component Bud32 [Translation, ribosomal structure and biogenesis]; tRNA A-37 threonylcarbamoyl transferase component Bud32 is part of the Pathway/BioSystem: tRNA modification


Pssm-ID: 442859 [Multi-domain]  Cd Length: 159  Bit Score: 35.32  E-value: 1.78e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRhEKLV---QLYAVVSEEpIYIVTEFMDQGSLLEFLKgqystmlRLPQLVDFASQIASGMAYVERMNYVHR 88
Cdd:COG3642   5 REARLLRELR-EAGVpvpKVLDVDPDD-ADLVMEYIEGETLADLLE-------EGELPPELLRELGRLLARLHRAGIVHG 75
                        90
                ....*....|..
gi 472744    89 DLRAANILVGDN 100
Cdd:COG3642  76 DLTTSNILVDDG 87
STKc_NAK1_like cd06917
Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases; STKs catalyze the transfer of ...
12-103 1.95e-03

Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Nak1, Saccharomyces cerevisiae Kic1p (kinase that interacts with Cdc31p) and related proteins. Nak1 (also called N-rich kinase 1), is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Kic1p is required by budding yeast for cell integrity and morphogenesis. Kic1p interacts with Cdc31p, the yeast homologue of centrin, and phosphorylates substrates in a Cdc31p-dependent manner. The Nak1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270822 [Multi-domain]  Cd Length: 277  Bit Score: 35.91  E-value: 1.95e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRH---EKLVQLYAVVSEEP-IYIVTEFMDQGSLLEFLKGQystMLRLPQLVDFASQIASGMAYVERMNYVH 87
Cdd:cd06917  48 KEVALLSQLKLgqpKNIIKYYGSYLKGPsLWIIMDYCEGGSIRTLMRAG---PIAERYIAVIMREVLVALKFIHKDGIIH 124
                        90
                ....*....|....*....
gi 472744    88 RDLRAANILV---GDNLVC 103
Cdd:cd06917 125 RDIKAANILVtntGNVKLC 143
STKc_ULK4 cd14010
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 4; STKs catalyze the ...
11-100 2.30e-03

Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ULK4 is a functionally uncharacterized kinase that shows similarity to ATG1/ULKs. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. The ULK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270912 [Multi-domain]  Cd Length: 269  Bit Score: 35.35  E-value: 2.30e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYA-VVSEEPIYIVTEFMDQGSLLEFLKGQystmLRLPQLV--DFASQIASGMAYVERMNYVH 87
Cdd:cd14010  42 LNEVRLTHELKHPNVLKFYEwYETSNHLWLVVEYCTGGDLETLLRQD----GNLPESSvrKFGRDLVRGLHYIHSKGIIY 117
                        90
                ....*....|...
gi 472744    88 RDLRAANILVGDN 100
Cdd:cd14010 118 CDLKPSNILLDGN 130
STKc_CDK6 cd07862
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 6; STKs ...
7-97 2.46e-03

Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK6 is regulated by D-type cyclins and INK4 inhibitors. It is active towards the retinoblastoma (pRb) protein, implicating it to function in regulating the early G1 phase of the cell cycle. It is expressed ubiquitously and is localized in the cytoplasm. It is also present in the ruffling edge of spreading fibroblasts and may play a role in cell spreading. It binds to the p21 inhibitor without any effect on its own activity and it is overexpressed in squamous cell carcinomas and neuroblastomas. CDK6 has also been shown to inhibit cell differentiation in many cell types. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270846 [Multi-domain]  Cd Length: 290  Bit Score: 35.39  E-value: 2.46e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     7 PEAFLQEAQVMKKLR---HEKLVQLYAVVS------EEPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQLVDFASQIASGM 77
Cdd:cd07862  45 PLSTIREVAVLRHLEtfeHPNVVRLFDVCTvsrtdrETKLTLVFEHVDQ-DLTTYLDKVPEPGVPTETIKDMMFQLLRGL 123
                        90       100
                ....*....|....*....|
gi 472744    78 AYVERMNYVHRDLRAANILV 97
Cdd:cd07862 124 DFLHSHRVVHRDLKPQNILV 143
APH_ChoK_like cd05120
Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ...
2-100 2.81e-03

Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ChoK, ethanolamine kinase (ETNK), macrolide 2'-phosphotransferase (MPH2'), an unusual homoserine kinase, and uncharacterized proteins with similarity to the N-terminal domain of acyl-CoA dehydrogenase 10 (ACAD10). The members of this family catalyze the transfer of the gamma-phosphoryl group from ATP (or CTP) to small molecule substrates such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Phosphorylation of the antibiotics, aminoglycosides and macrolides, leads to their inactivation and to bacterial antibiotic resistance. Phosphorylation of choline, ethanolamine, and homoserine serves as precursors to the synthesis of important biological compounds, such as the major phospholipids, phosphatidylcholine and phosphatidylethanolamine and the amino acids, threonine, methionine, and isoleucine. The APH/ChoK family is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K).


Pssm-ID: 270690 [Multi-domain]  Cd Length: 158  Bit Score: 34.97  E-value: 2.81e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     2 PGTMSPEAFLQEAQVMKKLRHEKLV---QLYAVVSEEPI-YIVTEFMDqGSLLEFLKGQYSTMlrlpQLVDFASQIASGM 77
Cdd:cd05120  28 GPPRLKKDLEKEAAMLQLLAGKLSLpvpKVYGFGESDGWeYLLMERIE-GETLSEVWPRLSEE----EKEKIADQLAEIL 102
                        90       100
                ....*....|....*....|....*.
gi 472744    78 AYVERMNY---VHRDLRAANILVGDN 100
Cdd:cd05120 103 AALHRIDSsvlTHGDLHPGNILVKPD 128
STKc_MPK1 cd07857
Catalytic domain of the Serine/Threonine Kinase, Fungal Mitogen-Activated Protein Kinase MPK1; ...
69-103 3.00e-03

Catalytic domain of the Serine/Threonine Kinase, Fungal Mitogen-Activated Protein Kinase MPK1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the MAPKs MPK1 from Saccharomyces cerevisiae, Pmk1 from Schizosaccharomyces pombe, and similar proteins. MPK1 (also called Slt2) and Pmk1 (also called Spm1) are stress-activated MAPKs that regulate the cell wall integrity pathway, and are therefore important in the maintainance of cell shape, cell wall construction, morphogenesis, and ion homeostasis. MPK1 is activated in response to cell wall stress including heat stimulation, osmotic shock, UV irradiation, and any agents that interfere with cell wall biogenesis such as chitin antagonists, caffeine, or zymolase. MPK1 is regulated by the MAP2Ks Mkk1/2, which are regulated by the MAP3K Bck1. Pmk1 is also activated by multiple stresses including elevated temperatures, hyper- or hypotonic stress, glucose deprivation, exposure to cell-wall damaging compounds, and oxidative stress. It is regulated by the MAP2K Pek1, which is regulated by the MAP3K Mkh1. MAPKs are important mediators of cellular responses to extracellular signals. The MPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173750 [Multi-domain]  Cd Length: 332  Bit Score: 35.07  E-value: 3.00e-03
                        10        20        30
                ....*....|....*....|....*....|....*
gi 472744    69 FASQIASGMAYVERMNYVHRDLRAANILVgdNLVC 103
Cdd:cd07857 110 FIYQILCGLKYIHSANVLHRDLKPGNLLV--NADC 142
STKc_Nek6 cd08228
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ...
11-97 3.10e-03

Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek6 is required for the transition from metaphase to anaphase. It also plays important roles in mitotic spindle formation and cytokinesis. Activated by Nek9 during mitosis, Nek6 phosphorylates Eg5, a kinesin that is important for spindle bipolarity. Nek6 localizes to spindle microtubules during metaphase and anaphase, and to the midbody during cytokinesis. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270865 [Multi-domain]  Cd Length: 268  Bit Score: 35.39  E-value: 3.10e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQ-LYAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQ--LVDFASQIASGMAYVERMNYVH 87
Cdd:cd08228  50 VKEIDLLKQLNHPNVIKyLDSFIEDNELNIVLELADAGDLSQMIKYFKKQKRLIPErtVWKYFVQLCSAVEHMHSRRVMH 129
                        90
                ....*....|
gi 472744    88 RDLRAANILV 97
Cdd:cd08228 130 RDIKPANVFI 139
STKc_Nek10 cd08528
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ...
11-100 3.50e-03

Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 10; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. No function has yet been ascribed to Nek10. The gene encoding Nek10 is a putative causative gene for breast cancer; it is located within a breast cancer susceptibility loci on chromosome 3p24. Nek10 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270867 [Multi-domain]  Cd Length: 270  Bit Score: 35.17  E-value: 3.50e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMK-KLRHEKLVQLYAV-VSEEPIYIVTEFMDQGSLLEFL-----KGQYSTMLRLPQLVdfaSQIASGMAYVER- 82
Cdd:cd08528  56 ISEVNIIKeQLRHPNIVRYYKTfLENDRLYIVMELIEGAPLGEHFsslkeKNEHFTEDRIWNIF---VQMVLALRYLHKe 132
                        90
                ....*....|....*...
gi 472744    83 MNYVHRDLRAANILVGDN 100
Cdd:cd08528 133 KQIVHRDLKPNNIMLGED 150
STKc_MRCK_alpha cd05623
Catalytic domain of the Serine/Threonine Kinase, DMPK-related cell division control protein 42 ...
29-100 4.28e-03

Catalytic domain of the Serine/Threonine Kinase, DMPK-related cell division control protein 42 binding kinase (MRCK) alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MRCK-alpha is expressed ubiquitously in many tissues. It plays a role in the regulation of peripheral actin reorganization and neurite outgrowth. It may also play a role in the transferrin iron uptake pathway. MRCK is activated via interaction with the small GTPase Cdc42. MRCK/Cdc42 signaling mediates myosin-dependent cell motility. The MRCK-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. This alignment model includes the dimerization domain.


Pssm-ID: 270773 [Multi-domain]  Cd Length: 409  Bit Score: 34.99  E-value: 4.28e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 472744    29 YAVVSEEPIYIVTEFMDQGSLLEFLKgQYSTmlRLPQLVD--FASQIASGMAYVERMNYVHRDLRAANILVGDN 100
Cdd:cd05623 139 YAFQDDNNLYLVMDYYVGGDLLTLLS-KFED--RLPEDMArfYLAEMVLAIDSVHQLHYVHRDIKPDNILMDMN 209
STKc_RSK2_C cd14176
C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 2 (also called ...
21-99 4.71e-03

C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 2 (also called 90kDa ribosomal protein S6 kinase 3 or Ribosomal protein S6 kinase alpha-3); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK2 is also called p90RSK3, RPS6KA3, S6K-alpha-3, or MAPK-activated protein kinase 1b (MAPKAPK-1b). RSK2 is expressed highly in the regions of the brain with high synaptic activity. It plays a role in the maintenance and consolidation of excitatory synapses. It is a specific modulator of phospholipase D in calcium-regulated exocytosis. Mutations in the RSK2 gene, RPS6KA3, cause Coffin-Lowry syndrome (CLS), a rare syndromic form of X-linked mental retardation characterized by growth and psychomotor retardation and skeletal abnormalities. RSK2 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271078 [Multi-domain]  Cd Length: 339  Bit Score: 34.61  E-value: 4.71e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    21 RHEKLVQLYAVVSE-EPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFAsqIASGMAYVERMNYVHRDLRAANILVGD 99
Cdd:cd14176  71 QHPNIITLKDVYDDgKYVYVVTELMKGGELLDKILRQKFFSEREASAVLFT--ITKTVEYLHAQGVVHRDLKPSNILYVD 148
STKc_MASTL cd05610
Catalytic domain of the Serine/Threonine Kinase, Microtubule-associated serine/threonine-like ...
29-97 5.22e-03

Catalytic domain of the Serine/Threonine Kinase, Microtubule-associated serine/threonine-like kinase (also called greatwall kinase); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The MASTL kinases in this group carry only a catalytic domain, which contains a long insertion relative to MAST kinases. MASTL, also called greatwall kinase (Gwl), is involved in the regulation of mitotic entry, which is controlled by the coordinated activities of protein kinases and opposing protein phosphatases (PPs). The cyclin B/CDK1 complex induces entry into M-phase while PP2A-B55 shows anti-mitotic activity. MASTL/Gwl is activated downstream of cyclin B/CDK1 and indirectly inhibits PP2A-B55 by phosphorylating the small protein alpha-endosulfine (Ensa) or the cAMP-regulated phosphoprotein 19 (Arpp19), resulting in M-phase progression. Gwl kinase may also play roles in mRNA stabilization and DNA checkpoint recovery. The human MASTL gene has also been named FLJ14813; a missense mutation in FLJ14813 is associated with autosomal dominant thrombocytopenia. The MASTL kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270761 [Multi-domain]  Cd Length: 349  Bit Score: 34.47  E-value: 5.22e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 472744    29 YAVVSEEPIYIVTEFMDQGSLLEFLK--GQYSTmlrlPQLVDFASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd05610  71 YSLQSANNVYLVMEYLIGGDVKSLLHiyGYFDE----EMAVKYISEVALALDYLHRHGIIHRDLKPDNMLI 137
STKc_LATS2 cd05626
Catalytic domain of the Protein Serine/Threonine Kinase, Large Tumor Suppressor 2; STKs ...
13-97 5.47e-03

Catalytic domain of the Protein Serine/Threonine Kinase, Large Tumor Suppressor 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LATS2 is an essential mitotic regulator responsible for coordinating accurate cytokinesis completion and governing the stabilization of other mitotic regulators. It is also critical in the maintenance of proper chromosome number, genomic stability, mitotic fidelity, and the integrity of centrosome duplication. Downregulation of LATS2 is associated with poor prognosis in acute lymphoblastic leukemia and breast cancer. The LATS2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173715 [Multi-domain]  Cd Length: 381  Bit Score: 34.60  E-value: 5.47e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLkgqySTMLRLPQLVD--FASQIASGMAYVERMNYVHRD 89
Cdd:cd05626  51 ERDILAEADNEWVVKLYySFQDKDNLYFVMDYIPGGDMMSLL----IRMEVFPEVLArfYIAELTLAIESVHKMGFIHRD 126

                ....*...
gi 472744    90 LRAANILV 97
Cdd:cd05626 127 IKPDNILI 134
STKc_SBK1 cd13987
Catalytic domain of the Serine/Threonine kinase, SH3 Binding Kinase 1; STKs catalyze the ...
22-100 5.52e-03

Catalytic domain of the Serine/Threonine kinase, SH3 Binding Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SBK1, also called BSK146, is predominantly expressed in the brain. Its expression is increased in the developing brain during the late embryonic stage, coinciding with dramatic neuronal proliferation, migration, and maturation. SBK1 may play an important role in regulating brain development. The SBK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270889 [Multi-domain]  Cd Length: 259  Bit Score: 34.61  E-value: 5.52e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    22 HEKLVQLYAVVSEEPIYIV--TEFMDQGSLLEFLKGQYStmlrLPQLV--DFASQIASGMAYVERMNYVHRDLRAANILV 97
Cdd:cd13987  49 HPHIIKTYDVAFETEDYYVfaQEYAPYGDLFSIIPPQVG----LPEERvkRCAAQLASALDFMHSKNLVHRDIKPENVLL 124

                ...
gi 472744    98 GDN 100
Cdd:cd13987 125 FDK 127
STKc_Nek9 cd08221
Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA) ...
11-102 5.92e-03

Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 9; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek9, also called Nercc1, is primarily a cytoplasmic protein but can also localize in the nucleus. It is involved in modulating chromosome alignment and splitting during mitosis. It interacts with the gamma-tubulin ring complex and the Ran GTPase, and is implicated in microtubule organization. Nek9 associates with FACT (FAcilitates Chromatin Transcription) and modulates interphase progression. It also interacts with Nek6, and Nek7, during mitosis, resulting in their activation. Nek9 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270860 [Multi-domain]  Cd Length: 256  Bit Score: 34.33  E-value: 5.92e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYA-VVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd08221  47 LNEIDILSLLNHDNIITYYNhFLDGESLFIEMEYCNGGNLHDKIAQQKNQLFPEEVVLWYLYQIVSAVSHIHKAGILHRD 126
                        90
                ....*....|....
gi 472744    90 LRAANI-LVGDNLV 102
Cdd:cd08221 127 IKTLNIfLTKADLV 140
PKc_MKK4 cd06616
Catalytic domain of the dual-specificity Protein Kinase, Mitogen-activated protein Kinase ...
10-100 6.18e-03

Catalytic domain of the dual-specificity Protein Kinase, Mitogen-activated protein Kinase Kinase 4; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MKK4 is a dual-specificity PK that phosphorylates and activates the downstream targets, c-Jun N-terminal kinase (JNK) and p38 MAPK, on specific threonine and tyrosine residues. JNK and p38 are collectively known as stress-activated MAPKs, as they are activated in response to a variety of environmental stresses and pro-inflammatory cytokines. Their activation is associated with the induction of cell death. Mice deficient in MKK4 die during embryogenesis and display anemia, severe liver hemorrhage, and abnormal hepatogenesis. MKK4 may also play roles in the immune system and in cardiac hypertrophy. It plays a major role in cancer as a tumor and metastasis suppressor. Under certain conditions, MKK4 is pro-oncogenic. The MKK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270790 [Multi-domain]  Cd Length: 291  Bit Score: 34.26  E-value: 6.18e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    10 FLQEAQVMKKLRH-EKLVQLY-AVVSEEPIYIVTEFMDQgSLLEFLKGQYS-TMLRLPQlvDFASQIAsgMAYVERMNY- 85
Cdd:cd06616  51 LLMDLDVVMRSSDcPYIVKFYgALFREGDCWICMELMDI-SLDKFYKYVYEvLDSVIPE--EILGKIA--VATVKALNYl 125
                        90       100
                ....*....|....*....|.
gi 472744    86 ------VHRDLRAANILVGDN 100
Cdd:cd06616 126 keelkiIHRDVKPSNILLDRN 146
PK_SCY1_like cd14011
Pseudokinase domain of Scy1-like proteins; The pseudokinase domain shows similarity to protein ...
12-97 6.23e-03

Pseudokinase domain of Scy1-like proteins; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. This subfamily is composed of the catalytically inactive kinases with similarity to yeast Scy1. It includes four mammalian proteins called SCY1-like protein 1 (SCYL1), SCYL2, SCYL3, as well as Testis-EXpressed protein 14 (TEX14). SCYL1 binds to and co-localizes with the membrane trafficking coatomer I (COPI) complex, and regulates COPI-mediated vesicle trafficking. Null mutations in the SCYL1 gene are responsible for the pathology in mdf (muscle-deficient) mice which display progressive motor neuropathy. SCYL2, also called coated vesicle-associated kinase of 104 kDa (CVAK104), is involved in the trafficking of clathrin-coated vesicles. It also binds the HIV-1 accessory protein Vpu and acts as a regulatory factor that promotes the dephosphorylation of Vpu, facilitating the restriction of HIV-1 release. SCYL3, also called ezrin-binding protein PACE-1, may be involved in regulating cell adhesion and migration. TEX14 is required for spermatogenesis and male fertility. It localizes to kinetochores (KT) during mitosis and is a target of the mitotic kinase PLK1. It regulates the maturation of the outer KT and the KT-microtubule attachment. The SCY1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270913 [Multi-domain]  Cd Length: 287  Bit Score: 34.22  E-value: 6.23e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVSE--EPIYIVTEFMdQGSLLEFLkGQYSTMLRLPQLVDFAS-----------QIASGMA 78
Cdd:cd14011  51 RGVKQLTRLRHPRILTVQHPLEEsrESLAFATEPV-FASLANVL-GERDNMPSPPPELQDYKlydveikygllQISEALS 128
                        90       100
                ....*....|....*....|
gi 472744    79 YV-ERMNYVHRDLRAANILV 97
Cdd:cd14011 129 FLhNDVKLVHGNICPESVVI 148
STKc_PKD cd14082
Catalytic domain of the Serine/Threonine kinase, Protein Kinase D; STKs catalyze the transfer ...
13-100 6.25e-03

Catalytic domain of the Serine/Threonine kinase, Protein Kinase D; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKDs are important regulators of many intracellular signaling pathways such as ERK and JNK, and cellular processes including the organization of the trans-Golgi network, membrane trafficking, cell proliferation, migration, and apoptosis. They contain N-terminal cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. Mammals harbor three types of PKDs: PKD1 (or PKCmu), PKD2, and PKD3 (or PKCnu). PKDs are activated in a PKC-dependent manner by many agents including diacylglycerol (DAG), PDGF, neuropeptides, oxidative stress, and tumor-promoting phorbol esters, among others. The PKD subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270984 [Multi-domain]  Cd Length: 260  Bit Score: 34.31  E-value: 6.25e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV-SEEPIYIVTEFMDqGSLLEFLKGqySTMLRLPQLVD--FASQIASGMAYVERMNYVHRD 89
Cdd:cd14082  52 EVAILQQLSHPGVVNLECMFeTPERVFVVMEKLH-GDMLEMILS--SEKGRLPERITkfLVTQILVALRYLHSKNIVHCD 128
                        90
                ....*....|.
gi 472744    90 LRAANILVGDN 100
Cdd:cd14082 129 LKPENVLLASA 139
STKc_GRK1 cd05608
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 1; STKs ...
8-100 7.14e-03

Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK1 (also called rhodopsin kinase) belongs to the visual group of GRKs and is expressed in retinal cells. It phosphorylates rhodopsin in rod cells, which leads to termination of the phototransduction cascade. Mutations in GRK1 are associated to a recessively inherited form of stationary nightblindness called Oguchi disease. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270759 [Multi-domain]  Cd Length: 288  Bit Score: 34.09  E-value: 7.14e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLKG--QYSTMLRLPQLVDFASQIASGMAYVERMN 84
Cdd:cd05608  46 EGAMVEKRILAKVHSRFIVSLaYAFQTKTDLCLVMTIMNGGDLRYHIYNvdEENPGFQEPRACFYTAQIISGLEHLHQRR 125
                        90
                ....*....|....*.
gi 472744    85 YVHRDLRAANILVGDN 100
Cdd:cd05608 126 IIYRDLKPENVLLDDD 141
STKc_TDY_MAPK cd07859
Catalytic domain of the Serine/Threonine Kinases, Plant TDY Mitogen-Activated Protein Kinases; ...
11-100 7.51e-03

Catalytic domain of the Serine/Threonine Kinases, Plant TDY Mitogen-Activated Protein Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Plant MAPKs are typed based on the conserved phosphorylation motif present in the activation loop, TEY and TDY. This subfamily represents the TDY subtype and is composed of Group D plant MAPKs including Arabidopsis thaliana MPK18 (AtMPK18), Oryza sativa Blast- and Wound-induced MAPK1 (OsBWMK1), OsWJUMK1 (Wound- and JA-Uninducible MAPK1), Zea mays MPK6, and the Medicago sativa TDY1 gene product. OsBWMK1 enhances resistance to pathogenic infections. It mediates stress-activated defense responses by activating a transcription factor that affects the expression of stress-related genes. AtMPK18 is involved in microtubule-related functions. In plants, MAPKs are associated with physiological, developmental, hormonal, and stress responses. Some plants show numerous gene duplications of MAPKs; Arabidopsis thaliana harbors at least 20 MAPKs, named AtMPK1-20 while Oryza sativa contains at least 17 MAPKs. Arabidopsis thaliana contains more TEY-type MAPKs than TDY-type, whereas the reverse is true for Oryza sativa. The TDY MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 143364 [Multi-domain]  Cd Length: 338  Bit Score: 33.99  E-value: 7.51e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLYAVV------SEEPIYIVTEFMDQgSLLEFLKGQYSTMLRLPQLvdFASQIASGMAYVERMN 84
Cdd:cd07859  47 LREIKLLRLLRHPDIVEIKHIMlppsrrEFKDIYVVFELMES-DLHQVIKANDDLTPEHHQF--FLYQLLRALKYIHTAN 123
                        90
                ....*....|....*.
gi 472744    85 YVHRDLRAANILVGDN 100
Cdd:cd07859 124 VFHRDLKPKNILANAD 139
STKc_nPKC_eta cd05590
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C eta; STKs catalyze the ...
8-97 7.97e-03

Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C eta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-eta is predominantly expressed in squamous epithelia, where it plays a crucial role in the signaling of cell-type specific differentiation. It is also expressed in pro-B cells and early-stage thymocytes, and acts as a key regulator in early B-cell development. PKC-eta increases glioblastoma multiforme (GBM) proliferation and resistance to radiation, and is being developed as a therapeutic target for the management of GBM. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-eta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270742 [Multi-domain]  Cd Length: 323  Bit Score: 34.11  E-value: 7.97e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744     8 EAFLQEAQVMKKLR-HEKLVQLYAVV-SEEPIYIVTEFMDQGSLLEFLkgQYSTMLRLPQLVDFASQIASGMAYVERMNY 85
Cdd:cd05590  40 ECTMTEKRILSLARnHPFLTQLYCCFqTPDRLFFVMEFVNGGDLMFHI--QKSRRFDEARARFYAAEITSALMFLHDKGI 117
                        90
                ....*....|..
gi 472744    86 VHRDLRAANILV 97
Cdd:cd05590 118 IYRDLKLDNVLL 129
STKc_TLK1 cd14040
Catalytic domain of the Serine/Threonine kinase, Tousled-Like Kinase 1; STKs catalyze the ...
12-103 8.20e-03

Catalytic domain of the Serine/Threonine kinase, Tousled-Like Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. A splice variant of TLK1, called TLK1B, is expressed in the presence of double strand breaks (DSBs). It lacks the N-terminal part of TLK1, but is expected to phosphorylate the same substrates. TLK1/1B interacts with Rad9, which is critical in DNA damage-activated checkpoint response, and plays a role in the repair of linearized DNA with incompatible ends. TLKs play important functions during the cell cycle and are implicated in chromatin remodeling, DNA replication and repair, and mitosis. The TLK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270942 [Multi-domain]  Cd Length: 299  Bit Score: 33.88  E-value: 8.20e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    12 QEAQVMKKLRHEKLVQLYAVVS--EEPIYIVTEFMdQGSLLEFLKGQYSTMLRlPQLVDFASQIASGMAYVERMN--YVH 87
Cdd:cd14040  59 REYRIHKELDHPRIVKLYDYFSldTDTFCTVLEYC-EGNDLDFYLKQHKLMSE-KEARSIVMQIVNALRYLNEIKppIIH 136
                        90
                ....*....|....*.
gi 472744    88 RDLRAANILVGDNLVC 103
Cdd:cd14040 137 YDLKPGNILLVDGTAC 152
STKc_SPEG_rpt1 cd14108
Catalytic kinase domain, first repeat, of Giant Serine/Threonine Kinase Striated muscle ...
11-99 8.83e-03

Catalytic kinase domain, first repeat, of Giant Serine/Threonine Kinase Striated muscle preferentially expressed protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Striated muscle preferentially expressed gene (SPEG) generates 4 different isoforms through alternative promoter use and splicing in a tissue-specific manner: SPEGalpha and SPEGbeta are expressed in cardiac and skeletal striated muscle; Aortic Preferentially Expressed Protein-1 (APEG-1) is expressed in vascular smooth muscle; and Brain preferentially expressed gene (BPEG) is found in the brain and aorta. SPEG proteins have mutliple immunoglobulin (Ig), 2 fibronectin type III (FN3), and two kinase domains. They are necessary for cardiac development and survival. The SPEG subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271010 [Multi-domain]  Cd Length: 255  Bit Score: 33.72  E-value: 8.83e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQLY-AVVSEEPIYIVTEFMDQGSLLEFLKgqySTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd14108  46 RRELALLAELDHKSIVRFHdAFEKRRVVIIVTELCHEELLERITK---RPTVCESEVRSYMRQLLEGIEYLHQNDVLHLD 122
                        90
                ....*....|
gi 472744    90 LRAANILVGD 99
Cdd:cd14108 123 LKPENLLMAD 132
STKc_GRK4_like cd05605
Catalytic domain of G protein-coupled Receptor Kinase 4-like Serine/Threonine Kinases; STKs ...
11-99 9.50e-03

Catalytic domain of G protein-coupled Receptor Kinase 4-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of the GRK4-like group include GRK4, GRK5, GRK6, and similar GRKs. They contain an N-terminal RGS homology (RH) domain and a catalytic domain, but lack a G protein betagamma-subunit binding domain. They are localized to the plasma membrane through post-translational lipid modification or direct binding to PIP2. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK4-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270756 [Multi-domain]  Cd Length: 285  Bit Score: 33.87  E-value: 9.50e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    11 LQEAQVMKKLRHEKLVQL-YAVVSEEPIYIVTEFMDQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERMNYVHRD 89
Cdd:cd05605  48 LNEKQILEKVNSRFVVSLaYAYETKDALCLVLTIMNGGDLKFHIYNMGNPGFEEERAVFYAAEITCGLEHLHSERIVYRD 127
                        90
                ....*....|
gi 472744    90 LRAANILVGD 99
Cdd:cd05605 128 LKPENILLDD 137
STKc_CDK8_like cd07842
Catalytic domain of Cyclin-Dependent protein Kinase 8-like Serine/Threonine Kinases; STKs ...
13-97 9.69e-03

Catalytic domain of Cyclin-Dependent protein Kinase 8-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK8, CDC2L6, and similar proteins. CDK8 functions as a negative or positive regulator of transcription, depending on the scenario. Together with its regulator, cyclin C, it reversibly associates with the multi-subunit core Mediator complex, a cofactor that is involved in regulating RNA polymerase II-dependent transcription. CDC2L6 also associates with Mediator in complexes lacking CDK8. In VP16-dependent transcriptional activation, CDK8 and CDC2L6 exerts opposing effects by positive and negative regulation, respectively, in similar conditions. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK8-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270834 [Multi-domain]  Cd Length: 316  Bit Score: 33.80  E-value: 9.69e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 472744    13 EAQVMKKLRHEKLVQLYAVV---SEEPIYIVTEFM--DQGSLLEFLKGQYSTMLRLPQLVDFASQIASGMAYVERmNYV- 86
Cdd:cd07842  52 EIALLRELKHENVVSLVEVFlehADKSVYLLFDYAehDLWQIIKFHRQAKRVSIPPSMVKSLLWQILNGIHYLHS-NWVl 130
                        90
                ....*....|.
gi 472744    87 HRDLRAANILV 97
Cdd:cd07842 131 HRDLKPANILV 141
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH