NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|2078830397]
View 

Chain s, Small nuclear ribonucleoprotein-associated protein B

Protein Classification

small nuclear ribonucleoprotein-associated protein( domain architecture ID 10109534)

small nuclear ribonucleoprotein-associated protein (SNRP) plays an essential role in the biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs)

CATH:  2.30.30.100
Gene Ontology:  GO:0008380|GO:0003723

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
Sm_B cd01717
Sm protein B; The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a ...
8-98 5.91e-34

Sm protein B; The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold, containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet.


:

Pssm-ID: 212464  Cd Length: 80  Bit Score: 115.73  E-value: 5.91e-34
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397   8 HSSRLANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEERVPKtqldklrprkdSKDGTTLNIKVEKRVLGLTIL 87
Cdd:cd01717     1 KSSKMLQYINYRMRVTLQDGRQFVGTFLAFDKHMNLVLSDCEEFRKIK-----------PKKKKKGEEREEKRVLGLVLL 69
                          90
                  ....*....|.
gi 2078830397  88 RGEQILSTVVE 98
Cdd:cd01717    70 RGENVVSMTVE 80
 
Name Accession Description Interval E-value
Sm_B cd01717
Sm protein B; The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a ...
8-98 5.91e-34

Sm protein B; The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold, containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet.


Pssm-ID: 212464  Cd Length: 80  Bit Score: 115.73  E-value: 5.91e-34
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397   8 HSSRLANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEERVPKtqldklrprkdSKDGTTLNIKVEKRVLGLTIL 87
Cdd:cd01717     1 KSSKMLQYINYRMRVTLQDGRQFVGTFLAFDKHMNLVLSDCEEFRKIK-----------PKKKKKGEEREEKRVLGLVLL 69
                          90
                  ....*....|.
gi 2078830397  88 RGEQILSTVVE 98
Cdd:cd01717    70 RGENVVSMTVE 80
LSM pfam01423
LSM domain; The LSM domain contains Sm proteins as well as other related LSM (Like Sm) ...
12-94 4.92e-14

LSM domain; The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.


Pssm-ID: 426258  Cd Length: 66  Bit Score: 64.06  E-value: 4.92e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397  12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEervpktqldklrprkdskdgttLNIKVEKRVLGLTILRGEQ 91
Cdd:pfam01423   3 LKKLLGKRVLVELKNGRELRGTLKGFDQFMNLVLDDVEE----------------------TIKDGEVRKLGLVLIRGNN 60

                  ...
gi 2078830397  92 ILS 94
Cdd:pfam01423  61 IVL 63
Sm smart00651
snRNP Sm proteins; small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA ...
12-94 9.58e-13

snRNP Sm proteins; small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing


Pssm-ID: 197820 [Multi-domain]  Cd Length: 67  Bit Score: 60.59  E-value: 9.58e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397   12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEervpktqldklrprkdskdgtTLNIKVEKRVLGLTILRGEQ 91
Cdd:smart00651   3 LKKLIGKRVLVELKNGREYRGTLKGFDQFMNLVLEDVEE---------------------TVKDGEKKRKLGLVFIRGNN 61

                   ...
gi 2078830397   92 ILS 94
Cdd:smart00651  62 IVY 64
LSM1 COG1958
Small nuclear ribonucleoprotein (snRNP) homolog [Transcription];
12-94 8.76e-09

Small nuclear ribonucleoprotein (snRNP) homolog [Transcription];


Pssm-ID: 441561  Cd Length: 71  Bit Score: 50.18  E-value: 8.76e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397  12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEErvpktqldklrprkdsKDGTTlnikveKRVLGLTILRGEQ 91
Cdd:COG1958     9 LEKSLGKRVLVKLKDGREYRGKLKGYDQHMNLVLEDAEEI----------------DDGEV------VRKLGTVVIRGDN 66

                  ...
gi 2078830397  92 ILS 94
Cdd:COG1958    67 VVF 69
 
Name Accession Description Interval E-value
Sm_B cd01717
Sm protein B; The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a ...
8-98 5.91e-34

Sm protein B; The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold, containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet.


Pssm-ID: 212464  Cd Length: 80  Bit Score: 115.73  E-value: 5.91e-34
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397   8 HSSRLANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEERVPKtqldklrprkdSKDGTTLNIKVEKRVLGLTIL 87
Cdd:cd01717     1 KSSKMLQYINYRMRVTLQDGRQFVGTFLAFDKHMNLVLSDCEEFRKIK-----------PKKKKKGEEREEKRVLGLVLL 69
                          90
                  ....*....|.
gi 2078830397  88 RGEQILSTVVE 98
Cdd:cd01717    70 RGENVVSMTVE 80
LSM pfam01423
LSM domain; The LSM domain contains Sm proteins as well as other related LSM (Like Sm) ...
12-94 4.92e-14

LSM domain; The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings.


Pssm-ID: 426258  Cd Length: 66  Bit Score: 64.06  E-value: 4.92e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397  12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEervpktqldklrprkdskdgttLNIKVEKRVLGLTILRGEQ 91
Cdd:pfam01423   3 LKKLLGKRVLVELKNGRELRGTLKGFDQFMNLVLDDVEE----------------------TIKDGEVRKLGLVLIRGNN 60

                  ...
gi 2078830397  92 ILS 94
Cdd:pfam01423  61 IVL 63
Sm smart00651
snRNP Sm proteins; small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA ...
12-94 9.58e-13

snRNP Sm proteins; small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing


Pssm-ID: 197820 [Multi-domain]  Cd Length: 67  Bit Score: 60.59  E-value: 9.58e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397   12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEervpktqldklrprkdskdgtTLNIKVEKRVLGLTILRGEQ 91
Cdd:smart00651   3 LKKLIGKRVLVELKNGREYRGTLKGFDQFMNLVLEDVEE---------------------TVKDGEKKRKLGLVFIRGNN 61

                   ...
gi 2078830397   92 ILS 94
Cdd:smart00651  62 IVY 64
LSm8 cd01727
Like-Sm protein 8; The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a ...
9-92 2.44e-12

Like-Sm protein 8; The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. LSm657 is believed to be an assembly intermediate for both the LSm1-7 and LSm2-8 rings. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet.


Pssm-ID: 212474  Cd Length: 91  Bit Score: 60.23  E-value: 2.44e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397   9 SSRLANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEervpktqldklrpRKDSKDGttlniKVEKRVLGLTILR 88
Cdd:cd01727     1 SSLLEDYLNKRVVVITTDGRVIVGTLKGFDQTTNLILSNCHE-------------RVYSSDE-----GVEEVPLGLYLLR 62

                  ....
gi 2078830397  89 GEQI 92
Cdd:cd01727    63 GDNV 66
LSMD1 cd06168
LSM domain containing 1; The eukaryotic Sm and Sm-like (LSm) proteins associate with RNA to ...
11-98 7.30e-12

LSM domain containing 1; The eukaryotic Sm and Sm-like (LSm) proteins associate with RNA to form the core domain of the ribonucleoprotein particles involved in a variety of RNA processing events including pre-mRNA splicing, telomere replication, and mRNA degradation. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. LSMD1 proteins have a single Sm-like domain structure. Sm-like proteins exist in archaea as well as prokaryotes, forming heptameric and hexameric ring structures similar to those found in eukaryotes.


Pssm-ID: 212486  Cd Length: 73  Bit Score: 58.34  E-value: 7.30e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397  11 RLANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEERVPKTQLDKlrprkdskdgttlnikvEKRVLGLTILRGE 90
Cdd:cd06168     3 KLRKLLGRTLRVTLTDGRVLVGTFVCTDKDGNIILSNAEEYRKPSDLGAE-----------------EPRSLGLVMVPGK 65

                  ....*...
gi 2078830397  91 QILSTVVE 98
Cdd:cd06168    66 HIVSIEVD 73
Sm_like cd00600
Sm and related proteins; The eukaryotic Sm and Sm-like (LSm) proteins associate with RNA to ...
12-94 3.69e-10

Sm and related proteins; The eukaryotic Sm and Sm-like (LSm) proteins associate with RNA to form the core domain of the ribonucleoprotein particles involved in a variety of RNA processing events including pre-mRNA splicing, telomere replication, and mRNA degradation. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm-like proteins exist in archaea as well as prokaryotes that form heptameric and hexameric ring structures similar to those found in eukaryotes.


Pssm-ID: 212462 [Multi-domain]  Cd Length: 63  Bit Score: 53.79  E-value: 3.69e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397  12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEERvpktqldklrprkdskdgttlnIKVEKRVLGLTILRGEQ 91
Cdd:cd00600     1 LKDFIGKTVSVELKDGRVLTGTLVAFDKYMNLVLDDVVETG----------------------RDGKVRVLGLVLIRGSN 58

                  ...
gi 2078830397  92 ILS 94
Cdd:cd00600    59 IVS 61
LSM1 COG1958
Small nuclear ribonucleoprotein (snRNP) homolog [Transcription];
12-94 8.76e-09

Small nuclear ribonucleoprotein (snRNP) homolog [Transcription];


Pssm-ID: 441561  Cd Length: 71  Bit Score: 50.18  E-value: 8.76e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397  12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEErvpktqldklrprkdsKDGTTlnikveKRVLGLTILRGEQ 91
Cdd:COG1958     9 LEKSLGKRVLVKLKDGREYRGKLKGYDQHMNLVLEDAEEI----------------DDGEV------VRKLGTVVIRGDN 66

                  ...
gi 2078830397  92 ILS 94
Cdd:COG1958    67 VVF 69
LSm7 cd01729
Like-Sm protein 7; The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a ...
12-94 5.70e-07

Like-Sm protein 7; The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. LSm657 is believed to be an assembly intermediate for both the LSm1-7 and LSm2-8 rings. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet.


Pssm-ID: 212476  Cd Length: 89  Bit Score: 45.65  E-value: 5.70e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397  12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEErvpktqldkLRPRKDSkdgttLNIKVEKRVLGLTILRGEQ 91
Cdd:cd01729     7 LSKYVDKKIRVKFQGGREVTGILKGYDQLLNLVLDDTVEY---------LRDPEDP-----YKLTDETRSLGLVVCRGTS 72

                  ...
gi 2078830397  92 ILS 94
Cdd:cd01729    73 VVL 75
LSm1 cd01728
Like-Sm protein 1; The eukaryotic LSm proteins (LSm1-7) assemble into a hetero-heptameric ring ...
12-93 1.10e-05

Like-Sm protein 1; The eukaryotic LSm proteins (LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. Accumulation of uridylated RNAs in an lsm1 mutant suggests an involvement of the LSm1-7 complex in recognition of the 3' uridylation tag and recruitment of the decapping machinery. LSm1-7, together with Pat1, are also called the decapping activator. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet.


Pssm-ID: 212475  Cd Length: 74  Bit Score: 41.73  E-value: 1.10e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397  12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEErvpktqldklrprkdskdgTTLNIKVEKRVLGLTILRGEQ 91
Cdd:cd01728     7 LEEELDKKILVVLRDGRKLIGILRSFDQFANLVLEDTVER-------------------IIVGNQYGDIPRGLFIIRGEN 67

                  ..
gi 2078830397  92 IL 93
Cdd:cd01728    68 VV 69
Sm_G cd01719
Sm protein G; The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a ...
8-59 2.18e-04

Sm protein G; The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm subunit G binds subunits E and F to form a trimer which then assembles onto snRNA along with the D1/D2 and D3/B heterodimers forming a seven-membered ring structure.


Pssm-ID: 212466  Cd Length: 70  Bit Score: 38.27  E-value: 2.18e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 2078830397   8 HSSRLANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIEERVPKTQLD 59
Cdd:cd01719     1 HPPELKKYMDKRLSLKLNGNRKVSGVLRGFDPFMNLVLDDAVEEVGDGEKTP 52
LSm6 cd01726
Like-Sm protein 6; The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a ...
12-50 7.28e-04

Like-Sm protein 6; The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. LSm657 is believed to be an assembly intermediate for both the LSm1-7 and LSm2-8 rings. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet.


Pssm-ID: 212473  Cd Length: 68  Bit Score: 36.73  E-value: 7.28e-04
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 2078830397  12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECIE 50
Cdd:cd01726     6 LKKIIGKPVVVKLKNGVEYRGVLACLDGYMNLVLEDTEE 44
archaeal_Sm_like cd11679
archaeal Sm-related protein; Archaeal Sm-related proteins: The Sm proteins are conserved in ...
12-45 1.18e-03

archaeal Sm-related protein; Archaeal Sm-related proteins: The Sm proteins are conserved in all three domains of life and are always associated with U-rich RNA sequences. They function to mediate RNA-RNA interactions and RNA biogenesis. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Eukaryotic Sm proteins form part of specific small nuclear ribonucleoproteins (snRNPs) that are involved in the processing of pre-mRNAs to mature mRNAs, and are a major component of the eukaryotic spliceosome. Most snRNPs consist of seven Sm proteins (B/B', D1, D2, D3, E, F and G) arranged in a ring on a uridine-rich sequence (Sm site), plus a small nuclear RNA (snRNA) (either U1, U2, U5 or U4/6). Since archaebacteria do not have any splicing apparatus, their Sm proteins may play a more general role. Archaeal Lsm proteins are likely to represent the ancestral Sm domain.


Pssm-ID: 212490  Cd Length: 65  Bit Score: 36.09  E-value: 1.18e-03
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 2078830397  12 LANLIDYKLRVLTQDGRVYIGQLMAFD-KHMNLVL 45
Cdd:cd11679     5 LNSLLDKEVIVTLSNGKTYTGQLVGFDpSSLNIVL 39
archaeal_Sm1 cd01731
archaeal Sm protein 1; The archaeal Sm1 proteins: The Sm proteins are conserved in all three ...
26-94 3.21e-03

archaeal Sm protein 1; The archaeal Sm1 proteins: The Sm proteins are conserved in all three domains of life and are always associated with U-rich RNA sequences. They function to mediate RNA-RNA interactions and RNA biogenesis. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Eukaryotic Sm proteins form part of specific small nuclear ribonucleoproteins (snRNPs) that are involved in the processing of pre-mRNAs to mature mRNAs, and are a major component of the eukaryotic spliceosome. Most snRNPs consist of seven Sm proteins (B/B', D1, D2, D3, E, F and G) arranged in a ring on a uridine-rich sequence (Sm site), plus a small nuclear RNA (snRNA) (either U1, U2, U5 or U4/6). Since archaebacteria do not have any splicing apparatus, their Sm proteins may play a more general role. Archaeal LSm proteins are likely to represent the ancestral Sm domain.


Pssm-ID: 212478  Cd Length: 69  Bit Score: 34.86  E-value: 3.21e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2078830397  26 DGRVYIGQLMAFDKHMNLVLNECIEERvpktqldklrprkdskDGTTlnikveKRVLGLTILRGEQILS 94
Cdd:cd01731    20 GGKEVRGVLKGFDQHLNLVLENAEEII----------------EGES------VRKLGTVLVRGDNVVF 66
LSm3 cd01730
Like-Sm protein 3; The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a ...
23-92 3.79e-03

Like-Sm protein 3; The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet.


Pssm-ID: 212477  Cd Length: 82  Bit Score: 34.89  E-value: 3.79e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2078830397  23 LTQDGRVYI---------GQLMAFDKHMNLVLNEcIEERVpkTQLDklrprkdsKDGTTLN--IKVEKRVLGLTILRGEQ 91
Cdd:cd01730     8 LSLDERVYVklrgdrelrGRLHAYDQHLNMILGD-VEETI--TTVE--------IDEETYEeiYKTTKRNIPMLFVRGDG 76

                  .
gi 2078830397  92 I 92
Cdd:cd01730    77 V 77
LSm11_M cd01739
Like-Sm protein 11, middle domain; The eukaryotic Sm and Sm-like (LSm) proteins associate with ...
12-50 4.22e-03

Like-Sm protein 11, middle domain; The eukaryotic Sm and Sm-like (LSm) proteins associate with RNA to form the core domain of the ribonucleoprotein particles involved in a variety of RNA processing events including pre-mRNA splicing, telomere replication, and mRNA degradation. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. LSm11 is an SmD2-like subunit which binds U7 snRNA along with LSm10 and five other Sm subunits to form a 7-membered ring structure. LSm11 and the U7 snRNP of which it is a part are thought to play an important role in histone mRNA 3' processing.


Pssm-ID: 212485  Cd Length: 63  Bit Score: 34.54  E-value: 4.22e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2078830397  12 LANLIDYKLRVltqdgRVYI-----------GQLMAFDKHMNLVLNECIE 50
Cdd:cd01739     1 LHRWMRDRTRV-----KVYIrkakgirgsceGYLVAFDKHWNLALVDVDE 45
Sm_F cd01722
Sm protein F; The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a ...
12-53 8.83e-03

Sm protein F; The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm subunit F is capable of forming both homo- and hetero-heptamer ring structures. To form the hetero-heptamer, Sm subunit F initially binds subunits E and G to form a trimer which then assembles onto snRNA along with the D3/B and D1/D2 heterodimers.


Pssm-ID: 212469  Cd Length: 69  Bit Score: 33.72  E-value: 8.83e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 2078830397  12 LANLIDYKLRVLTQDGRVYIGQLMAFDKHMNLVLNECiEERV 53
Cdd:cd01722     6 LNGLTGKPVIVKLKWGMEYKGTLVSVDSYMNLQLANT-EEYI 46
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH