MULTISPECIES: UDP-glucose 4-epimerase GalE [Salmonella]
UDP-glucose 4-epimerase( domain architecture ID 10793439)
UDP-glucose 4-epimerase catalyzes the NAD-dependent interconversion of UDP-galactose and UDP-glucose
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
PRK10675 | PRK10675 | UDP-galactose-4-epimerase; Provisional |
1-338 | 0e+00 | ||||||
UDP-galactose-4-epimerase; Provisional : Pssm-ID: 182639 [Multi-domain] Cd Length: 338 Bit Score: 758.58 E-value: 0e+00
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
PRK10675 | PRK10675 | UDP-galactose-4-epimerase; Provisional |
1-338 | 0e+00 | ||||||
UDP-galactose-4-epimerase; Provisional Pssm-ID: 182639 [Multi-domain] Cd Length: 338 Bit Score: 758.58 E-value: 0e+00
|
||||||||||
GalE | COG1087 | UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis]; |
1-338 | 0e+00 | ||||||
UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440704 [Multi-domain] Cd Length: 328 Bit Score: 596.61 E-value: 0e+00
|
||||||||||
UDP_G4E_1_SDR_e | cd05247 | UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
2-330 | 0e+00 | ||||||
UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187558 [Multi-domain] Cd Length: 323 Bit Score: 557.15 E-value: 0e+00
|
||||||||||
galE | TIGR01179 | UDP-glucose-4-epimerase GalE; Alternate name: UDPgalactose 4-epimerase This enzyme ... |
2-332 | 0e+00 | ||||||
UDP-glucose-4-epimerase GalE; Alternate name: UDPgalactose 4-epimerase This enzyme interconverts UDP-glucose and UDP-galactose. A set of related proteins, some of which are tentatively identified as UDP-glucose-4-epimerase in Thermotoga maritima, Bacillus halodurans, and several archaea, but deeply branched from this set and lacking experimental evidence, are excluded from this model and described by a separate model. [Energy metabolism, Sugars] Pssm-ID: 273487 [Multi-domain] Cd Length: 328 Bit Score: 554.64 E-value: 0e+00
|
||||||||||
GDP_Man_Dehyd | pfam16363 | GDP-mannose 4,6 dehydratase; |
4-325 | 1.03e-82 | ||||||
GDP-mannose 4,6 dehydratase; Pssm-ID: 465104 [Multi-domain] Cd Length: 327 Bit Score: 253.62 E-value: 1.03e-82
|
||||||||||
PKS_KR | smart00822 | This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step ... |
3-129 | 7.13e-03 | ||||||
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group. Pssm-ID: 214833 [Multi-domain] Cd Length: 180 Bit Score: 37.08 E-value: 7.13e-03
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
PRK10675 | PRK10675 | UDP-galactose-4-epimerase; Provisional |
1-338 | 0e+00 | ||||||
UDP-galactose-4-epimerase; Provisional Pssm-ID: 182639 [Multi-domain] Cd Length: 338 Bit Score: 758.58 E-value: 0e+00
|
||||||||||
GalE | COG1087 | UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis]; |
1-338 | 0e+00 | ||||||
UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440704 [Multi-domain] Cd Length: 328 Bit Score: 596.61 E-value: 0e+00
|
||||||||||
UDP_G4E_1_SDR_e | cd05247 | UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
2-330 | 0e+00 | ||||||
UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187558 [Multi-domain] Cd Length: 323 Bit Score: 557.15 E-value: 0e+00
|
||||||||||
galE | TIGR01179 | UDP-glucose-4-epimerase GalE; Alternate name: UDPgalactose 4-epimerase This enzyme ... |
2-332 | 0e+00 | ||||||
UDP-glucose-4-epimerase GalE; Alternate name: UDPgalactose 4-epimerase This enzyme interconverts UDP-glucose and UDP-galactose. A set of related proteins, some of which are tentatively identified as UDP-glucose-4-epimerase in Thermotoga maritima, Bacillus halodurans, and several archaea, but deeply branched from this set and lacking experimental evidence, are excluded from this model and described by a separate model. [Energy metabolism, Sugars] Pssm-ID: 273487 [Multi-domain] Cd Length: 328 Bit Score: 554.64 E-value: 0e+00
|
||||||||||
PLN02240 | PLN02240 | UDP-glucose 4-epimerase |
2-337 | 0e+00 | ||||||
UDP-glucose 4-epimerase Pssm-ID: 177883 [Multi-domain] Cd Length: 352 Bit Score: 527.22 E-value: 0e+00
|
||||||||||
GDP_Man_Dehyd | pfam16363 | GDP-mannose 4,6 dehydratase; |
4-325 | 1.03e-82 | ||||||
GDP-mannose 4,6 dehydratase; Pssm-ID: 465104 [Multi-domain] Cd Length: 327 Bit Score: 253.62 E-value: 1.03e-82
|
||||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
2-328 | 5.67e-78 | ||||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 240.65 E-value: 5.67e-78
|
||||||||||
UDP_AE_SDR_e | cd05256 | UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs; This subgroup contains ... |
2-328 | 9.14e-73 | ||||||
UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs; This subgroup contains UDP-N-acetylglucosamine 4-epimerase of Pseudomonas aeruginosa, WbpP, an extended SDR, that catalyzes the NAD+ dependent conversion of UDP-GlcNAc and UDPGalNA to UDP-Glc and UDP-Gal. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187566 [Multi-domain] Cd Length: 304 Bit Score: 227.49 E-value: 9.14e-73
|
||||||||||
Epimerase | pfam01370 | NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. ... |
3-262 | 2.29e-70 | ||||||
NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. Pssm-ID: 396097 [Multi-domain] Cd Length: 238 Bit Score: 219.09 E-value: 2.29e-70
|
||||||||||
UDP_G4E_5_SDR_e | cd05264 | UDP-glucose 4-epimerase (G4E), subgroup 5, extended (e) SDRs; This subgroup partially ... |
2-328 | 3.55e-53 | ||||||
UDP-glucose 4-epimerase (G4E), subgroup 5, extended (e) SDRs; This subgroup partially conserves the characteristic active site tetrad and NAD-binding motif of the extended SDRs, and has been identified as possible UDP-glucose 4-epimerase (aka UDP-galactose 4-epimerase), a homodimeric member of the extended SDR family. UDP-glucose 4-epimerase catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187574 [Multi-domain] Cd Length: 300 Bit Score: 176.74 E-value: 3.55e-53
|
||||||||||
RfbB | COG1088 | dTDP-D-glucose 4,6-dehydratase [Cell wall/membrane/envelope biogenesis]; |
1-328 | 1.44e-48 | ||||||
dTDP-D-glucose 4,6-dehydratase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440705 [Multi-domain] Cd Length: 333 Bit Score: 166.03 E-value: 1.44e-48
|
||||||||||
SDR_e | cd08946 | extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann ... |
3-262 | 1.76e-47 | ||||||
extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 212494 [Multi-domain] Cd Length: 200 Bit Score: 159.00 E-value: 1.76e-47
|
||||||||||
UDP_GE_SDE_e | cd05253 | UDP glucuronic acid epimerase, extended (e) SDRs; This subgroup contains UDP-D-glucuronic acid ... |
1-320 | 5.19e-47 | ||||||
UDP glucuronic acid epimerase, extended (e) SDRs; This subgroup contains UDP-D-glucuronic acid 4-epimerase, an extended SDR, which catalyzes the conversion of UDP-alpha-D-glucuronic acid to UDP-alpha-D-galacturonic acid. This group has the SDR's canonical catalytic tetrad and the TGxxGxxG NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187563 [Multi-domain] Cd Length: 332 Bit Score: 161.74 E-value: 5.19e-47
|
||||||||||
CDP_TE_SDR_e | cd05258 | CDP-tyvelose 2-epimerase, extended (e) SDRs; CDP-tyvelose 2-epimerase is a tetrameric SDR that ... |
1-329 | 5.93e-47 | ||||||
CDP-tyvelose 2-epimerase, extended (e) SDRs; CDP-tyvelose 2-epimerase is a tetrameric SDR that catalyzes the conversion of CDP-D-paratose to CDP-D-tyvelose, the last step in tyvelose biosynthesis. This subgroup is a member of the extended SDR subfamily, with a characteristic active site tetrad and NAD-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187568 [Multi-domain] Cd Length: 337 Bit Score: 161.69 E-value: 5.93e-47
|
||||||||||
dTDP_GD_SDR_e | cd05246 | dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains dTDP-D-glucose 4, ... |
1-332 | 3.79e-40 | ||||||
dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains dTDP-D-glucose 4,6-dehydratase and related proteins, members of the extended-SDR family, with the characteristic Rossmann fold core region, active site tetrad and NAD(P)-binding motif. dTDP-D-glucose 4,6-dehydratase is closely related to other sugar epimerases of the SDR family. dTDP-D-dlucose 4,6,-dehydratase catalyzes the second of four steps in the dTDP-L-rhamnose pathway (the dehydration of dTDP-D-glucose to dTDP-4-keto-6-deoxy-D-glucose) in the synthesis of L-rhamnose, a cell wall component of some pathogenic bacteria. In many gram negative bacteria, L-rhamnose is an important constituent of lipopoylsaccharide O-antigen. The larger N-terminal portion of dTDP-D-Glucose 4,6-dehydratase forms a Rossmann fold NAD-binding domain, while the C-terminus binds the sugar substrate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187557 [Multi-domain] Cd Length: 315 Bit Score: 143.46 E-value: 3.79e-40
|
||||||||||
Arna_like_SDR_e | cd05257 | Arna decarboxylase_like, extended (e) SDRs; Decarboxylase domain of ArnA. ArnA, is an enzyme ... |
2-332 | 2.86e-39 | ||||||
Arna decarboxylase_like, extended (e) SDRs; Decarboxylase domain of ArnA. ArnA, is an enzyme involved in the modification of outer membrane protein lipid A of gram-negative bacteria. It is a bifunctional enzyme that catalyzes the NAD-dependent decarboxylation of UDP-glucuronic acid and N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose; its NAD-dependent decaboxylating activity is in the C-terminal 360 residues. This subgroup belongs to the extended SDR family, however the NAD binding motif is not a perfect match and the upstream Asn of the canonical active site tetrad is not conserved. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187567 [Multi-domain] Cd Length: 316 Bit Score: 140.90 E-value: 2.86e-39
|
||||||||||
UDP_G4E_2_SDR_e | cd05234 | UDP-glucose 4 epimerase, subgroup 2, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
2-320 | 8.33e-39 | ||||||
UDP-glucose 4 epimerase, subgroup 2, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of archaeal and bacterial proteins, and has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187545 [Multi-domain] Cd Length: 305 Bit Score: 139.36 E-value: 8.33e-39
|
||||||||||
UGD_SDR_e | cd05230 | UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs; UGD catalyzes the ... |
1-328 | 7.61e-32 | ||||||
UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs; UGD catalyzes the formation of UDP-xylose from UDP-glucuronate; it is an extended-SDR, and has the characteristic glycine-rich NAD-binding pattern, TGXXGXXG, and active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187541 [Multi-domain] Cd Length: 305 Bit Score: 121.20 E-value: 7.61e-32
|
||||||||||
ADP_GME_SDR_e | cd05248 | ADP-L-glycero-D-mannoheptose 6-epimerase (GME), extended (e) SDRs; This subgroup contains ... |
3-290 | 6.05e-31 | ||||||
ADP-L-glycero-D-mannoheptose 6-epimerase (GME), extended (e) SDRs; This subgroup contains ADP-L-glycero-D-mannoheptose 6-epimerase, an extended SDR, which catalyzes the NAD-dependent interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose. This subgroup has the canonical active site tetrad and NAD(P)-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187559 [Multi-domain] Cd Length: 317 Bit Score: 118.95 E-value: 6.05e-31
|
||||||||||
WbmH_like_SDR_e | cd08957 | Bordetella bronchiseptica enzymes WbmH and WbmG-like, extended (e) SDRs; Bordetella ... |
1-332 | 5.24e-29 | ||||||
Bordetella bronchiseptica enzymes WbmH and WbmG-like, extended (e) SDRs; Bordetella bronchiseptica enzymes WbmH and WbmG, and related proteins. This subgroup exhibits the active site tetrad and NAD-binding motif of the extended SDR family. It has been proposed that the active site in Bordetella WbmG and WbmH cannot function as an epimerase, and that it plays a role in O-antigen synthesis pathway from UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187660 [Multi-domain] Cd Length: 307 Bit Score: 113.37 E-value: 5.24e-29
|
||||||||||
CDP_GD_SDR_e | cd05252 | CDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains CDP-D-glucose 4, ... |
2-331 | 9.76e-28 | ||||||
CDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains CDP-D-glucose 4,6-dehydratase, an extended SDR, which catalyzes the conversion of CDP-D-glucose to CDP-4-keto-6-deoxy-D-glucose. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187562 [Multi-domain] Cd Length: 336 Bit Score: 110.48 E-value: 9.76e-28
|
||||||||||
AR_FR_like_1_SDR_e | cd05228 | uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, ... |
3-328 | 1.00e-27 | ||||||
uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, extended (e) SDRs; This subgroup contains proteins of unknown function related to aldehyde reductase and flavonoid reductase of the extended SDR-type. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The related flavonoid reductases act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187539 [Multi-domain] Cd Length: 318 Bit Score: 110.07 E-value: 1.00e-27
|
||||||||||
Gne_like_SDR_e | cd05238 | Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs; ... |
1-176 | 1.04e-25 | ||||||
Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs; Nucleoside-diphosphate-sugar 4-epimerase has the characteristic active site tetrad and NAD-binding motif of the extended SDR, and is related to more specifically defined epimerases such as UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), which catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup includes Escherichia coli 055:H7 Gne, a UDP-GlcNAc 4-epimerase, essential for O55 antigen synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187549 [Multi-domain] Cd Length: 305 Bit Score: 104.39 E-value: 1.04e-25
|
||||||||||
GDP_MD_SDR_e | cd05260 | GDP-mannose 4,6 dehydratase, extended (e) SDRs; GDP-mannose 4,6 dehydratase, a homodimeric SDR, ... |
2-324 | 4.91e-25 | ||||||
GDP-mannose 4,6 dehydratase, extended (e) SDRs; GDP-mannose 4,6 dehydratase, a homodimeric SDR, catalyzes the NADP(H)-dependent conversion of GDP-(D)-mannose to GDP-4-keto, 6-deoxy-(D)-mannose in the fucose biosynthesis pathway. These proteins have the canonical active site triad and NAD-binding pattern, however the active site Asn is often missing and may be substituted with Asp. A Glu residue has been identified as an important active site base. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187570 [Multi-domain] Cd Length: 316 Bit Score: 102.68 E-value: 4.91e-25
|
||||||||||
PLN02260 | PLN02260 | probable rhamnose biosynthetic enzyme |
3-338 | 2.17e-24 | ||||||
probable rhamnose biosynthetic enzyme Pssm-ID: 215146 [Multi-domain] Cd Length: 668 Bit Score: 104.06 E-value: 2.17e-24
|
||||||||||
3b-HSD-like_SDR_e | cd05241 | 3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs; Extended SDR family ... |
2-328 | 1.03e-23 | ||||||
3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs; Extended SDR family domains belonging to this subgroup have the characteristic active site tetrad and a fairly well-conserved NAD(P)-binding motif. 3b-HSD catalyzes the NAD-dependent conversion of various steroids, such as pregnenolone to progesterone, or androstenediol to testosterone. This subgroup includes an unusual bifunctional 3b-HSD/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. It also includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7]. C(27) 3beta-HSD/HSD3B7 is a membrane-bound enzyme of the endoplasmic reticulum, that catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human NSDHL (NAD(P)H steroid dehydrogenase-like protein) cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187552 [Multi-domain] Cd Length: 331 Bit Score: 99.43 E-value: 1.03e-23
|
||||||||||
PRK15181 | PRK15181 | Vi polysaccharide biosynthesis UDP-N-acetylglucosaminuronic acid C-4 epimerase TviC; |
2-328 | 4.70e-23 | ||||||
Vi polysaccharide biosynthesis UDP-N-acetylglucosaminuronic acid C-4 epimerase TviC; Pssm-ID: 185103 [Multi-domain] Cd Length: 348 Bit Score: 97.86 E-value: 4.70e-23
|
||||||||||
PLN02166 | PLN02166 | dTDP-glucose 4,6-dehydratase |
1-320 | 5.22e-22 | ||||||
dTDP-glucose 4,6-dehydratase Pssm-ID: 165812 [Multi-domain] Cd Length: 436 Bit Score: 96.23 E-value: 5.22e-22
|
||||||||||
UDP_G4E_3_SDR_e | cd05240 | UDP-glucose 4 epimerase (G4E), subgroup 3, extended (e) SDRs; Members of this bacterial ... |
3-320 | 6.19e-22 | ||||||
UDP-glucose 4 epimerase (G4E), subgroup 3, extended (e) SDRs; Members of this bacterial subgroup are identified as possible sugar epimerases, such as UDP-glucose 4 epimerase. However, while the NAD(P)-binding motif is fairly well conserved, not all members retain the canonical active site tetrad of the extended SDRs. UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187551 [Multi-domain] Cd Length: 306 Bit Score: 93.97 E-value: 6.19e-22
|
||||||||||
PRK10217 | PRK10217 | dTDP-glucose 4,6-dehydratase; Provisional |
2-328 | 1.35e-21 | ||||||
dTDP-glucose 4,6-dehydratase; Provisional Pssm-ID: 182313 [Multi-domain] Cd Length: 355 Bit Score: 93.94 E-value: 1.35e-21
|
||||||||||
3b-HSD-NSDHL-like_SDR_e | cd09813 | human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs; This ... |
2-254 | 1.17e-19 | ||||||
human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs; This subgroup includes human NSDHL and related proteins. These proteins have the characteristic active site tetrad of extended SDRs, and also have a close match to their NAD(P)-binding motif. Human NSDHL is a 3beta-hydroxysteroid dehydrogenase (3 beta-HSD) which functions in the cholesterol biosynthetic pathway. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. Mutations in the gene encoding NSDHL cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. This subgroup also includes an unusual bifunctional [3beta-hydroxysteroid dehydrogenase (3b-HSD)/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187673 [Multi-domain] Cd Length: 335 Bit Score: 88.18 E-value: 1.17e-19
|
||||||||||
UDP_G4E_4_SDR_e | cd05232 | UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
2-325 | 1.30e-19 | ||||||
UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of bacterial proteins, and includes the Staphylococcus aureus capsular polysaccharide Cap5N, which may have a role in the synthesis of UDP-N-acetyl-d-fucosamine. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187543 [Multi-domain] Cd Length: 303 Bit Score: 87.41 E-value: 1.30e-19
|
||||||||||
3Beta_HSD | pfam01073 | 3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid ... |
4-252 | 3.93e-19 | ||||||
3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD) catalyzes the oxidation and isomerization of 5-ene-3 beta-hydroxypregnene and 5-ene-hydroxyandrostene steroid precursors into the corresponding 4-ene-ketosteroids necessary for the formation of all classes of steroid hormones. Pssm-ID: 366449 [Multi-domain] Cd Length: 279 Bit Score: 85.88 E-value: 3.93e-19
|
||||||||||
GME-like_SDR_e | cd05273 | Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME)-like, extended (e) SDRs; This subgroup ... |
2-328 | 5.76e-19 | ||||||
Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME)-like, extended (e) SDRs; This subgroup of NDP-sugar epimerase/dehydratases are extended SDRs; they have the characteristic active site tetrad, and an NAD-binding motif: TGXXGXX[AG], which is a close match to the canonical NAD-binding motif. Members include Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME) which catalyzes the epimerization of two positions of GDP-alpha-D-mannose to form GDP-beta-L-galactose. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187581 [Multi-domain] Cd Length: 328 Bit Score: 85.99 E-value: 5.76e-19
|
||||||||||
AR_SDR_e | cd05227 | aldehyde reductase, extended (e) SDRs; This subgroup contains aldehyde reductase of the ... |
2-249 | 1.50e-18 | ||||||
aldehyde reductase, extended (e) SDRs; This subgroup contains aldehyde reductase of the extended SDR-type and related proteins. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187538 [Multi-domain] Cd Length: 301 Bit Score: 84.63 E-value: 1.50e-18
|
||||||||||
UDP_invert_4-6DH_SDR_e | cd05237 | UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs; ... |
2-182 | 1.73e-18 | ||||||
UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs; UDP-Glcnac inverting 4,6-dehydratase was identified in Helicobacter pylori as the hexameric flaA1 gene product (FlaA1). FlaA1 is hexameric, possesses UDP-GlcNAc-inverting 4,6-dehydratase activity, and catalyzes the first step in the creation of a pseudaminic acid derivative in protein glycosylation. Although this subgroup has the NADP-binding motif characteristic of extended SDRs, its members tend to have a Met substituted for the active site Tyr found in most SDR families. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187548 [Multi-domain] Cd Length: 287 Bit Score: 84.21 E-value: 1.73e-18
|
||||||||||
PLN02206 | PLN02206 | UDP-glucuronate decarboxylase |
1-312 | 4.97e-18 | ||||||
UDP-glucuronate decarboxylase Pssm-ID: 177856 [Multi-domain] Cd Length: 442 Bit Score: 84.65 E-value: 4.97e-18
|
||||||||||
dTDP_HR_like_SDR_e | cd05254 | dTDP-6-deoxy-L-lyxo-4-hexulose reductase and related proteins, extended (e) SDRs; ... |
2-160 | 6.34e-18 | ||||||
dTDP-6-deoxy-L-lyxo-4-hexulose reductase and related proteins, extended (e) SDRs; dTDP-6-deoxy-L-lyxo-4-hexulose reductase, an extended SDR, synthesizes dTDP-L-rhamnose from alpha-D-glucose-1-phosphate, providing the precursor of L-rhamnose, an essential cell wall component of many pathogenic bacteria. This subgroup has the characteristic active site tetrad and NADP-binding motif. This subgroup also contains human MAT2B, the regulatory subunit of methionine adenosyltransferase (MAT); MAT catalyzes S-adenosylmethionine synthesis. The human gene encoding MAT2B encodes two major splicing variants which are induced in human cell liver cancer and regulate HuR, an mRNA-binding protein which stabilizes the mRNA of several cyclins, to affect cell proliferation. Both MAT2B variants include this extended SDR domain. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187564 [Multi-domain] Cd Length: 280 Bit Score: 82.29 E-value: 6.34e-18
|
||||||||||
SDR_e_a | cd05226 | Extended (e) and atypical (a) SDRs; Extended or atypical short-chain dehydrogenases/reductases ... |
3-172 | 2.31e-17 | ||||||
Extended (e) and atypical (a) SDRs; Extended or atypical short-chain dehydrogenases/reductases (SDRs, aka tyrosine-dependent oxidoreductases) are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187537 [Multi-domain] Cd Length: 176 Bit Score: 78.60 E-value: 2.31e-17
|
||||||||||
RfbD | COG1091 | dTDP-4-dehydrorhamnose reductase [Cell wall/membrane/envelope biogenesis]; |
2-176 | 8.88e-17 | ||||||
dTDP-4-dehydrorhamnose reductase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440708 [Multi-domain] Cd Length: 279 Bit Score: 79.02 E-value: 8.88e-17
|
||||||||||
SQD1_like_SDR_e | cd05255 | UDP_sulfoquinovose_synthase (Arabidopsis thaliana SQD1 and related proteins), extended (e) ... |
1-151 | 2.87e-16 | ||||||
UDP_sulfoquinovose_synthase (Arabidopsis thaliana SQD1 and related proteins), extended (e) SDRs; Arabidopsis thaliana UDP-sulfoquinovose-synthase ( SQD1), an extended SDR, catalyzes the transfer of SO(3)(-) to UDP-glucose in the biosynthesis of plant sulfolipids. Members of this subgroup share the conserved SDR catalytic residues, and a partial match to the characteristic extended-SDR NAD-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187565 [Multi-domain] Cd Length: 382 Bit Score: 78.97 E-value: 2.87e-16
|
||||||||||
MupV_like_SDR_e | cd05263 | Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family ... |
3-168 | 5.28e-16 | ||||||
Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family domains have the characteristic active site tetrad and a well-conserved NAD(P)-binding motif. This subgroup is not well characterized, its members are annotated as having a variety of putative functions. One characterized member is Pseudomonas fluorescens MupV a protein involved in the biosynthesis of Mupirocin, a polyketide-derived antibiotic. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187573 [Multi-domain] Cd Length: 293 Bit Score: 77.02 E-value: 5.28e-16
|
||||||||||
GDP_FS_SDR_e | cd05239 | GDP-fucose synthetase, extended (e) SDRs; GDP-fucose synthetase (aka 3, ... |
2-328 | 8.42e-16 | ||||||
GDP-fucose synthetase, extended (e) SDRs; GDP-fucose synthetase (aka 3, 5-epimerase-4-reductase) acts in the NADP-dependent synthesis of GDP-fucose from GDP-mannose. Two activities have been proposed for the same active site: epimerization and reduction. Proteins in this subgroup are extended SDRs, which have a characteristic active site tetrad and an NADP-binding motif, [AT]GXXGXXG, that is a close match to the archetypical form. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187550 [Multi-domain] Cd Length: 300 Bit Score: 76.47 E-value: 8.42e-16
|
||||||||||
PRK10084 | PRK10084 | dTDP-glucose 4,6 dehydratase; Provisional |
1-328 | 1.14e-15 | ||||||
dTDP-glucose 4,6 dehydratase; Provisional Pssm-ID: 236649 [Multi-domain] Cd Length: 352 Bit Score: 76.75 E-value: 1.14e-15
|
||||||||||
YbjT | COG0702 | Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General ... |
2-279 | 2.73e-15 | ||||||
Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General function prediction only]; Pssm-ID: 440466 [Multi-domain] Cd Length: 215 Bit Score: 73.73 E-value: 2.73e-15
|
||||||||||
Polysacc_synt_2 | pfam02719 | Polysaccharide biosynthesis protein; This is a family of diverse bacterial polysaccharide ... |
3-160 | 1.12e-14 | ||||||
Polysaccharide biosynthesis protein; This is a family of diverse bacterial polysaccharide biosynthesis proteins including the CapD protein, WalL protein mannosyl-transferase and several putative epimerases (e.g. WbiI). Pssm-ID: 426938 [Multi-domain] Cd Length: 284 Bit Score: 73.32 E-value: 1.12e-14
|
||||||||||
YfcH | COG1090 | NAD dependent epimerase/dehydratase family enzyme [General function prediction only]; |
2-144 | 4.24e-14 | ||||||
NAD dependent epimerase/dehydratase family enzyme [General function prediction only]; Pssm-ID: 440707 [Multi-domain] Cd Length: 298 Bit Score: 71.63 E-value: 4.24e-14
|
||||||||||
Lys2b | COG3320 | Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary ... |
1-160 | 1.70e-13 | ||||||
Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary metabolites biosynthesis, transport and catabolism]; Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs is part of the Pathway/BioSystem: Lysine biosynthesis Pssm-ID: 442549 [Multi-domain] Cd Length: 265 Bit Score: 69.47 E-value: 1.70e-13
|
||||||||||
YwnB | COG2910 | Putative NADH-flavin reductase [General function prediction only]; |
2-132 | 2.76e-13 | ||||||
Putative NADH-flavin reductase [General function prediction only]; Pssm-ID: 442154 [Multi-domain] Cd Length: 205 Bit Score: 67.57 E-value: 2.76e-13
|
||||||||||
TDH_SDR_e | cd05272 | L-threonine dehydrogenase, extended (e) SDRs; This subgroup contains members identified as ... |
2-157 | 3.15e-13 | ||||||
L-threonine dehydrogenase, extended (e) SDRs; This subgroup contains members identified as L-threonine dehydrogenase (TDH). TDH catalyzes the zinc-dependent formation of 2-amino-3-ketobutyrate from L-threonine via NAD(H)-dependent oxidation. This group is distinct from TDHs that are members of the medium chain dehydrogenase/reductase family. This group has the NAD-binding motif and active site tetrad of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187580 [Multi-domain] Cd Length: 308 Bit Score: 69.26 E-value: 3.15e-13
|
||||||||||
3b-HSD_HSDB1_like_SDR_e | cd09811 | human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, ... |
4-281 | 2.55e-12 | ||||||
human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, extended (e) SDRs; This extended-SDR subgroup includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7], and related proteins. These proteins have the characteristic active site tetrad and NAD(P)-binding motif of extended SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. C(27) 3beta-HSD is a membrane-bound enzyme of the endoplasmic reticulum, it catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187671 [Multi-domain] Cd Length: 354 Bit Score: 66.76 E-value: 2.55e-12
|
||||||||||
3b-HSD_like_1_SDR_e | cd09812 | 3beta-hydroxysteroid dehydrogenase (3b-HSD)-like, subgroup1, extended (e) SDRs; An ... |
3-255 | 6.90e-12 | ||||||
3beta-hydroxysteroid dehydrogenase (3b-HSD)-like, subgroup1, extended (e) SDRs; An uncharacterized subgroup of the 3b-HSD-like extended-SDR family. Proteins in this subgroup have the characteristic active site tetrad and NAD(P)-binding motif of extended-SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187672 [Multi-domain] Cd Length: 339 Bit Score: 65.60 E-value: 6.90e-12
|
||||||||||
NDUFA9_like_SDR_a | cd05271 | NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, ... |
1-120 | 8.68e-12 | ||||||
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, atypical (a) SDRs; This subgroup of extended SDR-like proteins are atypical SDRs. They have a glycine-rich NAD(P)-binding motif similar to the typical SDRs, GXXGXXG, and have the YXXXK active site motif (though not the other residues of the SDR tetrad). Members identified include NDUFA9 (mitochondrial) and putative nucleoside-diphosphate-sugar epimerase. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187579 [Multi-domain] Cd Length: 273 Bit Score: 64.57 E-value: 8.68e-12
|
||||||||||
RmlD_sub_bind | pfam04321 | RmlD substrate binding domain; L-rhamnose is a saccharide required for the virulence of some ... |
3-158 | 5.37e-11 | ||||||
RmlD substrate binding domain; L-rhamnose is a saccharide required for the virulence of some bacteria. Its precursor, dTDP-L-rhamnose, is synthesized by four different enzymes the final one of which is RmlD. The RmlD substrate binding domain is responsible for binding a sugar nucleotide. Pssm-ID: 427865 [Multi-domain] Cd Length: 284 Bit Score: 62.29 E-value: 5.37e-11
|
||||||||||
SDR_a7 | cd05262 | atypical (a) SDRs, subgroup 7; This subgroup contains atypical SDRs of unknown function. ... |
1-313 | 5.92e-11 | ||||||
atypical (a) SDRs, subgroup 7; This subgroup contains atypical SDRs of unknown function. Members of this subgroup have a glycine-rich NAD(P)-binding motif consensus that matches the extended SDRs, TGXXGXXG, but lacks the characteristic active site residues of the SDRs. This subgroup has basic residues (HXXXR) in place of the active site motif YXXXK, these may have a catalytic role. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187572 [Multi-domain] Cd Length: 291 Bit Score: 62.37 E-value: 5.92e-11
|
||||||||||
SDR_a1 | cd05265 | atypical (a) SDRs, subgroup 1; Atypical SDRs in this subgroup are poorly defined and have been ... |
1-282 | 6.15e-11 | ||||||
atypical (a) SDRs, subgroup 1; Atypical SDRs in this subgroup are poorly defined and have been identified putatively as isoflavones reductase, sugar dehydratase, mRNA binding protein etc. Atypical SDRs are distinct from classical SDRs. Members of this subgroup retain the canonical active site triad (though not the upstream Asn found in most SDRs) but have an unusual putative glycine-rich NAD(P)-binding motif, GGXXXXG, in the usual location. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187575 [Multi-domain] Cd Length: 250 Bit Score: 61.92 E-value: 6.15e-11
|
||||||||||
SDR_c | cd05233 | classical (c) SDRs; SDRs are a functionally diverse family of oxidoreductases that have a ... |
3-136 | 7.94e-11 | ||||||
classical (c) SDRs; SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 212491 [Multi-domain] Cd Length: 234 Bit Score: 61.15 E-value: 7.94e-11
|
||||||||||
Gmd | COG1089 | GDP-D-mannose dehydratase [Cell wall/membrane/envelope biogenesis]; |
2-324 | 1.01e-10 | ||||||
GDP-D-mannose dehydratase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440706 [Multi-domain] Cd Length: 321 Bit Score: 62.02 E-value: 1.01e-10
|
||||||||||
BVR-B_like_SDR_a | cd05244 | biliverdin IX beta reductase (BVR-B, aka flavin reductase)-like proteins; atypical (a) SDRs; ... |
2-172 | 6.38e-10 | ||||||
biliverdin IX beta reductase (BVR-B, aka flavin reductase)-like proteins; atypical (a) SDRs; Human BVR-B catalyzes pyridine nucleotide-dependent production of bilirubin-IX beta during fetal development; in the adult BVR-B has flavin and ferric reductase activities. Human BVR-B catalyzes the reduction of FMN, FAD, and riboflavin. Recognition of flavin occurs mostly by hydrophobic interactions, accounting for the broad substrate specificity. Atypical SDRs are distinct from classical SDRs. BVR-B does not share the key catalytic triad, or conserved tyrosine typical of SDRs. The glycine-rich NADP-binding motif of BVR-B is GXXGXXG, which is similar but not identical to the pattern seen in extended SDRs. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187555 [Multi-domain] Cd Length: 207 Bit Score: 58.02 E-value: 6.38e-10
|
||||||||||
NAD_binding_10 | pfam13460 | NAD(P)H-binding; |
7-160 | 8.09e-10 | ||||||
NAD(P)H-binding; Pssm-ID: 463885 [Multi-domain] Cd Length: 183 Bit Score: 57.23 E-value: 8.09e-10
|
||||||||||
PLN02725 | PLN02725 | GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase |
4-328 | 2.16e-09 | ||||||
GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase Pssm-ID: 178326 [Multi-domain] Cd Length: 306 Bit Score: 57.79 E-value: 2.16e-09
|
||||||||||
SDR_a5 | cd05243 | atypical (a) SDRs, subgroup 5; This subgroup contains atypical SDRs, some of which are ... |
2-162 | 2.32e-09 | ||||||
atypical (a) SDRs, subgroup 5; This subgroup contains atypical SDRs, some of which are identified as putative NAD(P)-dependent epimerases, one as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif that is very similar to the extended SDRs, GXXGXXG, and binds NADP. Generally, this subgroup has poor conservation of the active site tetrad; however, individual sequences do contain matches to the YXXXK active site motif, the upstream Ser, and there is a highly conserved Asp in place of the usual active site Asn throughout the subgroup. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187554 [Multi-domain] Cd Length: 203 Bit Score: 56.48 E-value: 2.32e-09
|
||||||||||
PLN02572 | PLN02572 | UDP-sulfoquinovose synthase |
2-151 | 2.60e-09 | ||||||
UDP-sulfoquinovose synthase Pssm-ID: 215310 [Multi-domain] Cd Length: 442 Bit Score: 58.27 E-value: 2.60e-09
|
||||||||||
SDR_a8 | cd05242 | atypical (a) SDRs, subgroup 8; This subgroup contains atypical SDRs of unknown function. ... |
2-143 | 6.62e-09 | ||||||
atypical (a) SDRs, subgroup 8; This subgroup contains atypical SDRs of unknown function. Proteins in this subgroup have a glycine-rich NAD(P)-binding motif consensus that resembles that of the extended SDRs, (GXXGXXG or GGXGXXG), but lacks the characteristic active site residues of the SDRs. A Cys often replaces the usual Lys of the YXXXK active site motif, while the upstream Ser is generally present and Arg replaces the usual Asn. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187553 [Multi-domain] Cd Length: 296 Bit Score: 56.08 E-value: 6.62e-09
|
||||||||||
AR_like_SDR_e | cd05193 | aldehyde reductase, flavonoid reductase, and related proteins, extended (e) SDRs; This ... |
3-249 | 2.43e-08 | ||||||
aldehyde reductase, flavonoid reductase, and related proteins, extended (e) SDRs; This subgroup contains aldehyde reductase and flavonoid reductase of the extended SDR-type and related proteins. Proteins in this subgroup have a complete SDR-type active site tetrad and a close match to the canonical extended SDR NADP-binding motif. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The related flavonoid reductases act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187536 [Multi-domain] Cd Length: 295 Bit Score: 54.55 E-value: 2.43e-08
|
||||||||||
FR_SDR_e | cd08958 | flavonoid reductase (FR), extended (e) SDRs; This subgroup contains FRs of the extended ... |
3-249 | 2.87e-08 | ||||||
flavonoid reductase (FR), extended (e) SDRs; This subgroup contains FRs of the extended SDR-type and related proteins. These FRs act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites; they have the characteristic active site triad of the SDRs (though not the upstream active site Asn) and a NADP-binding motif that is very similar to the typical extended SDR motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187661 [Multi-domain] Cd Length: 293 Bit Score: 54.12 E-value: 2.87e-08
|
||||||||||
FabG | COG1028 | NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family [Lipid transport and ... |
2-136 | 3.06e-08 | ||||||
NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family [Lipid transport and metabolism]; NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family is part of the Pathway/BioSystem: Fatty acid biosynthesis Pssm-ID: 440651 [Multi-domain] Cd Length: 249 Bit Score: 53.64 E-value: 3.06e-08
|
||||||||||
PRK05865 | PRK05865 | sugar epimerase family protein; |
1-124 | 3.13e-08 | ||||||
sugar epimerase family protein; Pssm-ID: 235630 [Multi-domain] Cd Length: 854 Bit Score: 55.05 E-value: 3.13e-08
|
||||||||||
SDR_a6 | cd05267 | atypical (a) SDRs, subgroup 6; These atypical SDR family members of unknown function have only ... |
1-132 | 1.10e-07 | ||||||
atypical (a) SDRs, subgroup 6; These atypical SDR family members of unknown function have only a partial match to a prototypical glycine-rich NAD(P)-binding motif consensus, GXXG, which conserves part of the motif of extended SDR. Furthermore, they lack the characteristic active site residues of the SDRs. This subgroup is related to phenylcoumaran benzylic ether reductase, an NADPH-dependent aromatic alcohol reductase. One member is identified as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187577 [Multi-domain] Cd Length: 203 Bit Score: 51.59 E-value: 1.10e-07
|
||||||||||
KR_2_SDR_x | cd08953 | ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ... |
4-129 | 1.81e-07 | ||||||
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187656 [Multi-domain] Cd Length: 436 Bit Score: 52.37 E-value: 1.81e-07
|
||||||||||
BKR_SDR_c | cd05333 | beta-Keto acyl carrier protein reductase (BKR), involved in Type II FAS, classical (c) SDRs; ... |
3-83 | 2.87e-07 | ||||||
beta-Keto acyl carrier protein reductase (BKR), involved in Type II FAS, classical (c) SDRs; This subgroup includes the Escherichai coli K12 BKR, FabG. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet) NAD(P)(H) binding region and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H) binding pattern: TGxxxGxG in classical SDRs. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P) binding motif and an altered active site motif (YXXXN). Fungal type type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P) binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr-151 and Lys-155, and well as Asn-111 (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. Pssm-ID: 187594 [Multi-domain] Cd Length: 240 Bit Score: 50.62 E-value: 2.87e-07
|
||||||||||
YdfG | COG4221 | NADP-dependent 3-hydroxy acid dehydrogenase YdfG [Energy production and conversion]; ... |
3-153 | 4.10e-07 | ||||||
NADP-dependent 3-hydroxy acid dehydrogenase YdfG [Energy production and conversion]; NADP-dependent 3-hydroxy acid dehydrogenase YdfG is part of the Pathway/BioSystem: Pyrimidine degradation Pssm-ID: 443365 [Multi-domain] Cd Length: 240 Bit Score: 50.18 E-value: 4.10e-07
|
||||||||||
fabG | PRK12825 | 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional |
2-139 | 9.33e-07 | ||||||
3-ketoacyl-(acyl-carrier-protein) reductase; Provisional Pssm-ID: 237218 [Multi-domain] Cd Length: 249 Bit Score: 49.48 E-value: 9.33e-07
|
||||||||||
fabG | PRK05653 | 3-oxoacyl-ACP reductase FabG; |
2-114 | 9.39e-07 | ||||||
3-oxoacyl-ACP reductase FabG; Pssm-ID: 235546 [Multi-domain] Cd Length: 246 Bit Score: 49.39 E-value: 9.39e-07
|
||||||||||
PRK12827 | PRK12827 | short chain dehydrogenase; Provisional |
1-139 | 1.19e-06 | ||||||
short chain dehydrogenase; Provisional Pssm-ID: 237219 [Multi-domain] Cd Length: 249 Bit Score: 48.95 E-value: 1.19e-06
|
||||||||||
SDR_a2 | cd05245 | atypical (a) SDRs, subgroup 2; This subgroup contains atypical SDRs, one member is identified ... |
3-162 | 2.17e-06 | ||||||
atypical (a) SDRs, subgroup 2; This subgroup contains atypical SDRs, one member is identified as Escherichia coli protein ybjT, function unknown. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif consensus that generally matches the extended SDRs, TGXXGXXG, but lacks the characteristic active site residues of the SDRs. This subgroup has basic residues (HXXXR) in place of the active site motif YXXXK, these may have a catalytic role. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187556 [Multi-domain] Cd Length: 293 Bit Score: 48.50 E-value: 2.17e-06
|
||||||||||
rfaD | PRK11150 | ADP-L-glycero-D-mannoheptose-6-epimerase; Provisional |
3-282 | 2.75e-06 | ||||||
ADP-L-glycero-D-mannoheptose-6-epimerase; Provisional Pssm-ID: 182998 [Multi-domain] Cd Length: 308 Bit Score: 48.16 E-value: 2.75e-06
|
||||||||||
SDR_e1 | cd05235 | extended (e) SDRs, subgroup 1; This family consists of an SDR module of multidomain proteins ... |
2-161 | 3.80e-06 | ||||||
extended (e) SDRs, subgroup 1; This family consists of an SDR module of multidomain proteins identified as putative polyketide sythases fatty acid synthases (FAS), and nonribosomal peptide synthases, among others. However, unlike the usual ketoreductase modules of FAS and polyketide synthase, these domains are related to the extended SDRs, and have canonical NAD(P)-binding motifs and an active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187546 [Multi-domain] Cd Length: 290 Bit Score: 47.65 E-value: 3.80e-06
|
||||||||||
adh_short | pfam00106 | short chain dehydrogenase; This family contains a wide variety of dehydrogenases. |
3-153 | 3.94e-06 | ||||||
short chain dehydrogenase; This family contains a wide variety of dehydrogenases. Pssm-ID: 395056 [Multi-domain] Cd Length: 195 Bit Score: 46.84 E-value: 3.94e-06
|
||||||||||
YqjQ | COG0300 | Short-chain dehydrogenase [General function prediction only]; |
2-157 | 4.22e-06 | ||||||
Short-chain dehydrogenase [General function prediction only]; Pssm-ID: 440069 [Multi-domain] Cd Length: 252 Bit Score: 47.17 E-value: 4.22e-06
|
||||||||||
CAPF_like_SDR_e | cd05261 | capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs; This subgroup of ... |
1-165 | 5.94e-06 | ||||||
capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs; This subgroup of extended SDRs, includes some members which have been identified as capsular polysaccharide assembling proteins, such as Staphylococcus aureus Cap5F which is involved in the biosynthesis of N-acetyl-l-fucosamine, a constituent of surface polysaccharide structures of S. aureus. This subgroup has the characteristic active site tetrad and NAD-binding motif of extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187571 [Multi-domain] Cd Length: 248 Bit Score: 46.97 E-value: 5.94e-06
|
||||||||||
17beta-HSD-like_SDR_c | cd05374 | 17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs; 17beta-hydroxysteroid ... |
3-159 | 7.45e-06 | ||||||
17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs; 17beta-hydroxysteroid dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187632 [Multi-domain] Cd Length: 248 Bit Score: 46.46 E-value: 7.45e-06
|
||||||||||
carb_red_sniffer_like_SDR_c | cd05325 | carbonyl reductase sniffer-like, classical (c) SDRs; Sniffer is an NADPH-dependent carbonyl ... |
3-124 | 9.01e-06 | ||||||
carbonyl reductase sniffer-like, classical (c) SDRs; Sniffer is an NADPH-dependent carbonyl reductase of the classical SDR family. Studies in Drosophila melanogaster implicate Sniffer in the prevention of neurodegeneration due to aging and oxidative-stress. This subgroup also includes Rhodococcus sp. AD45 IsoH, which is an NAD-dependent 1-hydroxy-2-glutathionyl-2-methyl-3-butene dehydrogenase involved in isoprene metabolism, Aspergillus nidulans StcE encoded by a gene which is part of a proposed sterigmatocystin biosynthesis gene cluster, Bacillus circulans SANK 72073 BtrF encoded by a gene found in the butirosin biosynthesis gene cluster, and Aspergillus parasiticus nor-1 involved in the biosynthesis of aflatoxins. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187586 [Multi-domain] Cd Length: 233 Bit Score: 46.13 E-value: 9.01e-06
|
||||||||||
MDH-like_SDR_c | cd05352 | mannitol dehydrogenase (MDH)-like, classical (c) SDRs; NADP-mannitol dehydrogenase catalyzes ... |
3-176 | 2.23e-05 | ||||||
mannitol dehydrogenase (MDH)-like, classical (c) SDRs; NADP-mannitol dehydrogenase catalyzes the conversion of fructose to mannitol, an acyclic 6-carbon sugar. MDH is a tetrameric member of the SDR family. This subgroup also includes various other tetrameric SDRs, including Pichia stipitis D-arabinitol dehydrogenase (aka polyol dehydrogenase), Candida albicans Sou1p, a sorbose reductase, and Candida parapsilosis (S)-specific carbonyl reductase (SCR, aka S-specific alcohol dehydrogenase) which catalyzes the enantioselective reduction of 2-hydroxyacetophenone into (S)-1-phenyl-1,2-ethanediol. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Pssm-ID: 187610 [Multi-domain] Cd Length: 252 Bit Score: 45.01 E-value: 2.23e-05
|
||||||||||
NmrA | pfam05368 | NmrA-like family; NmrA is a negative transcriptional regulator involved in the ... |
3-288 | 3.85e-05 | ||||||
NmrA-like family; NmrA is a negative transcriptional regulator involved in the post-translational modification of the transcription factor AreA. NmrA is part of a system controlling nitrogen metabolite repression in fungi. This family only contains a few sequences as iteration results in significant matches to other Rossmann fold families. Pssm-ID: 398829 [Multi-domain] Cd Length: 236 Bit Score: 44.25 E-value: 3.85e-05
|
||||||||||
PLN02427 | PLN02427 | UDP-apiose/xylose synthase |
1-262 | 6.62e-05 | ||||||
UDP-apiose/xylose synthase Pssm-ID: 178047 [Multi-domain] Cd Length: 386 Bit Score: 44.46 E-value: 6.62e-05
|
||||||||||
FAR-N_SDR_e | cd05236 | fatty acyl CoA reductases (FARs), extended (e) SDRs; SDRs are Rossmann-fold NAD(P)H-binding ... |
1-264 | 1.35e-04 | ||||||
fatty acyl CoA reductases (FARs), extended (e) SDRs; SDRs are Rossmann-fold NAD(P)H-binding proteins, many of which may function as fatty acyl CoA reductases (FAR), acting on medium and long chain fatty acids, and have been reported to be involved in diverse processes such as biosynthesis of insect pheromones, plant cuticular wax production, and mammalian wax biosynthesis. In Arabidopsis thaliana, proteins with this particular architecture have also been identified as the MALE STERILITY 2 (MS2) gene product, which is implicated in male gametogenesis. Mutations in MS2 inhibit the synthesis of exine (sporopollenin), rendering plants unable to reduce pollen wall fatty acids to corresponding alcohols. This N-terminal domain shares the catalytic triad (but not the upstream Asn) and characteristic NADP-binding motif of the extended SDR family. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187547 [Multi-domain] Cd Length: 320 Bit Score: 43.06 E-value: 1.35e-04
|
||||||||||
SDR_c2 | cd05370 | classical (c) SDR, subgroup 2; Short-chain dehydrogenases/reductases (SDRs, aka ... |
3-111 | 1.56e-04 | ||||||
classical (c) SDR, subgroup 2; Short-chain dehydrogenases/reductases (SDRs, aka Tyrosine-dependent oxidoreductases) are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187628 [Multi-domain] Cd Length: 228 Bit Score: 42.29 E-value: 1.56e-04
|
||||||||||
PCBER_SDR_a | cd05259 | phenylcoumaran benzylic ether reductase (PCBER) like, atypical (a) SDRs; PCBER and ... |
2-136 | 1.58e-04 | ||||||
phenylcoumaran benzylic ether reductase (PCBER) like, atypical (a) SDRs; PCBER and pinoresinol-lariciresinol reductases are NADPH-dependent aromatic alcohol reductases, and are atypical members of the SDR family. Other proteins in this subgroup are identified as eugenol synthase. These proteins contain an N-terminus characteristic of NAD(P)-binding proteins and a small C-terminal domain presumed to be involved in substrate binding, but they do not have the conserved active site Tyr residue typically found in SDRs. Numerous other members have unknown functions. The glycine rich NADP-binding motif in this subgroup is of 2 forms: GXGXXG and G[GA]XGXXG; it tends to be atypical compared with the forms generally seen in classical or extended SDRs. The usual SDR active site tetrad is not present, but a critical active site Lys at the usual SDR position has been identified in various members, though other charged and polar residues are found at this position in this subgroup. Atypical SDR-related proteins retain the Rossmann fold of the SDRs, but have limited sequence identity and generally lack the catalytic properties of the archetypical members. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187569 [Multi-domain] Cd Length: 282 Bit Score: 42.68 E-value: 1.58e-04
|
||||||||||
TrkA | COG0569 | Trk/Ktr K+ transport system regulatory component TrkA/KtrA/KtrC, RCK domain [Inorganic ion ... |
1-78 | 1.98e-04 | ||||||
Trk/Ktr K+ transport system regulatory component TrkA/KtrA/KtrC, RCK domain [Inorganic ion transport and metabolism, Signal transduction mechanisms]; Pssm-ID: 440335 [Multi-domain] Cd Length: 296 Bit Score: 42.36 E-value: 1.98e-04
|
||||||||||
SDR_a4 | cd05266 | atypical (a) SDRs, subgroup 4; Atypical SDRs in this subgroup are poorly defined, one member ... |
8-283 | 2.43e-04 | ||||||
atypical (a) SDRs, subgroup 4; Atypical SDRs in this subgroup are poorly defined, one member is identified as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif that is related to, but is different from, the archetypical SDRs, GXGXXG. This subgroup also lacks most of the characteristic active site residues of the SDRs; however, the upstream Ser is present at the usual place, and some potential catalytic residues are present in place of the usual YXXXK active site motif. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187576 [Multi-domain] Cd Length: 251 Bit Score: 41.92 E-value: 2.43e-04
|
||||||||||
A3DFK9-like_SDR_c | cd09761 | Clostridium thermocellum A3DFK9-like, a putative carbohydrate or polyalcohol metabolizing SDR, ... |
3-98 | 2.77e-04 | ||||||
Clostridium thermocellum A3DFK9-like, a putative carbohydrate or polyalcohol metabolizing SDR, classical (c) SDRs; This subgroup includes a putative carbohydrate or polyalcohol metabolizing SDR (A3DFK9) from Clostridium thermocellum. Its members have a TGXXXGXG classical-SDR glycine-rich NAD-binding motif, and some have a canonical SDR active site tetrad (A3DFK9 lacks the upstream Asn). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187662 [Multi-domain] Cd Length: 242 Bit Score: 41.80 E-value: 2.77e-04
|
||||||||||
PLN02657 | PLN02657 | 3,8-divinyl protochlorophyllide a 8-vinyl reductase |
2-78 | 3.67e-04 | ||||||
3,8-divinyl protochlorophyllide a 8-vinyl reductase Pssm-ID: 178263 [Multi-domain] Cd Length: 390 Bit Score: 42.06 E-value: 3.67e-04
|
||||||||||
PRK06171 | PRK06171 | sorbitol-6-phosphate 2-dehydrogenase; Provisional |
2-83 | 5.19e-04 | ||||||
sorbitol-6-phosphate 2-dehydrogenase; Provisional Pssm-ID: 180439 [Multi-domain] Cd Length: 266 Bit Score: 41.15 E-value: 5.19e-04
|
||||||||||
fabG | PRK05565 | 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional |
3-113 | 5.71e-04 | ||||||
3-ketoacyl-(acyl-carrier-protein) reductase; Provisional Pssm-ID: 235506 [Multi-domain] Cd Length: 247 Bit Score: 40.98 E-value: 5.71e-04
|
||||||||||
PRK09186 | PRK09186 | flagellin modification protein A; Provisional |
2-69 | 6.05e-04 | ||||||
flagellin modification protein A; Provisional Pssm-ID: 236399 [Multi-domain] Cd Length: 256 Bit Score: 40.74 E-value: 6.05e-04
|
||||||||||
SDR_c8 | cd08930 | classical (c) SDR, subgroup 8; This subgroup has a fairly well conserved active site tetrad ... |
3-105 | 7.67e-04 | ||||||
classical (c) SDR, subgroup 8; This subgroup has a fairly well conserved active site tetrad and domain size of the classical SDRs, but has an atypical NAD-binding motif ([ST]G[GA]XGXXG). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187635 [Multi-domain] Cd Length: 250 Bit Score: 40.40 E-value: 7.67e-04
|
||||||||||
DH-DHB-DH_SDR_c | cd05331 | 2,3 dihydro-2,3 dihydrozybenzoate dehydrogenases, classical (c) SDRs; 2,3 dihydro-2,3 ... |
3-110 | 9.58e-04 | ||||||
2,3 dihydro-2,3 dihydrozybenzoate dehydrogenases, classical (c) SDRs; 2,3 dihydro-2,3 dihydrozybenzoate dehydrogenase shares the characteristics of the classical SDRs. This subgroup includes Escherichai coli EntA which catalyzes the NAD+-dependent oxidation of 2,3-dihydro-2,3-dihydroxybenzoate to 2,3-dihydroxybenzoate during biosynthesis of the siderophore Enterobactin. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187592 [Multi-domain] Cd Length: 244 Bit Score: 40.15 E-value: 9.58e-04
|
||||||||||
GlcDH_SDR_c | cd05358 | glucose 1 dehydrogenase (GlcDH), classical (c) SDRs; GlcDH, is a tetrameric member of the SDR ... |
2-104 | 1.06e-03 | ||||||
glucose 1 dehydrogenase (GlcDH), classical (c) SDRs; GlcDH, is a tetrameric member of the SDR family, it catalyzes the NAD(P)-dependent oxidation of beta-D-glucose to D-glucono-delta-lactone. GlcDH has a typical NAD-binding site glycine-rich pattern as well as the canonical active site tetrad (YXXXK motif plus upstream Ser and Asn). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. Pssm-ID: 187616 [Multi-domain] Cd Length: 253 Bit Score: 40.06 E-value: 1.06e-03
|
||||||||||
PRK08324 | PRK08324 | bifunctional aldolase/short-chain dehydrogenase; |
3-95 | 1.29e-03 | ||||||
bifunctional aldolase/short-chain dehydrogenase; Pssm-ID: 236241 [Multi-domain] Cd Length: 681 Bit Score: 40.60 E-value: 1.29e-03
|
||||||||||
PRK12826 | PRK12826 | SDR family oxidoreductase; |
1-82 | 1.36e-03 | ||||||
SDR family oxidoreductase; Pssm-ID: 183775 [Multi-domain] Cd Length: 251 Bit Score: 39.90 E-value: 1.36e-03
|
||||||||||
fabG | PRK08642 | 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional |
3-106 | 1.39e-03 | ||||||
3-ketoacyl-(acyl-carrier-protein) reductase; Provisional Pssm-ID: 181517 [Multi-domain] Cd Length: 253 Bit Score: 39.69 E-value: 1.39e-03
|
||||||||||
PRK11908 | PRK11908 | bifunctional UDP-4-keto-pentose/UDP-xylose synthase; |
1-129 | 2.02e-03 | ||||||
bifunctional UDP-4-keto-pentose/UDP-xylose synthase; Pssm-ID: 183375 [Multi-domain] Cd Length: 347 Bit Score: 39.70 E-value: 2.02e-03
|
||||||||||
SDR_a3 | cd05229 | atypical (a) SDRs, subgroup 3; These atypical SDR family members of unknown function have a ... |
3-158 | 2.46e-03 | ||||||
atypical (a) SDRs, subgroup 3; These atypical SDR family members of unknown function have a glycine-rich NAD(P)-binding motif consensus that is very similar to the extended SDRs, GXXGXXG. Generally, this group has poor conservation of the active site tetrad, However, individual sequences do contain matches to the YXXXK active site motif, and generally Tyr or Asn in place of the upstream Ser found in most SDRs. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187540 [Multi-domain] Cd Length: 302 Bit Score: 39.23 E-value: 2.46e-03
|
||||||||||
PRK06483 | PRK06483 | dihydromonapterin reductase; Provisional |
3-81 | 2.47e-03 | ||||||
dihydromonapterin reductase; Provisional Pssm-ID: 180586 [Multi-domain] Cd Length: 236 Bit Score: 38.76 E-value: 2.47e-03
|
||||||||||
HSD10-like_SDR_c | cd05371 | 17hydroxysteroid dehydrogenase type 10 (HSD10)-like, classical (c) SDRs; HSD10, also known as ... |
4-132 | 2.69e-03 | ||||||
17hydroxysteroid dehydrogenase type 10 (HSD10)-like, classical (c) SDRs; HSD10, also known as amyloid-peptide-binding alcohol dehydrogenase (ABAD), was previously identified as a L-3-hydroxyacyl-CoA dehydrogenase, HADH2. In fatty acid metabolism, HADH2 catalyzes the third step of beta-oxidation, the conversion of a hydroxyl to a keto group in the NAD-dependent oxidation of L-3-hydroxyacyl CoA. In addition to alcohol dehydrogenase and HADH2 activites, HSD10 has steroid dehydrogenase activity. Although the mechanism is unclear, HSD10 is implicated in the formation of amyloid beta-petide in the brain (which is linked to the development of Alzheimer's disease). Although HSD10 is normally concentrated in the mitochondria, in the presence of amyloid beta-peptide it translocates into the plasma membrane, where it's action may generate cytotoxic aldehydes and may lower estrogen levels through its use of 17-beta-estradiol as a substrate. HSD10 is a member of the SRD family, but differs from other SDRs by the presence of two insertions of unknown function. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187629 [Multi-domain] Cd Length: 252 Bit Score: 38.81 E-value: 2.69e-03
|
||||||||||
PLN02896 | PLN02896 | cinnamyl-alcohol dehydrogenase |
1-124 | 3.16e-03 | ||||||
cinnamyl-alcohol dehydrogenase Pssm-ID: 178484 [Multi-domain] Cd Length: 353 Bit Score: 39.03 E-value: 3.16e-03
|
||||||||||
17beta-HSDXI-like_SDR_c | cd05339 | human 17-beta-hydroxysteroid dehydrogenase XI-like, classical (c) SDRs; 17-beta-hydroxysteroid ... |
3-31 | 3.50e-03 | ||||||
human 17-beta-hydroxysteroid dehydrogenase XI-like, classical (c) SDRs; 17-beta-hydroxysteroid dehydrogenases (17betaHSD) are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. 17betaHSD type XI, a classical SDR, preferentially converts 3alpha-Adiol to androsterone but not numerous other tested steroids. This subgroup of classical SDRs also includes members identified as retinol dehydrogenases, which convert retinol to retinal, a property that overlaps with 17betaHSD activity. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. Pssm-ID: 187598 [Multi-domain] Cd Length: 243 Bit Score: 38.38 E-value: 3.50e-03
|
||||||||||
PRK06484 | PRK06484 | short chain dehydrogenase; Validated |
3-157 | 3.56e-03 | ||||||
short chain dehydrogenase; Validated Pssm-ID: 168574 [Multi-domain] Cd Length: 520 Bit Score: 39.06 E-value: 3.56e-03
|
||||||||||
DR_C-13_KR_SDR_c_like | cd08951 | daunorubicin C-13 ketoreductase (KR), classical (c)-like SDRs; Daunorubicin is a clinically ... |
2-124 | 3.92e-03 | ||||||
daunorubicin C-13 ketoreductase (KR), classical (c)-like SDRs; Daunorubicin is a clinically important therapeutic compound used in some cancer treatments. Daunorubicin C-13 ketoreductase is member of the classical SDR family with a canonical glycine-rich NAD(P)-binding motif, but lacking a complete match to the active site tetrad characteristic of this group. The critical Tyr, plus the Lys and upstream Asn are present, but the catalytic Ser is replaced, generally by Gln. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187654 [Multi-domain] Cd Length: 260 Bit Score: 38.24 E-value: 3.92e-03
|
||||||||||
3alpha_HSD_SDR_c | cd05328 | alpha hydroxysteroid dehydrogenase (3alpha_HSD), classical (c) SDRs; Bacterial 3-alpha_HSD, ... |
2-145 | 4.76e-03 | ||||||
alpha hydroxysteroid dehydrogenase (3alpha_HSD), classical (c) SDRs; Bacterial 3-alpha_HSD, which catalyzes the NAD-dependent oxidoreduction of hydroxysteroids, is a dimeric member of the classical SDR family. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187589 [Multi-domain] Cd Length: 250 Bit Score: 38.24 E-value: 4.76e-03
|
||||||||||
KDSR-like_SDR_c | cd08939 | 3-ketodihydrosphingosine reductase (KDSR) and related proteins, classical (c) SDR; These ... |
3-153 | 4.99e-03 | ||||||
3-ketodihydrosphingosine reductase (KDSR) and related proteins, classical (c) SDR; These proteins include members identified as KDSR, ribitol type dehydrogenase, and others. The group shows strong conservation of the active site tetrad and glycine rich NAD-binding motif of the classical SDRs. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187643 [Multi-domain] Cd Length: 239 Bit Score: 38.00 E-value: 4.99e-03
|
||||||||||
PRK06947 | PRK06947 | SDR family oxidoreductase; |
3-103 | 5.11e-03 | ||||||
SDR family oxidoreductase; Pssm-ID: 180771 [Multi-domain] Cd Length: 248 Bit Score: 37.86 E-value: 5.11e-03
|
||||||||||
PRK07832 | PRK07832 | SDR family oxidoreductase; |
1-87 | 5.90e-03 | ||||||
SDR family oxidoreductase; Pssm-ID: 181139 [Multi-domain] Cd Length: 272 Bit Score: 37.71 E-value: 5.90e-03
|
||||||||||
HetN_like_SDR_c | cd08932 | HetN oxidoreductase-like, classical (c) SDR; This subgroup includes Anabaena sp. strain PCC ... |
3-124 | 6.49e-03 | ||||||
HetN oxidoreductase-like, classical (c) SDR; This subgroup includes Anabaena sp. strain PCC 7120 HetN, a putative oxidoreductase involved in heterocyst differentiation, and related proteins. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 212493 [Multi-domain] Cd Length: 223 Bit Score: 37.34 E-value: 6.49e-03
|
||||||||||
PLN02650 | PLN02650 | dihydroflavonol-4-reductase |
3-125 | 6.56e-03 | ||||||
dihydroflavonol-4-reductase Pssm-ID: 178256 [Multi-domain] Cd Length: 351 Bit Score: 37.88 E-value: 6.56e-03
|
||||||||||
PRK12829 | PRK12829 | short chain dehydrogenase; Provisional |
2-153 | 6.87e-03 | ||||||
short chain dehydrogenase; Provisional Pssm-ID: 183778 [Multi-domain] Cd Length: 264 Bit Score: 37.73 E-value: 6.87e-03
|
||||||||||
PR_SDR_c | cd05357 | pteridine reductase (PR), classical (c) SDRs; Pteridine reductases (PRs), members of the SDR ... |
3-82 | 6.89e-03 | ||||||
pteridine reductase (PR), classical (c) SDRs; Pteridine reductases (PRs), members of the SDR family, catalyzes the NAD-dependent reduction of folic acid, dihydrofolate and related compounds. In Leishmania, pteridine reductase (PTR1) acts to circumvent the anti-protozoan drugs that attack dihydrofolate reductase activity. Proteins in this subgroup have an N-terminal NAD-binding motif and a YxxxK active site motif, but have an Asp instead of the usual upstream catalytic Ser. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. Pssm-ID: 187615 [Multi-domain] Cd Length: 234 Bit Score: 37.64 E-value: 6.89e-03
|
||||||||||
BKR_like_SDR_like | cd05344 | putative beta-ketoacyl acyl carrier protein [ACP] reductase (BKR)-like, SDR; This subgroup ... |
1-139 | 6.91e-03 | ||||||
putative beta-ketoacyl acyl carrier protein [ACP] reductase (BKR)-like, SDR; This subgroup resembles the SDR family, but does not have a perfect match to the NAD-binding motif or the catalytic tetrad characteristic of the SDRs. It includes the SDRs, Q9HYA2 from Pseudomonas aeruginosa PAO1 and APE0912 from Aeropyrum pernix K1. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. Pssm-ID: 187602 [Multi-domain] Cd Length: 253 Bit Score: 37.64 E-value: 6.91e-03
|
||||||||||
PKS_KR | smart00822 | This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step ... |
3-129 | 7.13e-03 | ||||||
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group. Pssm-ID: 214833 [Multi-domain] Cd Length: 180 Bit Score: 37.08 E-value: 7.13e-03
|
||||||||||
ChcA_like_SDR_c | cd05359 | 1-cyclohexenylcarbonyl_coenzyme A_reductase (ChcA)_like, classical (c) SDRs; This subgroup ... |
3-59 | 7.43e-03 | ||||||
1-cyclohexenylcarbonyl_coenzyme A_reductase (ChcA)_like, classical (c) SDRs; This subgroup contains classical SDR proteins, including members identified as 1-cyclohexenylcarbonyl coenzyme A reductase. ChcA of Streptomyces collinus is implicated in the final reduction step of shikimic acid to ansatrienin. ChcA shows sequence similarity to the SDR family of NAD-binding proteins, but it lacks the conserved Tyr of the characteristic catalytic site. This subgroup also contains the NADH-dependent enoyl-[acyl-carrier-protein(ACP)] reductase FabL from Bacillus subtilis. This enzyme participates in bacterial fatty acid synthesis, in type II fatty-acid synthases and catalyzes the last step in each elongation cycle. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. Pssm-ID: 187617 [Multi-domain] Cd Length: 242 Bit Score: 37.33 E-value: 7.43e-03
|
||||||||||
Blast search parameters | ||||
|