B230208H17Rik protein, partial [Mus musculus]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
P-loop_NTPase super family | cl38936 | P-loop containing Nucleoside Triphosphate Hydrolases; Members of the P-loop NTPase domain ... |
44-221 | 6.26e-11 | ||||||
P-loop containing Nucleoside Triphosphate Hydrolases; Members of the P-loop NTPase domain superfamily are characterized by a conserved nucleotide phosphate-binding motif, also referred to as the Walker A motif (GxxxxGK[S/T], where x is any residue), and the Walker B motif (hhhh[D/E], where h is a hydrophobic residue). The Walker A and B motifs bind the beta-gamma phosphate moiety of the bound nucleotide (typically ATP or GTP) and the Mg2+ cation, respectively. The P-loop NTPases are involved in diverse cellular functions, and they can be divided into two major structural classes: the KG (kinase-GTPase) class which includes Ras-like GTPases and its circularly permutated YlqF-like; and the ASCE (additional strand catalytic E) class which includes ATPase Binding Cassette (ABC), DExD/H-like helicases, 4Fe-4S iron sulfur cluster binding proteins of NifH family, RecA-like F1-ATPases, and ATPases Associated with a wide variety of Activities (AAA). Also included are a diverse set of nucleotide/nucleoside kinase families. The actual alignment was detected with superfamily member cd00154: Pssm-ID: 476819 [Multi-domain] Cd Length: 159 Bit Score: 61.32 E-value: 6.26e-11
|
||||||||||
PHA03307 super family | cl33723 | transcriptional regulator ICP4; Provisional |
283-611 | 7.74e-03 | ||||||
transcriptional regulator ICP4; Provisional The actual alignment was detected with superfamily member PHA03307: Pssm-ID: 223039 [Multi-domain] Cd Length: 1352 Bit Score: 39.77 E-value: 7.74e-03
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Rab | cd00154 | Ras-related in brain (Rab) family of small guanosine triphosphatases (GTPases); Rab GTPases ... |
44-221 | 6.26e-11 | ||||||
Ras-related in brain (Rab) family of small guanosine triphosphatases (GTPases); Rab GTPases form the largest family within the Ras superfamily. There are at least 60 Rab genes in the human genome, and a number of Rab GTPases are conserved from yeast to humans. Rab GTPases are small, monomeric proteins that function as molecular switches to regulate vesicle trafficking pathways. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they regulate distinct steps in membrane traffic pathways. In the GTP-bound form, Rab GTPases recruit specific sets of effector proteins onto membranes. Through their effectors, Rab GTPases regulate vesicle formation, actin- and tubulin-dependent vesicle movement, and membrane fusion. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which mask C-terminal lipid binding and promote cytosolic localization. While most unicellular organisms possess 5-20 Rab members, several have been found to possess 60 or more Rabs; for many of these Rab isoforms, homologous proteins are not found in other organisms. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Since crystal structures often lack C-terminal residues, the lipid modification site is not available for annotation in many of the CDs in the hierarchy, but is included where possible. Pssm-ID: 206640 [Multi-domain] Cd Length: 159 Bit Score: 61.32 E-value: 6.26e-11
|
||||||||||
Ras | pfam00071 | Ras family; Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop ... |
45-221 | 5.82e-10 | ||||||
Ras family; Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop motif with GTP_EFTU, arf and myosin_head. See pfam00009 pfam00025, pfam00063. As regards Rab GTPases, these are important regulators of vesicle formation, motility and fusion. They share a fold in common with all Ras GTPases: this is a six-stranded beta-sheet surrounded by five alpha-helices. Pssm-ID: 425451 [Multi-domain] Cd Length: 162 Bit Score: 58.29 E-value: 5.82e-10
|
||||||||||
RAB | smart00175 | Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking. |
44-218 | 1.56e-07 | ||||||
Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking. Pssm-ID: 197555 [Multi-domain] Cd Length: 164 Bit Score: 51.35 E-value: 1.56e-07
|
||||||||||
PHA03307 | PHA03307 | transcriptional regulator ICP4; Provisional |
283-611 | 7.74e-03 | ||||||
transcriptional regulator ICP4; Provisional Pssm-ID: 223039 [Multi-domain] Cd Length: 1352 Bit Score: 39.77 E-value: 7.74e-03
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Rab | cd00154 | Ras-related in brain (Rab) family of small guanosine triphosphatases (GTPases); Rab GTPases ... |
44-221 | 6.26e-11 | ||||||
Ras-related in brain (Rab) family of small guanosine triphosphatases (GTPases); Rab GTPases form the largest family within the Ras superfamily. There are at least 60 Rab genes in the human genome, and a number of Rab GTPases are conserved from yeast to humans. Rab GTPases are small, monomeric proteins that function as molecular switches to regulate vesicle trafficking pathways. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they regulate distinct steps in membrane traffic pathways. In the GTP-bound form, Rab GTPases recruit specific sets of effector proteins onto membranes. Through their effectors, Rab GTPases regulate vesicle formation, actin- and tubulin-dependent vesicle movement, and membrane fusion. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which mask C-terminal lipid binding and promote cytosolic localization. While most unicellular organisms possess 5-20 Rab members, several have been found to possess 60 or more Rabs; for many of these Rab isoforms, homologous proteins are not found in other organisms. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Since crystal structures often lack C-terminal residues, the lipid modification site is not available for annotation in many of the CDs in the hierarchy, but is included where possible. Pssm-ID: 206640 [Multi-domain] Cd Length: 159 Bit Score: 61.32 E-value: 6.26e-11
|
||||||||||
Ras | pfam00071 | Ras family; Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop ... |
45-221 | 5.82e-10 | ||||||
Ras family; Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop motif with GTP_EFTU, arf and myosin_head. See pfam00009 pfam00025, pfam00063. As regards Rab GTPases, these are important regulators of vesicle formation, motility and fusion. They share a fold in common with all Ras GTPases: this is a six-stranded beta-sheet surrounded by five alpha-helices. Pssm-ID: 425451 [Multi-domain] Cd Length: 162 Bit Score: 58.29 E-value: 5.82e-10
|
||||||||||
Ras | cd00876 | Rat sarcoma (Ras) family of small guanosine triphosphatases (GTPases); The Ras family of the ... |
45-216 | 8.03e-09 | ||||||
Rat sarcoma (Ras) family of small guanosine triphosphatases (GTPases); The Ras family of the Ras superfamily includes classical N-Ras, H-Ras, and K-Ras, as well as R-Ras, Rap, Ral, Rheb, Rhes, ARHI, RERG, Rin/Rit, RSR1, RRP22, Ras2, Ras-dva, and RGK proteins. Ras proteins regulate cell growth, proliferation and differentiation. Ras is activated by guanine nucleotide exchange factors (GEFs) that release GDP and allow GTP binding. Many RasGEFs have been identified. These are sequestered in the cytosol until activation by growth factors triggers recruitment to the plasma membrane or Golgi, where the GEF colocalizes with Ras. Active GTP-bound Ras interacts with several effector proteins: among the best characterized are the Raf kinases, phosphatidylinositol 3-kinase (PI3K), RalGEFs and NORE/MST1. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. Pssm-ID: 206642 [Multi-domain] Cd Length: 160 Bit Score: 55.22 E-value: 8.03e-09
|
||||||||||
RAB | smart00175 | Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking. |
44-218 | 1.56e-07 | ||||||
Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking. Pssm-ID: 197555 [Multi-domain] Cd Length: 164 Bit Score: 51.35 E-value: 1.56e-07
|
||||||||||
RERG_RasL11_like | cd04146 | Ras-related and Estrogen-Regulated Growth inhibitor (RERG) and Ras-like 11 (RasL11)-like ... |
45-190 | 3.85e-06 | ||||||
Ras-related and Estrogen-Regulated Growth inhibitor (RERG) and Ras-like 11 (RasL11)-like families; RERG (Ras-related and Estrogen- Regulated Growth inhibitor) and Ras-like 11 are members of a novel subfamily of Ras that were identified based on their behavior in breast and prostate tumors, respectively. RERG expression was decreased or lost in a significant fraction of primary human breast tumors that lack estrogen receptor and are correlated with poor clinical prognosis. Elevated RERG expression correlated with favorable patient outcome in a breast tumor subtype that is positive for estrogen receptor expression. In contrast to most Ras proteins, RERG overexpression inhibited the growth of breast tumor cells in vitro and in vivo. RasL11 was found to be ubiquitously expressed in human tissue, but down-regulated in prostate tumors. Both RERG and RasL11 lack the C-terminal CaaX prenylation motif, where a = an aliphatic amino acid and X = any amino acid, and are localized primarily in the cytoplasm. Both are believed to have tumor suppressor activity. Pssm-ID: 206713 [Multi-domain] Cd Length: 166 Bit Score: 47.27 E-value: 3.85e-06
|
||||||||||
Ran | cd00877 | Ras-related nuclear proteins (Ran)/TC4 family of small GTPases; Ran GTPase is involved in ... |
45-236 | 1.77e-04 | ||||||
Ras-related nuclear proteins (Ran)/TC4 family of small GTPases; Ran GTPase is involved in diverse biological functions, such as nuclear transport, spindle formation during mitosis, DNA replication, and cell division. Among the Ras superfamily, Ran is a unique small G protein. It does not have a lipid modification motif at the C-terminus to bind to the membrane, which is often observed within the Ras superfamily. Ran may therefore interact with a wide range of proteins in various intracellular locations. Like other GTPases, Ran exists in GTP- and GDP-bound conformations that interact differently with effectors. Conversion between these forms and the assembly or disassembly of effector complexes requires the interaction of regulator proteins. The intrinsic GTPase activity of Ran is very low, but it is greatly stimulated by a GTPase-activating protein (RanGAP1) located in the cytoplasm. By contrast, RCC1, a guanine nucleotide exchange factor that generates RanGTP, is bound to chromatin and confined to the nucleus. Ran itself is mobile and is actively imported into the nucleus by a mechanism involving NTF-2. Together with the compartmentalization of its regulators, this is thought to produce a relatively high concentration of RanGTP in the nucleus. Pssm-ID: 206643 [Multi-domain] Cd Length: 166 Bit Score: 42.67 E-value: 1.77e-04
|
||||||||||
Roc | pfam08477 | Ras of Complex, Roc, domain of DAPkinase; Roc, or Ras of Complex, proteins are mitochondrial ... |
45-179 | 3.37e-04 | ||||||
Ras of Complex, Roc, domain of DAPkinase; Roc, or Ras of Complex, proteins are mitochondrial Rho proteins (Miro-1, and Miro-2) and atypical Rho GTPases. Full-length proteins have a unique domain organization, with tandem GTP-binding domains and two EF hand domains (pfam00036) that may bind calcium. They are also larger than classical small GTPases. It has been proposed that they are involved in mitochondrial homeostasis and apoptosis. Pssm-ID: 462490 [Multi-domain] Cd Length: 114 Bit Score: 40.57 E-value: 3.37e-04
|
||||||||||
Rab3 | cd01865 | Rab GTPase family 3 contains Rab3A, Rab3B, Rab3C and Rab3D; The Rab3 subfamily contains Rab3A, ... |
137-221 | 9.05e-04 | ||||||
Rab GTPase family 3 contains Rab3A, Rab3B, Rab3C and Rab3D; The Rab3 subfamily contains Rab3A, Rab3B, Rab3C, and Rab3D. All four isoforms were found in mouse brain and endocrine tissues, with varying levels of expression. Rab3A, Rab3B, and Rab3C localized to synaptic and secretory vesicles; Rab3D was expressed at high levels only in adipose tissue, exocrine glands, and the endocrine pituitary, where it is localized to cytoplasmic secretory granules. Rab3 appears to control Ca2+-regulated exocytosis. The appropriate GDP/GTP exchange cycle of Rab3A is required for Ca2+-regulated exocytosis to occur, and interaction of the GTP-bound form of Rab3A with effector molecule(s) is widely believed to be essential for this process. Functionally, most studies point toward a role for Rab3 in the secretion of hormones and neurotransmitters. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. Pssm-ID: 206657 [Multi-domain] Cd Length: 165 Bit Score: 40.67 E-value: 9.05e-04
|
||||||||||
Rab7 | cd01862 | Rab GTPase family 7 (Rab7); Rab7 subfamily. Rab7 is a small Rab GTPase that regulates ... |
44-217 | 5.19e-03 | ||||||
Rab GTPase family 7 (Rab7); Rab7 subfamily. Rab7 is a small Rab GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. The yeast Ypt7 and mammalian Rab7 are both involved in transport to the vacuole/lysosome, whereas Ypt7 is also required for homotypic vacuole fusion. Mammalian Rab7 is an essential participant in the autophagic pathway for sequestration and targeting of cytoplasmic components to the lytic compartment. Mammalian Rab7 is also proposed to function as a tumor suppressor. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. Pssm-ID: 206655 [Multi-domain] Cd Length: 172 Bit Score: 38.41 E-value: 5.19e-03
|
||||||||||
Rab21 | cd04123 | Rab GTPase family 21 (Rab21); The localization and function of Rab21 are not clearly defined, ... |
137-220 | 6.95e-03 | ||||||
Rab GTPase family 21 (Rab21); The localization and function of Rab21 are not clearly defined, with conflicting data reported. Rab21 has been reported to localize in the ER in human intestinal epithelial cells, with partial colocalization with alpha-glucosidase, a late endosomal/lysosomal marker. More recently, Rab21 was shown to colocalize with and affect the morphology of early endosomes. In Dictyostelium, GTP-bound Rab21, together with two novel LIM domain proteins, LimF and ChLim, has been shown to regulate phagocytosis. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. Pssm-ID: 133323 [Multi-domain] Cd Length: 162 Bit Score: 37.97 E-value: 6.95e-03
|
||||||||||
PHA03307 | PHA03307 | transcriptional regulator ICP4; Provisional |
283-611 | 7.74e-03 | ||||||
transcriptional regulator ICP4; Provisional Pssm-ID: 223039 [Multi-domain] Cd Length: 1352 Bit Score: 39.77 E-value: 7.74e-03
|
||||||||||
Rab1_Ypt1 | cd01869 | Rab GTPase family 1 includes the yeast homolog Ypt1; Rab1/Ypt1 subfamily. Rab1 is found in ... |
137-217 | 8.83e-03 | ||||||
Rab GTPase family 1 includes the yeast homolog Ypt1; Rab1/Ypt1 subfamily. Rab1 is found in every eukaryote and is a key regulatory component for the transport of vesicles from the ER to the Golgi apparatus. Studies on mutations of Ypt1, the yeast homolog of Rab1, showed that this protein is necessary for the budding of vesicles of the ER as well as for their transport to, and fusion with, the Golgi apparatus. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. Pssm-ID: 206661 [Multi-domain] Cd Length: 166 Bit Score: 37.69 E-value: 8.83e-03
|
||||||||||
Blast search parameters | ||||
|