unnamed protein product, partial [Calcidiscus leptoporus]
MFS transporter( domain architecture ID 999995)
major facilitator superfamily (MFS) transporter facilitates the transport across cytoplasmic or internal membranes of one or more from a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides
List of domain hits
Name | Accession | Description | Interval | E-value | |||
UhpC super family | cl34453 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
1-131 | 1.10e-14 | |||
Sugar phosphate permease [Carbohydrate transport and metabolism]; The actual alignment was detected with superfamily member COG2271: Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 68.74 E-value: 1.10e-14
|
|||||||
Name | Accession | Description | Interval | E-value | |||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
1-131 | 1.10e-14 | |||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 68.74 E-value: 1.10e-14
|
|||||||
MFS_ExuT_GudP_like | cd17319 | Hexuronate transporter, Glucarate transporter, and similar transporters of the Major ... |
1-130 | 5.81e-14 | |||
Hexuronate transporter, Glucarate transporter, and similar transporters of the Major Facilitator Superfamily; This family is composed of predominantly bacterial transporters for hexuronate (ExuT), glucarate (GudP), galactarate (GarP), and galactonate (DgoT). They mediate the uptake of these compounds into the cell. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340877 [Multi-domain] Cd Length: 358 Bit Score: 66.83 E-value: 5.81e-14
|
|||||||
2A0104 | TIGR00881 | phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, ... |
1-130 | 1.39e-10 | |||
phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273319 [Multi-domain] Cd Length: 379 Bit Score: 57.39 E-value: 1.39e-10
|
|||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
6-128 | 2.76e-09 | |||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 53.58 E-value: 2.76e-09
|
|||||||
PRK11551 | PRK11551 | putative 3-hydroxyphenylpropionic transporter MhpT; Provisional |
20-125 | 2.82e-03 | |||
putative 3-hydroxyphenylpropionic transporter MhpT; Provisional Pssm-ID: 236927 [Multi-domain] Cd Length: 406 Bit Score: 36.48 E-value: 2.82e-03
|
|||||||
Name | Accession | Description | Interval | E-value | |||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
1-131 | 1.10e-14 | |||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 68.74 E-value: 1.10e-14
|
|||||||
MFS_ExuT_GudP_like | cd17319 | Hexuronate transporter, Glucarate transporter, and similar transporters of the Major ... |
1-130 | 5.81e-14 | |||
Hexuronate transporter, Glucarate transporter, and similar transporters of the Major Facilitator Superfamily; This family is composed of predominantly bacterial transporters for hexuronate (ExuT), glucarate (GudP), galactarate (GarP), and galactonate (DgoT). They mediate the uptake of these compounds into the cell. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340877 [Multi-domain] Cd Length: 358 Bit Score: 66.83 E-value: 5.81e-14
|
|||||||
MFS_spinster_like | cd17328 | Protein spinster and spinster homologs of the Major Facilitator Superfamily of transporters; ... |
2-120 | 2.85e-13 | |||
Protein spinster and spinster homologs of the Major Facilitator Superfamily of transporters; The protein spinster family includes Drosophila protein spinster, its vertebrate homologs, and similar proteins. Humans contain three homologs called protein spinster homologs 1 (SPNS1), 2 (SPNS2), and 3 (SPNS3). Protein spinster and its homologs may be sphingolipid transporters that play central roles in endosomes and/or lysosomes storage. SPNS2 is also called sphingosine 1-phosphate (S1P) transporter and is required for migration of myocardial precursors. S1P is a secreted lipid mediator that plays critical roles in cardiovascular, immunological, and neural development and function. The spinster-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340886 [Multi-domain] Cd Length: 405 Bit Score: 64.95 E-value: 2.85e-13
|
|||||||
MFS_SLC17A9_like | cd17380 | Solute carrier family 17 member 9 and similar proteins of the Major Facilitator Superfamily of ... |
13-130 | 9.99e-12 | |||
Solute carrier family 17 member 9 and similar proteins of the Major Facilitator Superfamily of transporters; This subfamily includes solute carrier family 17 member 9 (SLC17A9) and similar proteins including plant inorganic phosphate transporters (PHT4) that are also probably anion transporters. SLC17A9, also called vesicular nucleotide transporter (VNUT), is involved in vesicular storage and exocytosis of ATP. It facilitates the accumulation of ATP and other nucleotides in secretory vesicles such as adrenal chromaffin granules and synaptic vesicles. It also functions as a lysosomal ATP transporter and regulates cell viability. Plant PHT4 family transporters mediate the transport of inorganic phosphate and may also transport organic anions. The Arabidopsis protein AtPHT4;4 is a chloroplast-localized ascorbate transporter. PHT4 proteins show differential expression that suggests specialized functions. The SLC17A9-like subfamily belongs to the Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340938 [Multi-domain] Cd Length: 361 Bit Score: 60.65 E-value: 9.99e-12
|
|||||||
2A0104 | TIGR00881 | phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, ... |
1-130 | 1.39e-10 | |||
phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273319 [Multi-domain] Cd Length: 379 Bit Score: 57.39 E-value: 1.39e-10
|
|||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
6-131 | 2.41e-10 | |||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 56.52 E-value: 2.41e-10
|
|||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
1-120 | 3.41e-10 | |||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 56.04 E-value: 3.41e-10
|
|||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
6-128 | 2.76e-09 | |||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 53.58 E-value: 2.76e-09
|
|||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
1-131 | 8.84e-09 | |||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 52.19 E-value: 8.84e-09
|
|||||||
CynX | COG2807 | Cyanate permease [Inorganic ion transport and metabolism]; |
1-121 | 2.78e-08 | |||
Cyanate permease [Inorganic ion transport and metabolism]; Pssm-ID: 442057 [Multi-domain] Cd Length: 399 Bit Score: 50.64 E-value: 2.78e-08
|
|||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
1-128 | 4.36e-08 | |||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 50.27 E-value: 4.36e-08
|
|||||||
MFS_MT3072_like | cd17475 | Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072 and similar ... |
1-111 | 4.98e-08 | |||
Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072 and similar transporters of the Major Facilitator Superfamily; This family includes the Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072. It belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341028 [Multi-domain] Cd Length: 378 Bit Score: 49.93 E-value: 4.98e-08
|
|||||||
MFS_MMR_MDR_like | cd17321 | Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance ... |
9-122 | 7.26e-08 | |||
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340879 [Multi-domain] Cd Length: 370 Bit Score: 49.48 E-value: 7.26e-08
|
|||||||
MFS_arabinose_efflux_permease_like | cd17473 | Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; ... |
12-125 | 1.75e-07 | |||
Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; This family includes a group of putative arabinose efflux permease family transporters, such as alpha proteobacterium quinolone resistance protein NorA (characterized Staphylococcus aureus Quinolone resistance protein NorA belongs to a different group), Desulfovibrio dechloracetivorans bacillibactin exporter, Vibrio aerogenes antiseptic resistance protein. The biological function of those transporters remain unclear. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341026 [Multi-domain] Cd Length: 374 Bit Score: 48.34 E-value: 1.75e-07
|
|||||||
MFS_YfmO_like | cd17474 | Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major ... |
6-131 | 1.81e-07 | |||
Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major Facilitator Superfamily; This family is composed of Bacillus subtilis multidrug efflux protein YfmO, bacillibactin exporter YmfD/YmfE, uncharacterized MFS-type transporter YvmA, and similar proteins. YfmO acts to efflux copper or a copper complex, and could contribute to copper resistance. YmfD/YmfE is involved in secretion of bacillibactin. The YfmO-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341027 [Multi-domain] Cd Length: 374 Bit Score: 48.34 E-value: 1.81e-07
|
|||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
6-127 | 5.21e-07 | |||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 47.04 E-value: 5.21e-07
|
|||||||
MFS_NepI_like | cd17324 | Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ... |
1-131 | 1.49e-06 | |||
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 45.62 E-value: 1.49e-06
|
|||||||
MFS_MCT_SLC16 | cd17352 | Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily of transporters; ... |
1-121 | 2.67e-06 | |||
Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily of transporters; The animal Monocarboxylate transporter (MCT) family is also called Solute carrier family 16 (SLC16 or SLC16A). It is composed of 14 members, MCT1-14. MCTs play an integral role in cellular metabolism via lactate transport and have been implicated in metabolic synergy in tumors. MCT1-4 are proton-coupled transporters that facilitate the transport across the plasma membrane of monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and ketone bodies such as acetoacetate, beta-hydroxybutyrate and acetate. MCT8 and MCT10 are transporters which stimulate the cellular uptake of thyroid hormones such as thyroxine (T4), triiodothyronine (T3), reverse triiodothyronine (rT3) and diidothyronine (T2). MCT10 also functions as a sodium-independent transporter that mediates the uptake or efflux of aromatic acids. Many members are orphan transporters whose substrates are yet to be determined. The MCT family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340910 [Multi-domain] Cd Length: 361 Bit Score: 44.85 E-value: 2.67e-06
|
|||||||
MFS_MdtH_MDR_like | cd17329 | Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the ... |
5-109 | 2.87e-06 | |||
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MdtH and similar multidrug resistance (MDR) transporters from bacteria and archaea, many of which remain uncharacterized. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtH confers resistance to norfloxacin and enoxacin. MdtH-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340887 [Multi-domain] Cd Length: 376 Bit Score: 44.91 E-value: 2.87e-06
|
|||||||
MFS_SLC17 | cd17318 | Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily of transporters; The ... |
11-130 | 2.88e-06 | |||
Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily of transporters; The Solute carrier 17 (SLC17) family is primarily involved in the transport of organic anions. There are nime human proteins belonging to this family including: the type I phosphate transporters (SLC17A1-4) that were initially identified as sodium-dependent inorganic phosphate (Pi) transporters but are now known to be involved in tha transport of organic anions; lysosomal acidic sugar transporter (SLC17A5 or sialin), vesicular glutamate transporters (VGluT1#3 or SLC17A7, SLC17A6, and SLC17A8, respectively), and a vesicular nucleotide transporter (VNUT or SLC17A9). SLC17A1 and SLC17A3 have roles in the transport of urate and para-aminohippurate, respectively. The SLC17 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340876 [Multi-domain] Cd Length: 389 Bit Score: 44.92 E-value: 2.88e-06
|
|||||||
MFS_FEN2_like | cd17327 | Pantothenate transporter FEN2 and similar transporters of the Major Facilitator Superfamily; ... |
2-109 | 3.05e-06 | |||
Pantothenate transporter FEN2 and similar transporters of the Major Facilitator Superfamily; This family is composed of Saccharomyces cerevisiae pantothenate transporter FEN2 (or fenpropimorph resistance protein 2) and similar proteins from fungi and bacteria including fungal vitamin H transporter, allantoate permease, and high-affinity nicotinic acid transporter, as well as Pseudomonas putida phthalate transporter and nicotinate degradation protein T (nicT). These proteins are involved in the uptake into the cell of specific substrates such as pathothenate, biotin, allantoate, and nicotinic acid, among others. The FEN2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340885 [Multi-domain] Cd Length: 406 Bit Score: 44.93 E-value: 3.05e-06
|
|||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
6-107 | 5.59e-06 | |||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 44.19 E-value: 5.59e-06
|
|||||||
2A0115 | TIGR00895 | benzoate transport; [Transport and binding proteins, Carbohydrates, organic alcohols, and ... |
1-125 | 8.86e-06 | |||
benzoate transport; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273327 [Multi-domain] Cd Length: 398 Bit Score: 43.50 E-value: 8.86e-06
|
|||||||
MFS_YfcJ_like | cd17489 | Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ... |
16-131 | 1.00e-05 | |||
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 43.35 E-value: 1.00e-05
|
|||||||
ProP | COG0477 | MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and ... |
1-127 | 1.05e-05 | |||
MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and metabolism, Amino acid transport and metabolism, Inorganic ion transport and metabolism, General function prediction only]; Pssm-ID: 440245 [Multi-domain] Cd Length: 295 Bit Score: 43.26 E-value: 1.05e-05
|
|||||||
MFS_LmrB_MDR_like | cd17503 | Bacillus subtilis lincomycin resistance protein (LmrB) and similar multidrug resistance (MDR) ... |
7-125 | 1.56e-05 | |||
Bacillus subtilis lincomycin resistance protein (LmrB) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of multidrug resistance (MDR) transporters including Bacillus subtilis lincomycin resistance protein LmrB, and several proteins from Escherichia coli such as the putative MDR transporters EmrB, MdtD, and YieQ. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341046 [Multi-domain] Cd Length: 380 Bit Score: 42.95 E-value: 1.56e-05
|
|||||||
MFS_MdtG_MDR_like | cd17391 | Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the ... |
4-109 | 1.87e-05 | |||
Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli multidrug resistance protein MdtG, Streptococcus pneumoniae multidrug resistance efflux pump PmrA, and similar multidrug resistance (MDR) transporters from bacteria. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtG confers resistance to fosfomycin and deoxycholate. PmrA serves as an efflux pump for various substrates and is associated with fluoroquinolone resistance. MdtG-like MDR transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340949 [Multi-domain] Cd Length: 380 Bit Score: 42.64 E-value: 1.87e-05
|
|||||||
MFS_OPA_SLC37 | cd17312 | Organophosphate:Pi antiporter/Solute Carrier family 37 of the Major Facilitator Superfamily of ... |
2-131 | 6.54e-05 | |||
Organophosphate:Pi antiporter/Solute Carrier family 37 of the Major Facilitator Superfamily of transporters; Organophosphate:Pi antiporters (OPA) are integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The OPA family is also called solute carrier family 37 (SLC37) in vertebrates. Members include glucose-6-phosphate (Glc6P) transporter (also called translocase or exchanger), glycerol-3-phosphate permease, 2-phosphonopropionate transporter, phosphoglycerate transporter, as well as membrane sensor protein UhpC from Escherichia coli. UhpC is both a sensor and a transport protein; it recognizes external Glc6P and induces transport by UhpT, and it can also transport Glc6P. Vertebrates contain four SLC37 or sugar-phosphate exchange (SPX) proteins: SLC37A1 (SPX1), SLC37A2 (SPX2), SLC37A3 (SPX3), and SLC37AA4 (SPX4). The OPA/SLC37 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340870 [Multi-domain] Cd Length: 364 Bit Score: 41.11 E-value: 6.54e-05
|
|||||||
MFS_PcaK_like | cd17365 | 4-hydroxybenzoate transporter PcaK and similar transporters of the Major Facilitator ... |
1-128 | 7.36e-05 | |||
4-hydroxybenzoate transporter PcaK and similar transporters of the Major Facilitator Superfamily; This aromatic acid:H(+) symporter subfamily includes Acinetobacter sp. 4-hydroxybenzoate transporter PcaK, Pseudomonas putida gallate transporter (GalT), Corynebacterium glutamicum gentisate transporter (GenK), Nocardioides sp. 1-hydroxy-2-naphthoate transporter (PhdT), Escherichia coli 3-(3-hydroxy-phenyl)propionate (3HPP) transporter (MhpT), and similar proteins. These transporters are involved in the uptake across the cytoplasmic membrane of specific aromatic compounds such as 4-hydroxybenzoate, gallate, gentisate (2,5-dihydroxybenzoate), 1-hydroxy-2-naphthoate, and 3HPP, respectively. The PcaK-like aromatic acid:H(+) symporter subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340923 [Multi-domain] Cd Length: 351 Bit Score: 40.65 E-value: 7.36e-05
|
|||||||
MFS_CitA | cd17368 | Citrate-proton symporter of the Major Facilitator Superfamily of transporters; Citrate-proton ... |
1-107 | 8.02e-05 | |||
Citrate-proton symporter of the Major Facilitator Superfamily of transporters; Citrate-proton symporter, also called citrate carrier protein or citrate transporter or citrate utilization protein A (CitA), is a proton symporter that functions in the uptake of citrate across the boundary membrane. It allows the utilization of citrate as a sole source of carbon and energy. In Klebsiella pneumoniae, the gene encoding this protein is called citH, instead of citA, which is the case for Escherichia coli and other organisms. CitA belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340926 [Multi-domain] Cd Length: 407 Bit Score: 40.82 E-value: 8.02e-05
|
|||||||
FucP | COG0738 | Fucose permease [Carbohydrate transport and metabolism]; |
1-128 | 1.28e-04 | |||
Fucose permease [Carbohydrate transport and metabolism]; Pssm-ID: 440501 [Multi-domain] Cd Length: 391 Bit Score: 40.22 E-value: 1.28e-04
|
|||||||
MFS_MMR_MDR_like | cd17321 | Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance ... |
6-107 | 2.75e-04 | |||
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340879 [Multi-domain] Cd Length: 370 Bit Score: 39.08 E-value: 2.75e-04
|
|||||||
MFS_NepI_like | cd17324 | Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ... |
4-128 | 3.23e-04 | |||
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 39.07 E-value: 3.23e-04
|
|||||||
MFS_FsR | cd17478 | Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; ... |
1-113 | 3.59e-04 | |||
Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; Fosmidomycin resistance protein (FsR) confers resistance against fosmidomycin. It shows sequence similarity with the bacterial drug-export proteins that mediate resistance to tetracycline and chloramphenicol. This FsR family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341031 [Multi-domain] Cd Length: 365 Bit Score: 38.69 E-value: 3.59e-04
|
|||||||
MFS_MJ1317_like | cd17370 | MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed ... |
9-111 | 4.94e-04 | |||
MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed of Methanocaldococcus jannaschii MFS-type transporter MJ1317, Mycobacterium bovis protein Mb2288, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340928 [Multi-domain] Cd Length: 371 Bit Score: 38.29 E-value: 4.94e-04
|
|||||||
MFS_Tpo1_MDR_like | cd17323 | Yeast Polyamine transporter 1 (Tpo1) and similar multidrug resistance (MDR) transporters of ... |
5-125 | 5.65e-04 | |||
Yeast Polyamine transporter 1 (Tpo1) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of fungal multidrug resistance (MDR) transporters including several proteins from Saccharomyces cerevisiae such as polyamine transporters 1-4 (Tpo1-4), quinidine resistance proteins 1-3 (Qdr1-3), dityrosine transporter 1 (Dtr1), fluconazole resistance protein 1 (Flr1), and protein HOL1. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, Flr1 confers resistance to the azole derivative fluconazole while Tpo1 confers resistance and adaptation to quinidine and ketoconazole. The polyamine transporters are involved in the detoxification of excess polyamines in the cytoplasm. Tpo1-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340881 [Multi-domain] Cd Length: 376 Bit Score: 38.33 E-value: 5.65e-04
|
|||||||
MFS_YfcJ_like | cd17489 | Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ... |
6-129 | 5.71e-04 | |||
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 38.34 E-value: 5.71e-04
|
|||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
1-131 | 7.83e-04 | |||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 37.79 E-value: 7.83e-04
|
|||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
6-131 | 1.30e-03 | |||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 37.16 E-value: 1.30e-03
|
|||||||
MFS_MMR_MDR_like | cd17504 | Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) ... |
16-131 | 1.71e-03 | |||
Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of putative multidrug resistance (MDR) transporters including Chlamydia trachomatis antiseptic resistance protein QacA_2, and Serratia sp. DD3 Bmr3. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341047 [Multi-domain] Cd Length: 371 Bit Score: 36.79 E-value: 1.71e-03
|
|||||||
MFS_GLUT10_Class3 | cd17436 | Glucose transporter type 10 (GLUT10), a Class 3 GLUT, of the Major Facilitator Superfamily of ... |
2-120 | 1.73e-03 | |||
Glucose transporter type 10 (GLUT10), a Class 3 GLUT, of the Major Facilitator Superfamily of transporters; Glucose transporter type 10 (GLUT10) is also called Solute carrier family 2, facilitated glucose transporter member 10 (SLC2A10). It is classified as a Class 3 GLUT and is a facilitative glucose transporter that exhibits a wide tissue distribution. It is expressed in pancreas, placenta, heart, lung, liver, brain, fat, muscle, and kidney. GLUT10 facilitates the transport of dehydroascorbic acid (DHA), the oxidized form of vitamin C, into mitochondria, and also increases cellular uptake of DHA, which in turn protects cells against oxidative stress. Loss-of-function mutations in SLC2A10 cause arterial tortuosity syndrome (ATS), an autosomal recessive connective tissue disorder characterized by twisting and lengthening of the major arteries, hypermobility of the joints, and laxity of skin. The GLUT10 subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340994 [Multi-domain] Cd Length: 376 Bit Score: 37.09 E-value: 1.73e-03
|
|||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
11-108 | 1.89e-03 | |||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 36.63 E-value: 1.89e-03
|
|||||||
MFS_YjiJ | cd06180 | Uncharacterized protein YjiJ and similar proteins of the Major Facilitator Superfamily of ... |
1-119 | 2.68e-03 | |||
Uncharacterized protein YjiJ and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of Escherichia coli YjiJ and other uncharacterized proteins. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340869 [Multi-domain] Cd Length: 371 Bit Score: 36.51 E-value: 2.68e-03
|
|||||||
MFS_MefA_like | cd06173 | Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of ... |
1-129 | 2.73e-03 | |||
Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of Streptococcus pyogenes macrolide efflux protein A (MefA) and similar transporters, many of which remain uncharacterized. Some members may be multidrug resistance (MDR) transporters, which are drug/H+ antiporters (DHAs) that mediate the efflux of a variety of drugs and toxic compounds, conferring resistance to these compounds. MefA confers resistance to 14-membered macrolides including erythromycin and to 15-membered macrolides. It functions as an efflux pump to regulate intracellular macrolide levels. The MefA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340863 [Multi-domain] Cd Length: 383 Bit Score: 36.44 E-value: 2.73e-03
|
|||||||
PRK11551 | PRK11551 | putative 3-hydroxyphenylpropionic transporter MhpT; Provisional |
20-125 | 2.82e-03 | |||
putative 3-hydroxyphenylpropionic transporter MhpT; Provisional Pssm-ID: 236927 [Multi-domain] Cd Length: 406 Bit Score: 36.48 E-value: 2.82e-03
|
|||||||
MFS_SV2_like | cd17316 | Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the ... |
4-127 | 3.04e-03 | |||
Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the Major Facilitator Superfamily; This family is composed of metazoan synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters including those that transport inorganic phosphate (Pht), aromatic compounds (PcaK and related proteins), proline/betaine (ProP), alpha-ketoglutarate (KgtP), citrate (CitA), shikimate (ShiA), and cis,cis-muconate (MucK), among others. SV2 is a transporter-like protein that serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. Also included in this family is synaptic vesicle 2 (SV2)-related protein (SVOP) and similar proteins. SVOP is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. The SV2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340874 [Multi-domain] Cd Length: 353 Bit Score: 36.04 E-value: 3.04e-03
|
|||||||
MFS_MucK | cd17371 | Cis,cis-muconate transport protein and similar proteins of the Major Facilitator Superfamily; ... |
1-121 | 3.50e-03 | |||
Cis,cis-muconate transport protein and similar proteins of the Major Facilitator Superfamily; This subfamily is composed of Acinetobacter sp. Cis,cis-muconate transport protein (MucK), Escherichia coli putative sialic acid transporter 1, and similar proteins. MucK functions in the uptake of muconate and allows Acinetobacter calcoaceticus ADP1 (BD413) to grow on exogenous cis,cis-muconate as the sole carbon source. The MucK subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340929 [Multi-domain] Cd Length: 389 Bit Score: 36.13 E-value: 3.50e-03
|
|||||||
MFS_GlpT | cd17345 | Glycerol-3-Phosphate Transporter of the Major Facilitator Superfamily of transporters; ... |
1-113 | 3.73e-03 | |||
Glycerol-3-Phosphate Transporter of the Major Facilitator Superfamily of transporters; Glycerol-3-Phosphate Transporter (also called GlpT or G-3-P permease) is responsible for glycerol-3-phosphate uptake. It is part of the Organophosphate:Pi antiporter (OPA) family of integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The GlpT group belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340903 [Multi-domain] Cd Length: 411 Bit Score: 36.07 E-value: 3.73e-03
|
|||||||
MFS_GLUT_like | cd17315 | Glucose transporters (GLUTs) and other similar sugar transporters of the Major Facilitator ... |
16-68 | 4.15e-03 | |||
Glucose transporters (GLUTs) and other similar sugar transporters of the Major Facilitator Superfamily; This family is composed of glucose transporters (GLUTs) and other sugar transporters including fungal hexose transporters (HXT), bacterial xylose transporter (XylE), plant sugar transport proteins (STP) and polyol transporters (PLT), H(+)-myo-inositol cotransporter (HMIT), and similar proteins. GLUTs, also called Solute carrier family 2, facilitated glucose transporters (SLC2A), are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. The GLUT-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340873 [Multi-domain] Cd Length: 365 Bit Score: 35.63 E-value: 4.15e-03
|
|||||||
MFS_YfmO_like | cd17474 | Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major ... |
1-109 | 4.74e-03 | |||
Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major Facilitator Superfamily; This family is composed of Bacillus subtilis multidrug efflux protein YfmO, bacillibactin exporter YmfD/YmfE, uncharacterized MFS-type transporter YvmA, and similar proteins. YfmO acts to efflux copper or a copper complex, and could contribute to copper resistance. YmfD/YmfE is involved in secretion of bacillibactin. The YfmO-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341027 [Multi-domain] Cd Length: 374 Bit Score: 35.62 E-value: 4.74e-03
|
|||||||
MFS_GLUT10_12_Class3_like | cd17362 | Glucose transporter (GLUT) types 10 and 12, Class 3 GLUTs, and similar transporters of the ... |
17-120 | 5.67e-03 | |||
Glucose transporter (GLUT) types 10 and 12, Class 3 GLUTs, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of glucose transporter type 10, GLUT12, plant polyol transporters (PLTs), and similar proteins. GLUTs, also called Solute carrier family 2, facilitated glucose transporters (SLC2A), are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. They belong to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340920 [Multi-domain] Cd Length: 389 Bit Score: 35.41 E-value: 5.67e-03
|
|||||||
MFS_SV2_like | cd17316 | Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the ... |
5-113 | 7.17e-03 | |||
Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the Major Facilitator Superfamily; This family is composed of metazoan synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters including those that transport inorganic phosphate (Pht), aromatic compounds (PcaK and related proteins), proline/betaine (ProP), alpha-ketoglutarate (KgtP), citrate (CitA), shikimate (ShiA), and cis,cis-muconate (MucK), among others. SV2 is a transporter-like protein that serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. Also included in this family is synaptic vesicle 2 (SV2)-related protein (SVOP) and similar proteins. SVOP is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. The SV2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340874 [Multi-domain] Cd Length: 353 Bit Score: 35.27 E-value: 7.17e-03
|
|||||||
MFS_arabinose_efflux_permease_like | cd17473 | Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; ... |
1-109 | 8.31e-03 | |||
Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; This family includes a group of putative arabinose efflux permease family transporters, such as alpha proteobacterium quinolone resistance protein NorA (characterized Staphylococcus aureus Quinolone resistance protein NorA belongs to a different group), Desulfovibrio dechloracetivorans bacillibactin exporter, Vibrio aerogenes antiseptic resistance protein. The biological function of those transporters remain unclear. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341026 [Multi-domain] Cd Length: 374 Bit Score: 34.86 E-value: 8.31e-03
|
|||||||
Blast search parameters | ||||
|