zeocin resistance protein [Moss transformation vector pLGZ2]
bleomycin resistance protein( domain architecture ID 10170075)
bleomycin resistance protein (BRP) is a binding protein with a strong affinity to the bleomycin family of antibiotics
List of domain hits
Name | Accession | Description | Interval | E-value | |||
BLMA_like | cd08349 | Bleomycin binding protein (BLMA) and similar proteins; BLMA also called Bleomycin resistance ... |
8-118 | 4.63e-33 | |||
Bleomycin binding protein (BLMA) and similar proteins; BLMA also called Bleomycin resistance protein, confers Bm resistance by directly binding to Bm. Bm is a glycopeptide antibiotic produced naturally by actinomycetes. It is a potent anti-cancer drug, which acts as a strong DNA-cutting agent, thereby causing cell death. BLMA is produced by actinomycetes to protect themselves against their own lethal compound. BLMA has two identically-folded subdomains, with the same alpha/beta fold; these two halves have no sequence similarity. BLMAs are dimers and each dimer binds to two Bm molecules at the Bm-binding pockets formed at the dimer interface; two Bm molecules are bound per dimer. BLMA belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. As for the larger superfamily, this family contains members with or without domain swapping. : Pssm-ID: 319937 [Multi-domain] Cd Length: 114 Bit Score: 111.55 E-value: 4.63e-33
|
|||||||
Name | Accession | Description | Interval | E-value | |||
BLMA_like | cd08349 | Bleomycin binding protein (BLMA) and similar proteins; BLMA also called Bleomycin resistance ... |
8-118 | 4.63e-33 | |||
Bleomycin binding protein (BLMA) and similar proteins; BLMA also called Bleomycin resistance protein, confers Bm resistance by directly binding to Bm. Bm is a glycopeptide antibiotic produced naturally by actinomycetes. It is a potent anti-cancer drug, which acts as a strong DNA-cutting agent, thereby causing cell death. BLMA is produced by actinomycetes to protect themselves against their own lethal compound. BLMA has two identically-folded subdomains, with the same alpha/beta fold; these two halves have no sequence similarity. BLMAs are dimers and each dimer binds to two Bm molecules at the Bm-binding pockets formed at the dimer interface; two Bm molecules are bound per dimer. BLMA belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. As for the larger superfamily, this family contains members with or without domain swapping. Pssm-ID: 319937 [Multi-domain] Cd Length: 114 Bit Score: 111.55 E-value: 4.63e-33
|
|||||||
PhnB | COG2764 | Zn-dependent glyoxalase, PhnB family [Energy production and conversion]; |
6-121 | 7.09e-10 | |||
Zn-dependent glyoxalase, PhnB family [Energy production and conversion]; Pssm-ID: 442048 [Multi-domain] Cd Length: 118 Bit Score: 52.55 E-value: 7.09e-10
|
|||||||
Glyoxalase_7 | pfam19581 | Glyoxalase superfamily protein; |
8-118 | 2.56e-05 | |||
Glyoxalase superfamily protein; Pssm-ID: 437413 Cd Length: 133 Bit Score: 40.74 E-value: 2.56e-05
|
|||||||
Name | Accession | Description | Interval | E-value | |||
BLMA_like | cd08349 | Bleomycin binding protein (BLMA) and similar proteins; BLMA also called Bleomycin resistance ... |
8-118 | 4.63e-33 | |||
Bleomycin binding protein (BLMA) and similar proteins; BLMA also called Bleomycin resistance protein, confers Bm resistance by directly binding to Bm. Bm is a glycopeptide antibiotic produced naturally by actinomycetes. It is a potent anti-cancer drug, which acts as a strong DNA-cutting agent, thereby causing cell death. BLMA is produced by actinomycetes to protect themselves against their own lethal compound. BLMA has two identically-folded subdomains, with the same alpha/beta fold; these two halves have no sequence similarity. BLMAs are dimers and each dimer binds to two Bm molecules at the Bm-binding pockets formed at the dimer interface; two Bm molecules are bound per dimer. BLMA belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. As for the larger superfamily, this family contains members with or without domain swapping. Pssm-ID: 319937 [Multi-domain] Cd Length: 114 Bit Score: 111.55 E-value: 4.63e-33
|
|||||||
PhnB | COG2764 | Zn-dependent glyoxalase, PhnB family [Energy production and conversion]; |
6-121 | 7.09e-10 | |||
Zn-dependent glyoxalase, PhnB family [Energy production and conversion]; Pssm-ID: 442048 [Multi-domain] Cd Length: 118 Bit Score: 52.55 E-value: 7.09e-10
|
|||||||
BLMT_like | cd08350 | BLMT, a bleomycin resistance protein encoded on the transposon Tn5, and similar proteins; BLMT ... |
7-119 | 1.68e-08 | |||
BLMT, a bleomycin resistance protein encoded on the transposon Tn5, and similar proteins; BLMT is a bleomycin (Bm) resistance protein, encoded by the ble gene on the transposon Tn5. This protein confers a survival advantage to Escherichia coli host cells. Bm is a glycopeptide antibiotic produced naturally by actinomycetes. It is a potent anti-cancer drug, which acts as a strong DNA-cutting agent, thereby causing cell death. BLMT has strong binding affinity to Bm and it protects against this lethal compound through drug sequestering. BLMT has two identically-folded subdomains, with the same alpha/beta fold; these two halves have no sequence similarity. BLMT is a dimer with two Bm-binding pockets formed at the dimer interface. Pssm-ID: 319938 Cd Length: 118 Bit Score: 48.81 E-value: 1.68e-08
|
|||||||
VOC | COG3324 | Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function ... |
10-114 | 1.42e-05 | |||
Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function prediction only]; Pssm-ID: 442553 [Multi-domain] Cd Length: 119 Bit Score: 41.16 E-value: 1.42e-05
|
|||||||
Glyoxalase_7 | pfam19581 | Glyoxalase superfamily protein; |
8-118 | 2.56e-05 | |||
Glyoxalase superfamily protein; Pssm-ID: 437413 Cd Length: 133 Bit Score: 40.74 E-value: 2.56e-05
|
|||||||
VOC | cd06587 | vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ... |
10-118 | 6.57e-05 | |||
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. Pssm-ID: 319898 [Multi-domain] Cd Length: 112 Bit Score: 39.43 E-value: 6.57e-05
|
|||||||
VOC_like | cd16355 | uncharacterized subfamily of vicinal oxygen chelate (VOC) superfamily; The vicinal oxygen ... |
8-113 | 1.72e-04 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) superfamily; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319962 Cd Length: 121 Bit Score: 38.24 E-value: 1.72e-04
|
|||||||
VOC_CChe_VCA0619_like | cd08356 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; uncharacterized subfamily of ... |
8-113 | 1.98e-04 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; uncharacterized subfamily of vicinal oxygen chelate (VOC) family contains Vibrio cholerae VCA0619 and similar proteins. The VOC superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319944 Cd Length: 113 Bit Score: 38.05 E-value: 1.98e-04
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
10-118 | 3.83e-03 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 34.73 E-value: 3.83e-03
|
|||||||
VOC_like | cd07263 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
5-114 | 5.46e-03 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping Pssm-ID: 319924 [Multi-domain] Cd Length: 120 Bit Score: 34.19 E-value: 5.46e-03
|
|||||||
CatE | COG2514 | Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; |
10-122 | 9.39e-03 | |||
Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 442004 [Multi-domain] Cd Length: 141 Bit Score: 33.78 E-value: 9.39e-03
|
|||||||
Blast search parameters | ||||
|