dynamin isoform X1 [Culex quinquefasciatus]
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
DYNc | smart00053 | Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the ... |
1-240 | 2.12e-153 | |||||
Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. : Pssm-ID: 197491 Cd Length: 240 Bit Score: 450.48 E-value: 2.12e-153
|
|||||||||
Dynamin_M | pfam01031 | Dynamin central region; This is the stalk region which lies between the GTPase domain, see ... |
210-498 | 7.70e-131 | |||||
Dynamin central region; This is the stalk region which lies between the GTPase domain, see pfam00350, and the pleckstrin homology (PH) domain, see pfam00169. This region dimerizes in a cross-like fashion forming a dynamin dimer in which the two G-domains are oriented in opposite directions. : Pssm-ID: 460033 Cd Length: 287 Bit Score: 393.81 E-value: 7.70e-131
|
|||||||||
PH_dynamin | cd01256 | Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle ... |
512-623 | 1.26e-75 | |||||
Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle formation. It has an N-terminal GTPase domain, followed by a PH domain, a GTPase effector domain and a C-terminal proline arginine rich domain. Dynamin-like proteins, which are found in metazoa, plants and yeast have the same domain architecture as dynamin, but lack the PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 269958 Cd Length: 112 Bit Score: 241.84 E-value: 1.26e-75
|
|||||||||
GED | smart00302 | Dynamin GTPase effector domain; |
650-741 | 4.93e-34 | |||||
Dynamin GTPase effector domain; : Pssm-ID: 128597 Cd Length: 92 Bit Score: 125.43 E-value: 4.93e-34
|
|||||||||
PHA03247 super family | cl33720 | large tegument protein UL36; Provisional |
739-842 | 4.89e-03 | |||||
large tegument protein UL36; Provisional The actual alignment was detected with superfamily member PHA03247: Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 41.08 E-value: 4.89e-03
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
DYNc | smart00053 | Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the ... |
1-240 | 2.12e-153 | |||||
Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. Pssm-ID: 197491 Cd Length: 240 Bit Score: 450.48 E-value: 2.12e-153
|
|||||||||
DLP_1 | cd08771 | Dynamin_like protein family includes dynamins and Mx proteins; The dynamin family of large ... |
24-289 | 1.78e-144 | |||||
Dynamin_like protein family includes dynamins and Mx proteins; The dynamin family of large mechanochemical GTPases includes the classical dynamins and dynamin-like proteins (DLPs) that are found throughout the Eukarya. These proteins catalyze membrane fission during clathrin-mediated endocytosis. Dynamin consists of five domains; an N-terminal G domain that binds and hydrolyzes GTP, a middle domain (MD) involved in self-assembly and oligomerization, a pleckstrin homology (PH) domain responsible for interactions with the plasma membrane, GED, which is also involved in self-assembly, and a proline arginine rich domain (PRD) that interacts with SH3 domains on accessory proteins. To date, three vertebrate dynamin genes have been identified; dynamin 1, which is brain specific, mediates uptake of synaptic vesicles in presynaptic terminals; dynamin-2 is expressed ubiquitously and similarly participates in membrane fission; mutations in the MD, PH and GED domains of dynamin 2 have been linked to human diseases such as Charcot-Marie-Tooth peripheral neuropathy and rare forms of centronuclear myopathy. Dynamin 3 participates in megakaryocyte progenitor amplification, and is also involved in cytoplasmic enlargement and the formation of the demarcation membrane system. This family also includes interferon-induced Mx proteins that inhibit a wide range of viruses by blocking an early stage of the replication cycle. Dynamin oligomerizes into helical structures around the neck of budding vesicles in a GTP hydrolysis-dependent manner. Pssm-ID: 206738 Cd Length: 278 Bit Score: 428.97 E-value: 1.78e-144
|
|||||||||
Dynamin_M | pfam01031 | Dynamin central region; This is the stalk region which lies between the GTPase domain, see ... |
210-498 | 7.70e-131 | |||||
Dynamin central region; This is the stalk region which lies between the GTPase domain, see pfam00350, and the pleckstrin homology (PH) domain, see pfam00169. This region dimerizes in a cross-like fashion forming a dynamin dimer in which the two G-domains are oriented in opposite directions. Pssm-ID: 460033 Cd Length: 287 Bit Score: 393.81 E-value: 7.70e-131
|
|||||||||
PH_dynamin | cd01256 | Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle ... |
512-623 | 1.26e-75 | |||||
Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle formation. It has an N-terminal GTPase domain, followed by a PH domain, a GTPase effector domain and a C-terminal proline arginine rich domain. Dynamin-like proteins, which are found in metazoa, plants and yeast have the same domain architecture as dynamin, but lack the PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269958 Cd Length: 112 Bit Score: 241.84 E-value: 1.26e-75
|
|||||||||
Dynamin_N | pfam00350 | Dynamin family; |
29-202 | 7.18e-67 | |||||
Dynamin family; Pssm-ID: 459775 [Multi-domain] Cd Length: 168 Bit Score: 220.57 E-value: 7.18e-67
|
|||||||||
GED | smart00302 | Dynamin GTPase effector domain; |
650-741 | 4.93e-34 | |||||
Dynamin GTPase effector domain; Pssm-ID: 128597 Cd Length: 92 Bit Score: 125.43 E-value: 4.93e-34
|
|||||||||
GED | pfam02212 | Dynamin GTPase effector domain; |
651-741 | 1.65e-33 | |||||
Dynamin GTPase effector domain; Pssm-ID: 460495 Cd Length: 91 Bit Score: 123.78 E-value: 1.65e-33
|
|||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
514-617 | 4.41e-10 | |||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 57.56 E-value: 4.41e-10
|
|||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
514-617 | 2.69e-07 | |||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 49.48 E-value: 2.69e-07
|
|||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
739-842 | 4.89e-03 | |||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 41.08 E-value: 4.89e-03
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
DYNc | smart00053 | Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the ... |
1-240 | 2.12e-153 | |||||
Dynamin, GTPase; Large GTPases that mediate vesicle trafficking. Dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. Pssm-ID: 197491 Cd Length: 240 Bit Score: 450.48 E-value: 2.12e-153
|
|||||||||
DLP_1 | cd08771 | Dynamin_like protein family includes dynamins and Mx proteins; The dynamin family of large ... |
24-289 | 1.78e-144 | |||||
Dynamin_like protein family includes dynamins and Mx proteins; The dynamin family of large mechanochemical GTPases includes the classical dynamins and dynamin-like proteins (DLPs) that are found throughout the Eukarya. These proteins catalyze membrane fission during clathrin-mediated endocytosis. Dynamin consists of five domains; an N-terminal G domain that binds and hydrolyzes GTP, a middle domain (MD) involved in self-assembly and oligomerization, a pleckstrin homology (PH) domain responsible for interactions with the plasma membrane, GED, which is also involved in self-assembly, and a proline arginine rich domain (PRD) that interacts with SH3 domains on accessory proteins. To date, three vertebrate dynamin genes have been identified; dynamin 1, which is brain specific, mediates uptake of synaptic vesicles in presynaptic terminals; dynamin-2 is expressed ubiquitously and similarly participates in membrane fission; mutations in the MD, PH and GED domains of dynamin 2 have been linked to human diseases such as Charcot-Marie-Tooth peripheral neuropathy and rare forms of centronuclear myopathy. Dynamin 3 participates in megakaryocyte progenitor amplification, and is also involved in cytoplasmic enlargement and the formation of the demarcation membrane system. This family also includes interferon-induced Mx proteins that inhibit a wide range of viruses by blocking an early stage of the replication cycle. Dynamin oligomerizes into helical structures around the neck of budding vesicles in a GTP hydrolysis-dependent manner. Pssm-ID: 206738 Cd Length: 278 Bit Score: 428.97 E-value: 1.78e-144
|
|||||||||
Dynamin_M | pfam01031 | Dynamin central region; This is the stalk region which lies between the GTPase domain, see ... |
210-498 | 7.70e-131 | |||||
Dynamin central region; This is the stalk region which lies between the GTPase domain, see pfam00350, and the pleckstrin homology (PH) domain, see pfam00169. This region dimerizes in a cross-like fashion forming a dynamin dimer in which the two G-domains are oriented in opposite directions. Pssm-ID: 460033 Cd Length: 287 Bit Score: 393.81 E-value: 7.70e-131
|
|||||||||
PH_dynamin | cd01256 | Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle ... |
512-623 | 1.26e-75 | |||||
Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle formation. It has an N-terminal GTPase domain, followed by a PH domain, a GTPase effector domain and a C-terminal proline arginine rich domain. Dynamin-like proteins, which are found in metazoa, plants and yeast have the same domain architecture as dynamin, but lack the PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269958 Cd Length: 112 Bit Score: 241.84 E-value: 1.26e-75
|
|||||||||
Dynamin_N | pfam00350 | Dynamin family; |
29-202 | 7.18e-67 | |||||
Dynamin family; Pssm-ID: 459775 [Multi-domain] Cd Length: 168 Bit Score: 220.57 E-value: 7.18e-67
|
|||||||||
GED | smart00302 | Dynamin GTPase effector domain; |
650-741 | 4.93e-34 | |||||
Dynamin GTPase effector domain; Pssm-ID: 128597 Cd Length: 92 Bit Score: 125.43 E-value: 4.93e-34
|
|||||||||
GED | pfam02212 | Dynamin GTPase effector domain; |
651-741 | 1.65e-33 | |||||
Dynamin GTPase effector domain; Pssm-ID: 460495 Cd Length: 91 Bit Score: 123.78 E-value: 1.65e-33
|
|||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
514-617 | 4.41e-10 | |||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 57.56 E-value: 4.41e-10
|
|||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
516-610 | 1.79e-08 | |||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 52.54 E-value: 1.79e-08
|
|||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
514-617 | 2.69e-07 | |||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 49.48 E-value: 2.69e-07
|
|||||||||
PH_SWAP-70 | cd13273 | Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ... |
514-604 | 1.24e-04 | |||||
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270092 Cd Length: 110 Bit Score: 42.28 E-value: 1.24e-04
|
|||||||||
PH_GRP1-like | cd01252 | General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ... |
536-595 | 2.64e-04 | |||||
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269954 Cd Length: 119 Bit Score: 41.53 E-value: 2.64e-04
|
|||||||||
PH1_PH_fungal | cd13298 | Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ... |
533-610 | 6.20e-04 | |||||
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270110 Cd Length: 106 Bit Score: 39.92 E-value: 6.20e-04
|
|||||||||
Ras_like_GTPase | cd00882 | Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like ... |
30-238 | 1.50e-03 | |||||
Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like GTPase superfamily. The Ras-like superfamily of small GTPases consists of several families with an extremely high degree of structural and functional similarity. The Ras superfamily is divided into at least four families in eukaryotes: the Ras, Rho, Rab, and Sar1/Arf families. This superfamily also includes proteins like the GTP translation factors, Era-like GTPases, and G-alpha chain of the heterotrimeric G proteins. Members of the Ras superfamily regulate a wide variety of cellular functions: the Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. The GTP translation factor family regulates initiation, elongation, termination, and release in translation, and the Era-like GTPase family regulates cell division, sporulation, and DNA replication. Members of the Ras superfamily are identified by the GTP binding site, which is made up of five characteristic sequence motifs, and the switch I and switch II regions. Pssm-ID: 206648 [Multi-domain] Cd Length: 161 Bit Score: 40.13 E-value: 1.50e-03
|
|||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
739-842 | 4.89e-03 | |||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 41.08 E-value: 4.89e-03
|
|||||||||
Blast search parameters | ||||
|