glyceraldehyde-3-phosphate dehydrogenase, partial [Psilorhamphus guttatus]
List of domain hits
Name | Accession | Description | Interval | E-value | ||
GapA super family | cl43010 | Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate ... |
1-16 | 1.29e-06 | ||
Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate transport and metabolism]; Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase is part of the Pathway/BioSystem: Glycolysis The actual alignment was detected with superfamily member COG0057: Pssm-ID: 439827 [Multi-domain] Cd Length: 334 Bit Score: 40.38 E-value: 1.29e-06
|
||||||
Name | Accession | Description | Interval | E-value | ||
GapA | COG0057 | Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate ... |
1-16 | 1.29e-06 | ||
Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate transport and metabolism]; Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase is part of the Pathway/BioSystem: Glycolysis Pssm-ID: 439827 [Multi-domain] Cd Length: 334 Bit Score: 40.38 E-value: 1.29e-06
|
||||||
GAPDH_I_C | cd18126 | C-terminal catalytic domain of type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ... |
1-14 | 3.39e-06 | ||
C-terminal catalytic domain of type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and similar proteins; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in glycolysis and gluconeogenesis by reversibly catalyzing the oxidation and phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-diphospho-glycerate. It has been implicated in varied activities including regulating mRNA stability, the regulation of gene expression, induction of apoptosis, intracellular membrane trafficking, iron uptake and transport (via secreted GAPDH), heme metabolism, the maintenance of genomic integrity, and nuclear tRNA export. GAPDH proteins contains an N-terminal NAD(P)-binding domain and a C-terminal catalytic domain. The primarily N-terminal NAD(P)-binding domain contains a Rossmann fold which combines with the catalytic cysteine-containing C-terminus to form a catalytic cleft. Phosphatidyl-serine, RNA, and glutathione binding sites have been identified in the N-terminus. Different forms of GAPDH exist which utilize NAD (1.2.1.12), NADP (1.2.1.13) or either (1.2.1.59). The family corresponds to the ubiquitous NAD+ or NADP+ utilizing type I GAPDH and a small clade of dehydrogenases, called erythrose-4-phosphate dehydrogenase (E4PDH) proteins, which utilize NAD+ to oxidize erythrose-4-phosphate (E4P) to 4-phospho-erythronate, a precursor for the de novo synthesis of pyridoxine via 4-hydroxythreonine and D-1-deoxyxylulose. Pssm-ID: 467676 Cd Length: 165 Bit Score: 38.98 E-value: 3.39e-06
|
||||||
PTZ00023 | PTZ00023 | glyceraldehyde-3-phosphate dehydrogenase; Provisional |
1-16 | 1.13e-05 | ||
glyceraldehyde-3-phosphate dehydrogenase; Provisional Pssm-ID: 173322 [Multi-domain] Cd Length: 337 Bit Score: 37.89 E-value: 1.13e-05
|
||||||
GAPDH-I | TIGR01534 | glyceraldehyde-3-phosphate dehydrogenase, type I; This model represents ... |
1-16 | 4.26e-05 | ||
glyceraldehyde-3-phosphate dehydrogenase, type I; This model represents glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the enzyme responsible for the interconversion of 1,3-diphosphoglycerate and glyceraldehyde-3-phosphate, a central step in glycolysis and gluconeogenesis. Forms exist which utilize NAD (EC 1.2.1.12), NADP (EC 1.2.1.13) or either (1.2.1.59). In some species, NAD- and NADP- utilizing forms exist, generally being responsible for reactions in the anabolic and catabolic directions respectively. Two Pfam models cover the two functional domains of this protein; pfam00044 represents the N-terminal NAD(P)-binding domain and pfam02800 represents the C-terminal catalytic domain. An additional form of gap gene is found in gamma proteobacteria and is responsible for the conversion of erythrose-4-phosphate (E4P) to 4-phospho-erythronate in the biosynthesis of pyridoxine. This pathway of pyridoxine biosynthesis appears to be limited, however, to a relatively small number of bacterial species although it is prevalent among the gamma-proteobacteria. This enzyme is described by TIGR001532. These sequences generally score between trusted and noise to this GAPDH model due to the close evolutionary relationship. There exists the possiblity that some forms of GAPDH may be bifunctional and act on E4P in species which make pyridoxine and via hydroxythreonine and lack a separate E4PDH enzyme (for instance, the GAPDH from Bacillus stearothermophilus has been shown to posess a limited E4PD activity as well as a robust GAPDH activity). There are a great number of sequences in the databases which score between trusted and noise to this model, nearly all of them due to fragmentary sequences. It seems that study of this gene has been carried out in many species utilizing PCR probes which exclude the extreme ends of the consenses used to define this model. The noise level is set relative not to E4PD, but the next closest outliers, the class II GAPDH's (found in archaea, TIGR01546) and aspartate semialdehyde dehydrogenase (ASADH, TIGR01296) both of which have highest-scoring hits around -225 to the prior model. [Energy metabolism, Glycolysis/gluconeogenesis] Pssm-ID: 273675 [Multi-domain] Cd Length: 326 Bit Score: 36.10 E-value: 4.26e-05
|
||||||
Name | Accession | Description | Interval | E-value | ||
GapA | COG0057 | Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate ... |
1-16 | 1.29e-06 | ||
Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate transport and metabolism]; Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase is part of the Pathway/BioSystem: Glycolysis Pssm-ID: 439827 [Multi-domain] Cd Length: 334 Bit Score: 40.38 E-value: 1.29e-06
|
||||||
GAPDH_I_C | cd18126 | C-terminal catalytic domain of type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ... |
1-14 | 3.39e-06 | ||
C-terminal catalytic domain of type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and similar proteins; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in glycolysis and gluconeogenesis by reversibly catalyzing the oxidation and phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-diphospho-glycerate. It has been implicated in varied activities including regulating mRNA stability, the regulation of gene expression, induction of apoptosis, intracellular membrane trafficking, iron uptake and transport (via secreted GAPDH), heme metabolism, the maintenance of genomic integrity, and nuclear tRNA export. GAPDH proteins contains an N-terminal NAD(P)-binding domain and a C-terminal catalytic domain. The primarily N-terminal NAD(P)-binding domain contains a Rossmann fold which combines with the catalytic cysteine-containing C-terminus to form a catalytic cleft. Phosphatidyl-serine, RNA, and glutathione binding sites have been identified in the N-terminus. Different forms of GAPDH exist which utilize NAD (1.2.1.12), NADP (1.2.1.13) or either (1.2.1.59). The family corresponds to the ubiquitous NAD+ or NADP+ utilizing type I GAPDH and a small clade of dehydrogenases, called erythrose-4-phosphate dehydrogenase (E4PDH) proteins, which utilize NAD+ to oxidize erythrose-4-phosphate (E4P) to 4-phospho-erythronate, a precursor for the de novo synthesis of pyridoxine via 4-hydroxythreonine and D-1-deoxyxylulose. Pssm-ID: 467676 Cd Length: 165 Bit Score: 38.98 E-value: 3.39e-06
|
||||||
PTZ00023 | PTZ00023 | glyceraldehyde-3-phosphate dehydrogenase; Provisional |
1-16 | 1.13e-05 | ||
glyceraldehyde-3-phosphate dehydrogenase; Provisional Pssm-ID: 173322 [Multi-domain] Cd Length: 337 Bit Score: 37.89 E-value: 1.13e-05
|
||||||
PLN02272 | PLN02272 | glyceraldehyde-3-phosphate dehydrogenase |
2-16 | 2.40e-05 | ||
glyceraldehyde-3-phosphate dehydrogenase Pssm-ID: 177912 [Multi-domain] Cd Length: 421 Bit Score: 36.76 E-value: 2.40e-05
|
||||||
GAPDH-I | TIGR01534 | glyceraldehyde-3-phosphate dehydrogenase, type I; This model represents ... |
1-16 | 4.26e-05 | ||
glyceraldehyde-3-phosphate dehydrogenase, type I; This model represents glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the enzyme responsible for the interconversion of 1,3-diphosphoglycerate and glyceraldehyde-3-phosphate, a central step in glycolysis and gluconeogenesis. Forms exist which utilize NAD (EC 1.2.1.12), NADP (EC 1.2.1.13) or either (1.2.1.59). In some species, NAD- and NADP- utilizing forms exist, generally being responsible for reactions in the anabolic and catabolic directions respectively. Two Pfam models cover the two functional domains of this protein; pfam00044 represents the N-terminal NAD(P)-binding domain and pfam02800 represents the C-terminal catalytic domain. An additional form of gap gene is found in gamma proteobacteria and is responsible for the conversion of erythrose-4-phosphate (E4P) to 4-phospho-erythronate in the biosynthesis of pyridoxine. This pathway of pyridoxine biosynthesis appears to be limited, however, to a relatively small number of bacterial species although it is prevalent among the gamma-proteobacteria. This enzyme is described by TIGR001532. These sequences generally score between trusted and noise to this GAPDH model due to the close evolutionary relationship. There exists the possiblity that some forms of GAPDH may be bifunctional and act on E4P in species which make pyridoxine and via hydroxythreonine and lack a separate E4PDH enzyme (for instance, the GAPDH from Bacillus stearothermophilus has been shown to posess a limited E4PD activity as well as a robust GAPDH activity). There are a great number of sequences in the databases which score between trusted and noise to this model, nearly all of them due to fragmentary sequences. It seems that study of this gene has been carried out in many species utilizing PCR probes which exclude the extreme ends of the consenses used to define this model. The noise level is set relative not to E4PD, but the next closest outliers, the class II GAPDH's (found in archaea, TIGR01546) and aspartate semialdehyde dehydrogenase (ASADH, TIGR01296) both of which have highest-scoring hits around -225 to the prior model. [Energy metabolism, Glycolysis/gluconeogenesis] Pssm-ID: 273675 [Multi-domain] Cd Length: 326 Bit Score: 36.10 E-value: 4.26e-05
|
||||||
gapA | PRK15425 | glyceraldehyde-3-phosphate dehydrogenase; |
1-16 | 4.79e-05 | ||
glyceraldehyde-3-phosphate dehydrogenase; Pssm-ID: 185323 [Multi-domain] Cd Length: 331 Bit Score: 35.87 E-value: 4.79e-05
|
||||||
PLN02358 | PLN02358 | glyceraldehyde-3-phosphate dehydrogenase |
1-16 | 2.29e-04 | ||
glyceraldehyde-3-phosphate dehydrogenase Pssm-ID: 165999 [Multi-domain] Cd Length: 338 Bit Score: 34.31 E-value: 2.29e-04
|
||||||
GAPDH_C | cd18123 | C-terminal catalytic domain of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and similar ... |
1-14 | 6.30e-04 | ||
C-terminal catalytic domain of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and similar proteins; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in glycolysis and gluconeogenesis by reversibly catalyzing the oxidation and phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-diphospho-glycerate. It has been implicated in varied activities including regulating mRNA stability, the regulation of gene expression, induction of apoptosis, intracellular membrane trafficking, iron uptake and transport (via secreted GAPDH), heme metabolism, the maintenance of genomic integrity, and nuclear tRNA export. GAPDH proteins contains an N-terminal NAD(P)-binding domain and a C-terminal catalytic domain. The primarily N-terminal NAD(P)-binding domain contains a Rossmann fold which combines with the catalytic cysteine-containing C-terminus to form a catalytic cleft. Phosphatidyl-serine, RNA, and glutathione binding sites have been identified in the N-terminus. Different forms of GAPDH exist which utilize NAD (1.2.1.12), NADP (1.2.1.13) or either (1.2.1.59). GADPH family members include the ubiquitous NAD+ or NADP+ utilizing type I, type II NADP+ utilizing mainly from archaea, and a small clade of dehydrogenases, called erythrose-4-phosphate dehydrogenase (E4PDH) proteins, which utilize NAD+ to oxidize erythrose-4-phosphate (E4P) to 4-phospho-erythronate, a precursor for the de novo synthesis of pyridoxine via 4-hydroxythreonine and D-1-deoxyxylulose. Pssm-ID: 467673 Cd Length: 164 Bit Score: 32.97 E-value: 6.30e-04
|
||||||
PTZ00434 | PTZ00434 | cytosolic glyceraldehyde 3-phosphate dehydrogenase; Provisional |
4-16 | 2.01e-03 | ||
cytosolic glyceraldehyde 3-phosphate dehydrogenase; Provisional Pssm-ID: 185614 [Multi-domain] Cd Length: 361 Bit Score: 31.56 E-value: 2.01e-03
|
||||||
PLN02237 | PLN02237 | glyceraldehyde-3-phosphate dehydrogenase B |
2-16 | 2.45e-03 | ||
glyceraldehyde-3-phosphate dehydrogenase B Pssm-ID: 215131 [Multi-domain] Cd Length: 442 Bit Score: 31.02 E-value: 2.45e-03
|
||||||
PLN03096 | PLN03096 | glyceraldehyde-3-phosphate dehydrogenase A; Provisional |
2-16 | 4.16e-03 | ||
glyceraldehyde-3-phosphate dehydrogenase A; Provisional Pssm-ID: 215572 [Multi-domain] Cd Length: 395 Bit Score: 30.67 E-value: 4.16e-03
|
||||||
PRK08955 | PRK08955 | glyceraldehyde-3-phosphate dehydrogenase; Validated |
1-16 | 9.11e-03 | ||
glyceraldehyde-3-phosphate dehydrogenase; Validated Pssm-ID: 169599 [Multi-domain] Cd Length: 334 Bit Score: 29.70 E-value: 9.11e-03
|
||||||
Blast search parameters | ||||
|