Solute carrier family 46 member 3 of the Major Facilitator Superfamily of transporters; Solute ...
3-437
0e+00
Solute carrier family 46 member 3 of the Major Facilitator Superfamily of transporters; Solute carrier family 46 member 3 (SLC46A3) is a lysosomal membrane protein that functions as a direct transporter of noncleavable antibody maytansine-based catabolites from the lysosome to the cytoplasm. SLC46A3 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
:
Pssm-ID: 341006 Cd Length: 396 Bit Score: 562.43 E-value: 0e+00
Solute carrier family 46 member 3 of the Major Facilitator Superfamily of transporters; Solute ...
3-437
0e+00
Solute carrier family 46 member 3 of the Major Facilitator Superfamily of transporters; Solute carrier family 46 member 3 (SLC46A3) is a lysosomal membrane protein that functions as a direct transporter of noncleavable antibody maytansine-based catabolites from the lysosome to the cytoplasm. SLC46A3 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 341006 Cd Length: 396 Bit Score: 562.43 E-value: 0e+00
Solute carrier family 46 member 3 of the Major Facilitator Superfamily of transporters; Solute ...
3-437
0e+00
Solute carrier family 46 member 3 of the Major Facilitator Superfamily of transporters; Solute carrier family 46 member 3 (SLC46A3) is a lysosomal membrane protein that functions as a direct transporter of noncleavable antibody maytansine-based catabolites from the lysosome to the cytoplasm. SLC46A3 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 341006 Cd Length: 396 Bit Score: 562.43 E-value: 0e+00
Solute carrier 46 (SLC46) family of the Major Facilitator Superfamily of transporters; The ...
3-437
1.70e-97
Solute carrier 46 (SLC46) family of the Major Facilitator Superfamily of transporters; The solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3) and similar proteins from insects and nematodes. The best-studied member is SLC46A1, also called proton-coupled folate transporter (PCFT), which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. SLC46A2, also called thymic stromal cotransporter protein (TSCOT), is a putative 12-transmembrane protein mainly expressed in the thymic cortex in a specific thymic epithelial cell (TEC) subpopulation. SLC46A3 is a lysosomal membrane protein that functions as a direct transporter of noncleavable antibody maytansine-based catabolites from the lysosome to the cytoplasm. The SLC46 family belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340944 [Multi-domain] Cd Length: 360 Bit Score: 297.27 E-value: 1.70e-97
Solute carrier family 46 member 1, also called Proton-coupled folate transporter, of the Major ...
6-430
2.01e-69
Solute carrier family 46 member 1, also called Proton-coupled folate transporter, of the Major Facilitator Superfamily of transporters; Solute carrier family 46 member 1 (SLC46A1) is also called proton-coupled folate transporter (PCFT), G21, or heme carrier protein 1 (HCP1). It functions in two ways: as an intestinal proton-coupled high-affinity folate transporter that facilitates the absorption of folates across the brush-border membrane of the small intestine; and as an intestinal heme transporter which mediates heme uptake from the gut lumen into duodenal epithelial cells. It displays a higher affinity for folate than heme. It is also expressed in the choroid plexus and is required for transport of folates into the cerebrospinal fluid. Loss of function mutations in the SLC46A1 gene results in the autosomal recessive disorder "hereditary folate malabsorption" (HFM), characterized by severe systemic and cerebral folate deficiency. SLC46A1 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 341007 [Multi-domain] Cd Length: 425 Bit Score: 227.00 E-value: 2.01e-69
Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of the eukaryotic proteins MFSD9, MFSD10, MFSD14, and SLC46 family proteins, as well as bacterial multidrug resistance (MDR) transporters such as tetracycline resistance protein TetA and multidrug resistance protein MdtG. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. TetA proteins confer resistance to tetracycline while MdtG confers resistance to fosfomycin and deoxycholate. The Solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3), the best-studied of which is SLC46A1, which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. MFSD10 facilitates the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs) and confers resistance to such NSAIDs. The SLC46/TetA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340888 [Multi-domain] Cd Length: 349 Bit Score: 155.43 E-value: 3.40e-43
Solute carrier family 46 member 2, also called Thymic stromal cotransporter protein, of the ...
50-436
2.51e-42
Solute carrier family 46 member 2, also called Thymic stromal cotransporter protein, of the Major Facilitator Superfamily of transporters; Solute carrier family 46 member 2 (SLC46A2) is also called thymic stromal cotransporter protein (TSCOT). It is a putative 12-transmembrane protein mainly expressed in the thymic cortex in a specific thymic epithelial cell (TEC) subpopulation. Polymorphisms in TSCOT are linked to cervical cancer in affected sib-pairs with high mean age at diagnosis. TSCOT belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 341008 Cd Length: 383 Bit Score: 154.14 E-value: 2.51e-42
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ...
79-417
1.99e-10
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated.
Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 62.44 E-value: 1.99e-10
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ...
82-398
7.46e-10
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 60.28 E-value: 7.46e-10
Tetracycline resistance protein TetA and related proteins of the Major Facilitator Superfamily ...
90-419
2.05e-09
Tetracycline resistance protein TetA and related proteins of the Major Facilitator Superfamily of transporters; This subfamily is composed of tetracycline resistance proteins similar to Escherichia coli TetA(A), TetA(B), and TetA(E), which are metal-tetracycline/H(+) antiporters that confer resistance to tetracycline by an active tetracycline efflux, which is an energy-dependent process that decreases the accumulation of the antibiotic in cells. TetA-like tetracycline resistance proteins belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340946 [Multi-domain] Cd Length: 385 Bit Score: 59.19 E-value: 2.05e-09
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ...
86-354
1.10e-05
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 47.54 E-value: 1.10e-05
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ...
82-218
5.37e-05
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 45.26 E-value: 5.37e-05
MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and ...
79-217
6.22e-03
MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and metabolism, Amino acid transport and metabolism, Inorganic ion transport and metabolism, General function prediction only];
Pssm-ID: 440245 [Multi-domain] Cd Length: 295 Bit Score: 38.64 E-value: 6.22e-03
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the ...
84-249
7.02e-03
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MdtH and similar multidrug resistance (MDR) transporters from bacteria and archaea, many of which remain uncharacterized. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtH confers resistance to norfloxacin and enoxacin. MdtH-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 340887 [Multi-domain] Cd Length: 376 Bit Score: 38.75 E-value: 7.02e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options