complement C2 isoform 2 precursor [Homo sapiens]
serine protease( domain architecture ID 10034133)
trypsin-like serine protease such as human plasminogen, the precursor of the widely distributed protease plasmin, or granzyme B, a human enzyme necessary for target cell lysis in cell-mediated immune responses
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
vWA_complement_factors | cd01470 | Complement factors B and C2 are two critical proteases for complement activation. They both ... |
121-318 | 2.81e-97 | |||||
Complement factors B and C2 are two critical proteases for complement activation. They both contain three CCP or Sushi domains, a trypsin-type serine protease domain and a single VWA domain with a conserved metal ion dependent adhesion site referred commonly as the MIDAS motif. Orthologues of these molecules are found from echinoderms to chordates. During complement activation, the CCP domains are cleaved off, resulting in the formation of an active protease that cleaves and activates complement C3. Complement C2 is in the classical pathway and complement B is in the alternative pathway. The interaction of C2 with C4 and of factor B with C3b are both dependent on Mg2+ binding sites within the VWA domains and the VWA domain of factor B has been shown to mediate the binding of C3. This is consistent with the common inferred function of VWA domains as magnesium-dependent protein interaction domains. : Pssm-ID: 238747 [Multi-domain] Cd Length: 198 Bit Score: 295.74 E-value: 2.81e-97
|
|||||||||
Tryp_SPc | cd00190 | Trypsin-like serine protease; Many of these are synthesized as inactive precursor zymogens ... |
341-610 | 2.22e-40 | |||||
Trypsin-like serine protease; Many of these are synthesized as inactive precursor zymogens that are cleaved during limited proteolysis to generate their active forms. Alignment contains also inactive enzymes that have substitutions of the catalytic triad residues. : Pssm-ID: 238113 [Multi-domain] Cd Length: 232 Bit Score: 147.04 E-value: 2.22e-40
|
|||||||||
CCP | cd00033 | Complement control protein (CCP) modules (aka short consensus repeats SCRs or SUSHI repeats) ... |
19-73 | 6.70e-13 | |||||
Complement control protein (CCP) modules (aka short consensus repeats SCRs or SUSHI repeats) have been identified in several proteins of the complement system; SUSHI repeats (short complement-like repeat, SCR) are abundant in complement control proteins. The complement control protein (CCP) modules (also known as short consensus repeats SCRs or SUSHI repeats) contain approximately 60 amino acid residues and have been identified in several proteins of the complement system. Typically, 2 to 4 modules contribute to a binding site, implying that the orientation of the modules to each other is critical for function. : Pssm-ID: 153056 [Multi-domain] Cd Length: 57 Bit Score: 63.64 E-value: 6.70e-13
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
vWA_complement_factors | cd01470 | Complement factors B and C2 are two critical proteases for complement activation. They both ... |
121-318 | 2.81e-97 | |||||
Complement factors B and C2 are two critical proteases for complement activation. They both contain three CCP or Sushi domains, a trypsin-type serine protease domain and a single VWA domain with a conserved metal ion dependent adhesion site referred commonly as the MIDAS motif. Orthologues of these molecules are found from echinoderms to chordates. During complement activation, the CCP domains are cleaved off, resulting in the formation of an active protease that cleaves and activates complement C3. Complement C2 is in the classical pathway and complement B is in the alternative pathway. The interaction of C2 with C4 and of factor B with C3b are both dependent on Mg2+ binding sites within the VWA domains and the VWA domain of factor B has been shown to mediate the binding of C3. This is consistent with the common inferred function of VWA domains as magnesium-dependent protein interaction domains. Pssm-ID: 238747 [Multi-domain] Cd Length: 198 Bit Score: 295.74 E-value: 2.81e-97
|
|||||||||
Tryp_SPc | cd00190 | Trypsin-like serine protease; Many of these are synthesized as inactive precursor zymogens ... |
341-610 | 2.22e-40 | |||||
Trypsin-like serine protease; Many of these are synthesized as inactive precursor zymogens that are cleaved during limited proteolysis to generate their active forms. Alignment contains also inactive enzymes that have substitutions of the catalytic triad residues. Pssm-ID: 238113 [Multi-domain] Cd Length: 232 Bit Score: 147.04 E-value: 2.22e-40
|
|||||||||
Tryp_SPc | smart00020 | Trypsin-like serine protease; Many of these are synthesised as inactive precursor zymogens ... |
341-573 | 1.06e-38 | |||||
Trypsin-like serine protease; Many of these are synthesised as inactive precursor zymogens that are cleaved during limited proteolysis to generate their active forms. A few, however, are active as single chain molecules, and others are inactive due to substitutions of the catalytic triad residues. Pssm-ID: 214473 Cd Length: 229 Bit Score: 142.43 E-value: 1.06e-38
|
|||||||||
VWA | pfam00092 | von Willebrand factor type A domain; |
122-319 | 2.38e-31 | |||||
von Willebrand factor type A domain; Pssm-ID: 459670 [Multi-domain] Cd Length: 174 Bit Score: 120.07 E-value: 2.38e-31
|
|||||||||
VWA | smart00327 | von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins ... |
122-315 | 5.05e-27 | |||||
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods. Pssm-ID: 214621 [Multi-domain] Cd Length: 175 Bit Score: 107.93 E-value: 5.05e-27
|
|||||||||
Trypsin | pfam00089 | Trypsin; |
347-568 | 1.56e-23 | |||||
Trypsin; Pssm-ID: 459667 [Multi-domain] Cd Length: 219 Bit Score: 99.05 E-value: 1.56e-23
|
|||||||||
COG5640 | COG5640 | Secreted trypsin-like serine protease [Posttranslational modification, protein turnover, ... |
339-577 | 1.00e-20 | |||||
Secreted trypsin-like serine protease [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 444365 [Multi-domain] Cd Length: 262 Bit Score: 92.02 E-value: 1.00e-20
|
|||||||||
CCP | cd00033 | Complement control protein (CCP) modules (aka short consensus repeats SCRs or SUSHI repeats) ... |
19-73 | 6.70e-13 | |||||
Complement control protein (CCP) modules (aka short consensus repeats SCRs or SUSHI repeats) have been identified in several proteins of the complement system; SUSHI repeats (short complement-like repeat, SCR) are abundant in complement control proteins. The complement control protein (CCP) modules (also known as short consensus repeats SCRs or SUSHI repeats) contain approximately 60 amino acid residues and have been identified in several proteins of the complement system. Typically, 2 to 4 modules contribute to a binding site, implying that the orientation of the modules to each other is critical for function. Pssm-ID: 153056 [Multi-domain] Cd Length: 57 Bit Score: 63.64 E-value: 6.70e-13
|
|||||||||
YfbK | COG2304 | Secreted protein containing bacterial Ig-like domain and vWFA domain [General function ... |
110-352 | 1.58e-12 | |||||
Secreted protein containing bacterial Ig-like domain and vWFA domain [General function prediction only]; Pssm-ID: 441879 [Multi-domain] Cd Length: 289 Bit Score: 68.59 E-value: 1.58e-12
|
|||||||||
CCP | smart00032 | Domain abundant in complement control proteins; SUSHI repeat; short complement-like repeat ... |
19-72 | 5.21e-12 | |||||
Domain abundant in complement control proteins; SUSHI repeat; short complement-like repeat (SCR); The complement control protein (CCP) modules (also known as short consensus repeats SCRs or SUSHI repeats) contain approximately 60 amino acid residues and have been identified in several proteins of the complement system. A missense mutation in seventh CCP domain causes deficiency of the b subunit of factor XIII. Pssm-ID: 214478 [Multi-domain] Cd Length: 56 Bit Score: 61.00 E-value: 5.21e-12
|
|||||||||
Sushi | pfam00084 | Sushi repeat (SCR repeat); |
19-72 | 2.77e-08 | |||||
Sushi repeat (SCR repeat); Pssm-ID: 459664 [Multi-domain] Cd Length: 56 Bit Score: 50.58 E-value: 2.77e-08
|
|||||||||
PHA02927 | PHA02927 | secreted complement-binding protein; Provisional |
19-72 | 5.79e-05 | |||||
secreted complement-binding protein; Provisional Pssm-ID: 222943 [Multi-domain] Cd Length: 263 Bit Score: 45.03 E-value: 5.79e-05
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
vWA_complement_factors | cd01470 | Complement factors B and C2 are two critical proteases for complement activation. They both ... |
121-318 | 2.81e-97 | |||||
Complement factors B and C2 are two critical proteases for complement activation. They both contain three CCP or Sushi domains, a trypsin-type serine protease domain and a single VWA domain with a conserved metal ion dependent adhesion site referred commonly as the MIDAS motif. Orthologues of these molecules are found from echinoderms to chordates. During complement activation, the CCP domains are cleaved off, resulting in the formation of an active protease that cleaves and activates complement C3. Complement C2 is in the classical pathway and complement B is in the alternative pathway. The interaction of C2 with C4 and of factor B with C3b are both dependent on Mg2+ binding sites within the VWA domains and the VWA domain of factor B has been shown to mediate the binding of C3. This is consistent with the common inferred function of VWA domains as magnesium-dependent protein interaction domains. Pssm-ID: 238747 [Multi-domain] Cd Length: 198 Bit Score: 295.74 E-value: 2.81e-97
|
|||||||||
Tryp_SPc | cd00190 | Trypsin-like serine protease; Many of these are synthesized as inactive precursor zymogens ... |
341-610 | 2.22e-40 | |||||
Trypsin-like serine protease; Many of these are synthesized as inactive precursor zymogens that are cleaved during limited proteolysis to generate their active forms. Alignment contains also inactive enzymes that have substitutions of the catalytic triad residues. Pssm-ID: 238113 [Multi-domain] Cd Length: 232 Bit Score: 147.04 E-value: 2.22e-40
|
|||||||||
Tryp_SPc | smart00020 | Trypsin-like serine protease; Many of these are synthesised as inactive precursor zymogens ... |
341-573 | 1.06e-38 | |||||
Trypsin-like serine protease; Many of these are synthesised as inactive precursor zymogens that are cleaved during limited proteolysis to generate their active forms. A few, however, are active as single chain molecules, and others are inactive due to substitutions of the catalytic triad residues. Pssm-ID: 214473 Cd Length: 229 Bit Score: 142.43 E-value: 1.06e-38
|
|||||||||
vWFA_subfamily_ECM | cd01450 | Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ... |
121-305 | 5.65e-34 | |||||
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains Pssm-ID: 238727 [Multi-domain] Cd Length: 161 Bit Score: 127.02 E-value: 5.65e-34
|
|||||||||
VWA | pfam00092 | von Willebrand factor type A domain; |
122-319 | 2.38e-31 | |||||
von Willebrand factor type A domain; Pssm-ID: 459670 [Multi-domain] Cd Length: 174 Bit Score: 120.07 E-value: 2.38e-31
|
|||||||||
VWA | smart00327 | von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins ... |
122-315 | 5.05e-27 | |||||
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods. Pssm-ID: 214621 [Multi-domain] Cd Length: 175 Bit Score: 107.93 E-value: 5.05e-27
|
|||||||||
Trypsin | pfam00089 | Trypsin; |
347-568 | 1.56e-23 | |||||
Trypsin; Pssm-ID: 459667 [Multi-domain] Cd Length: 219 Bit Score: 99.05 E-value: 1.56e-23
|
|||||||||
COG5640 | COG5640 | Secreted trypsin-like serine protease [Posttranslational modification, protein turnover, ... |
339-577 | 1.00e-20 | |||||
Secreted trypsin-like serine protease [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 444365 [Multi-domain] Cd Length: 262 Bit Score: 92.02 E-value: 1.00e-20
|
|||||||||
vWFA | cd00198 | Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ... |
121-302 | 1.32e-19 | |||||
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Pssm-ID: 238119 [Multi-domain] Cd Length: 161 Bit Score: 86.08 E-value: 1.32e-19
|
|||||||||
CCP | cd00033 | Complement control protein (CCP) modules (aka short consensus repeats SCRs or SUSHI repeats) ... |
19-73 | 6.70e-13 | |||||
Complement control protein (CCP) modules (aka short consensus repeats SCRs or SUSHI repeats) have been identified in several proteins of the complement system; SUSHI repeats (short complement-like repeat, SCR) are abundant in complement control proteins. The complement control protein (CCP) modules (also known as short consensus repeats SCRs or SUSHI repeats) contain approximately 60 amino acid residues and have been identified in several proteins of the complement system. Typically, 2 to 4 modules contribute to a binding site, implying that the orientation of the modules to each other is critical for function. Pssm-ID: 153056 [Multi-domain] Cd Length: 57 Bit Score: 63.64 E-value: 6.70e-13
|
|||||||||
YfbK | COG2304 | Secreted protein containing bacterial Ig-like domain and vWFA domain [General function ... |
110-352 | 1.58e-12 | |||||
Secreted protein containing bacterial Ig-like domain and vWFA domain [General function prediction only]; Pssm-ID: 441879 [Multi-domain] Cd Length: 289 Bit Score: 68.59 E-value: 1.58e-12
|
|||||||||
ChlD | COG1240 | vWFA (von Willebrand factor type A) domain of Mg and Co chelatases [Coenzyme transport and ... |
109-318 | 4.20e-12 | |||||
vWFA (von Willebrand factor type A) domain of Mg and Co chelatases [Coenzyme transport and metabolism]; Pssm-ID: 440853 [Multi-domain] Cd Length: 262 Bit Score: 66.89 E-value: 4.20e-12
|
|||||||||
CCP | smart00032 | Domain abundant in complement control proteins; SUSHI repeat; short complement-like repeat ... |
19-72 | 5.21e-12 | |||||
Domain abundant in complement control proteins; SUSHI repeat; short complement-like repeat (SCR); The complement control protein (CCP) modules (also known as short consensus repeats SCRs or SUSHI repeats) contain approximately 60 amino acid residues and have been identified in several proteins of the complement system. A missense mutation in seventh CCP domain causes deficiency of the b subunit of factor XIII. Pssm-ID: 214478 [Multi-domain] Cd Length: 56 Bit Score: 61.00 E-value: 5.21e-12
|
|||||||||
Sushi | pfam00084 | Sushi repeat (SCR repeat); |
19-72 | 2.77e-08 | |||||
Sushi repeat (SCR repeat); Pssm-ID: 459664 [Multi-domain] Cd Length: 56 Bit Score: 50.58 E-value: 2.77e-08
|
|||||||||
vWA_collagen | cd01472 | von Willebrand factor (vWF) type A domain; equivalent to the I-domain of integrins. This ... |
122-309 | 5.23e-08 | |||||
von Willebrand factor (vWF) type A domain; equivalent to the I-domain of integrins. This domain has a variety of functions including: intermolecular adhesion, cell migration, signalling, transcription, and DNA repair. In integrins these domains form heterodimers while in vWF it forms homodimers and multimers. There are different interaction surfaces of this domain as seen by its complexes with collagen with either integrin or human vWFA. In integrins collagen binding occurs via the metal ion-dependent adhesion site (MIDAS) and involves three surface loops located on the upper surface of the molecule. In human vWFA, collagen binding is thought to occur on the bottom of the molecule and does not involve the vestigial MIDAS motif. Pssm-ID: 238749 [Multi-domain] Cd Length: 164 Bit Score: 52.62 E-value: 5.23e-08
|
|||||||||
vWA_Matrilin | cd01475 | VWA_Matrilin: In cartilaginous plate, extracellular matrix molecules mediate cell-matrix and ... |
119-341 | 5.26e-08 | |||||
VWA_Matrilin: In cartilaginous plate, extracellular matrix molecules mediate cell-matrix and matrix-matrix interactions thereby providing tissue integrity. Some members of the matrilin family are expressed specifically in developing cartilage rudiments. The matrilin family consists of at least four members. All the members of the matrilin family contain VWA domains, EGF-like domains and a heptad repeat coiled-coiled domain at the carboxy terminus which is responsible for the oligomerization of the matrilins. The VWA domains have been shown to be essential for matrilin network formation by interacting with matrix ligands. Pssm-ID: 238752 [Multi-domain] Cd Length: 224 Bit Score: 53.93 E-value: 5.26e-08
|
|||||||||
vWA_subgroup | cd01465 | VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
121-306 | 1.48e-07 | |||||
VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the function of the VWA domain in these proteins. The members do have a conserved MIDAS motif. The biochemical function however is not known. Pssm-ID: 238742 [Multi-domain] Cd Length: 170 Bit Score: 51.50 E-value: 1.48e-07
|
|||||||||
vWA_collagen_alphaI-XII-like | cd01482 | Collagen: The extracellular matrix represents a complex alloy of variable members of diverse ... |
125-309 | 2.12e-07 | |||||
Collagen: The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified thus far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. Some collagens have about 15-18 vWA domains in them. The VWA domains present in these collagens mediate protein-protein interactions. Pssm-ID: 238759 [Multi-domain] Cd Length: 164 Bit Score: 51.13 E-value: 2.12e-07
|
|||||||||
VWA_2 | pfam13519 | von Willebrand factor type A domain; |
123-223 | 2.13e-07 | |||||
von Willebrand factor type A domain; Pssm-ID: 463909 [Multi-domain] Cd Length: 103 Bit Score: 49.21 E-value: 2.13e-07
|
|||||||||
TerY | COG4245 | Uncharacterized conserved protein YegL, contains vWA domain of TerY type [Function unknown]; |
120-296 | 3.99e-07 | |||||
Uncharacterized conserved protein YegL, contains vWA domain of TerY type [Function unknown]; Pssm-ID: 443387 [Multi-domain] Cd Length: 196 Bit Score: 50.69 E-value: 3.99e-07
|
|||||||||
VWA_integrin_invertebrates | cd01476 | VWA_integrin (invertebrates): Integrins are a family of cell surface receptors that have ... |
121-306 | 3.98e-06 | |||||
VWA_integrin (invertebrates): Integrins are a family of cell surface receptors that have diverse functions in cell-cell and cell-extracellular matrix interactions. Because of their involvement in many biologically important adhesion processes, integrins are conserved across a wide range of multicellular animals. Integrins from invertebrates have been identified from six phyla. There are no data to date to suggest any immunological functions for the invertebrate integrins. The members of this sub-group have the conserved MIDAS motif that is charateristic of this domain suggesting the involvement of the integrins in the recognition and binding of multi-ligands. Pssm-ID: 238753 [Multi-domain] Cd Length: 163 Bit Score: 47.39 E-value: 3.98e-06
|
|||||||||
eMpr | COG3591 | V8-like Glu-specific endopeptidase [Posttranslational modification, protein turnover, ... |
360-439 | 7.43e-06 | |||||
V8-like Glu-specific endopeptidase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 442810 [Multi-domain] Cd Length: 194 Bit Score: 46.98 E-value: 7.43e-06
|
|||||||||
vWA_integrins_alpha_subunit | cd01469 | Integrins are a class of adhesion receptors that link the extracellular matrix to the ... |
126-313 | 1.07e-05 | |||||
Integrins are a class of adhesion receptors that link the extracellular matrix to the cytoskeleton and cooperate with growth factor receptors to promote celll survival, cell cycle progression and cell migration. Integrins consist of an alpha and a beta sub-unit. Each sub-unit has a large extracellular portion, a single transmembrane segment and a short cytoplasmic domain. The N-terminal domains of the alpha and beta subunits associate to form the integrin headpiece, which contains the ligand binding site, whereas the C-terminal segments traverse the plasma membrane and mediate interaction with the cytoskeleton and with signalling proteins.The VWA domains present in the alpha subunits of integrins seem to be a chordate specific radiation of the gene family being found only in vertebrates. They mediate protein-protein interactions. Pssm-ID: 238746 [Multi-domain] Cd Length: 177 Bit Score: 46.19 E-value: 1.07e-05
|
|||||||||
vWA_micronemal_protein | cd01471 | Micronemal proteins: The Toxoplasma lytic cycle begins when the parasite actively invades a ... |
121-282 | 1.37e-05 | |||||
Micronemal proteins: The Toxoplasma lytic cycle begins when the parasite actively invades a target cell. In association with invasion, T. gondii sequentially discharges three sets of secretory organelles beginning with the micronemes, which contain adhesive proteins involved in parasite attachment to a host cell. Deployed as protein complexes, several micronemal proteins possess vertebrate-derived adhesive sequences that function in binding receptors. The VWA domain likely mediates the protein-protein interactions of these with their interacting partners. Pssm-ID: 238748 [Multi-domain] Cd Length: 186 Bit Score: 46.22 E-value: 1.37e-05
|
|||||||||
PHA02927 | PHA02927 | secreted complement-binding protein; Provisional |
19-72 | 5.79e-05 | |||||
secreted complement-binding protein; Provisional Pssm-ID: 222943 [Multi-domain] Cd Length: 263 Bit Score: 45.03 E-value: 5.79e-05
|
|||||||||
ViaA | COG2425 | Uncharacterized conserved protein, contains a von Willebrand factor type A (vWA) domain ... |
123-282 | 8.75e-05 | |||||
Uncharacterized conserved protein, contains a von Willebrand factor type A (vWA) domain [Function unknown]; Pssm-ID: 441973 [Multi-domain] Cd Length: 263 Bit Score: 44.67 E-value: 8.75e-05
|
|||||||||
vWA_collagen_alpha_1-VI-type | cd01480 | VWA_collagen alpha(VI) type: The extracellular matrix represents a complex alloy of variable ... |
119-247 | 4.93e-04 | |||||
VWA_collagen alpha(VI) type: The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified thus far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. Some collagens have about 15-18 vWA domains in them. The VWA domains present in these collagens mediate protein-protein interactions. Pssm-ID: 238757 [Multi-domain] Cd Length: 186 Bit Score: 41.60 E-value: 4.93e-04
|
|||||||||
Blast search parameters | ||||
|