NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1938877910]
View 

Chain v, Protein mago nashi homolog

Protein Classification

mago nashi family protein( domain architecture ID 10181890)

mago nashi family protein is an integral member of the exon junction complex (EJC)which is a multiprotein complex consisting of 4 core proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14); Mago and Y14 form a stable heterodimer that stabilizes the complex by inhibiting eIF4AIII's ATPase activity

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
Mago_nashi cd11295
Mago nashi proteins, integral members of the exon junction complex; Members of this family, ...
4-146 8.39e-115

Mago nashi proteins, integral members of the exon junction complex; Members of this family, which was originally identified in Drosophila and called mago nashi, are integral members of the exon junction complex (EJC). The EJC is a multiprotein complex that is deposited on spliced mRNAs after intron removal at a conserved position upstream of the exon-exon junction, and transported to the cytoplasm where it has been shown to influence translation, surveillance, and localization of the spliced mRNA. It consists of four core proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14), mRNA, and ATP and is supposed to be a binding platform for more peripherally and transiently associated factors along mRNA travel. Mago and Y14 form a stable heterodimer that stabilizes the complex by inhibiting eIF4AIII's ATPase activity. In humans, but not Drosophila, EJC is involved in nonsense-mediated mRNA decay (NMD) via binding to Upf3b, a central NMD effector. EJC is stripped off the mRNA during the first round of translation and then the complex components are transported back into the nucleus and recycled. The Mago-Y14 heterodimer has been shown to interact with the cytoplasmic protein PYM, an EJC disassembly factor, and specifically binds to the karyopherin nuclear receptor importin 13.


:

Pssm-ID: 199917  Cd Length: 143  Bit Score: 320.36  E-value: 8.39e-115
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1938877910   4 DFYLRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDVMIRKEAYVHKSVMEELKRIIDDSEITKEDDALWPPPDRV 83
Cdd:cd11295     1 DFYLRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDTMIRKEAYVSPAVLEELKRIIEDSEILKEDDAKWPEPDRV 80
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1938877910  84 GRQELEIVIGDEHISFTTSKIGSLIDVNQSKDPEGLRVFYYLVQDLKCLVFSLIGLHFKIKPI 146
Cdd:cd11295    81 GRQELEIVMGDEHISFTTSKIGSLVDVQQSKDPEGLRVFYYLVQDLKCLVFSLIGLHFKIKPI 143
 
Name Accession Description Interval E-value
Mago_nashi cd11295
Mago nashi proteins, integral members of the exon junction complex; Members of this family, ...
4-146 8.39e-115

Mago nashi proteins, integral members of the exon junction complex; Members of this family, which was originally identified in Drosophila and called mago nashi, are integral members of the exon junction complex (EJC). The EJC is a multiprotein complex that is deposited on spliced mRNAs after intron removal at a conserved position upstream of the exon-exon junction, and transported to the cytoplasm where it has been shown to influence translation, surveillance, and localization of the spliced mRNA. It consists of four core proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14), mRNA, and ATP and is supposed to be a binding platform for more peripherally and transiently associated factors along mRNA travel. Mago and Y14 form a stable heterodimer that stabilizes the complex by inhibiting eIF4AIII's ATPase activity. In humans, but not Drosophila, EJC is involved in nonsense-mediated mRNA decay (NMD) via binding to Upf3b, a central NMD effector. EJC is stripped off the mRNA during the first round of translation and then the complex components are transported back into the nucleus and recycled. The Mago-Y14 heterodimer has been shown to interact with the cytoplasmic protein PYM, an EJC disassembly factor, and specifically binds to the karyopherin nuclear receptor importin 13.


Pssm-ID: 199917  Cd Length: 143  Bit Score: 320.36  E-value: 8.39e-115
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1938877910   4 DFYLRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDVMIRKEAYVHKSVMEELKRIIDDSEITKEDDALWPPPDRV 83
Cdd:cd11295     1 DFYLRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDTMIRKEAYVSPAVLEELKRIIEDSEILKEDDAKWPEPDRV 80
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1938877910  84 GRQELEIVIGDEHISFTTSKIGSLIDVNQSKDPEGLRVFYYLVQDLKCLVFSLIGLHFKIKPI 146
Cdd:cd11295    81 GRQELEIVMGDEHISFTTSKIGSLVDVQQSKDPEGLRVFYYLVQDLKCLVFSLIGLHFKIKPI 143
Mago_nashi pfam02792
Mago nashi protein; This family was originally identified in Drosophila and called mago nashi, ...
5-146 2.48e-113

Mago nashi protein; This family was originally identified in Drosophila and called mago nashi, it is a strict maternal effect, grandchildless-like, gene. The human homolog has been shown to interact with an RNA binding protein. An RNAi knockout of the C. elegans homolog causes masculinization of the germ line (Mog phenotype) hermaphrodites, suggesting it is involved in hermaphrodite germ-line sex determination. Mago nashi has been found to be part of the exon-exon junction complex that binds 20 nucleotides upstream of exon-exon junctions.


Pssm-ID: 460697  Cd Length: 142  Bit Score: 316.47  E-value: 2.48e-113
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1938877910   5 FYLRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDVMIRKEAYVHKSVMEELKRIIDDSEITKEDDALWPPPDRVG 84
Cdd:pfam02792   1 FYLRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDTLIRKEVYVSPAVLEELKRIIEDSEILKEDDAKWPEPDRVG 80
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1938877910  85 RQELEIVIGDEHISFTTSKIGSLIDVNQSKDPEGLRVFYYLVQDLKCLVFSLIGLHFKIKPI 146
Cdd:pfam02792  81 RQELEIVLGNEHISFTTSKIGSLSDVQNSKDPEGLRVFYYLVQDLKCLVFSLISLHFKIKPI 142
 
Name Accession Description Interval E-value
Mago_nashi cd11295
Mago nashi proteins, integral members of the exon junction complex; Members of this family, ...
4-146 8.39e-115

Mago nashi proteins, integral members of the exon junction complex; Members of this family, which was originally identified in Drosophila and called mago nashi, are integral members of the exon junction complex (EJC). The EJC is a multiprotein complex that is deposited on spliced mRNAs after intron removal at a conserved position upstream of the exon-exon junction, and transported to the cytoplasm where it has been shown to influence translation, surveillance, and localization of the spliced mRNA. It consists of four core proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14), mRNA, and ATP and is supposed to be a binding platform for more peripherally and transiently associated factors along mRNA travel. Mago and Y14 form a stable heterodimer that stabilizes the complex by inhibiting eIF4AIII's ATPase activity. In humans, but not Drosophila, EJC is involved in nonsense-mediated mRNA decay (NMD) via binding to Upf3b, a central NMD effector. EJC is stripped off the mRNA during the first round of translation and then the complex components are transported back into the nucleus and recycled. The Mago-Y14 heterodimer has been shown to interact with the cytoplasmic protein PYM, an EJC disassembly factor, and specifically binds to the karyopherin nuclear receptor importin 13.


Pssm-ID: 199917  Cd Length: 143  Bit Score: 320.36  E-value: 8.39e-115
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1938877910   4 DFYLRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDVMIRKEAYVHKSVMEELKRIIDDSEITKEDDALWPPPDRV 83
Cdd:cd11295     1 DFYLRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDTMIRKEAYVSPAVLEELKRIIEDSEILKEDDAKWPEPDRV 80
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1938877910  84 GRQELEIVIGDEHISFTTSKIGSLIDVNQSKDPEGLRVFYYLVQDLKCLVFSLIGLHFKIKPI 146
Cdd:cd11295    81 GRQELEIVMGDEHISFTTSKIGSLVDVQQSKDPEGLRVFYYLVQDLKCLVFSLIGLHFKIKPI 143
Mago_nashi pfam02792
Mago nashi protein; This family was originally identified in Drosophila and called mago nashi, ...
5-146 2.48e-113

Mago nashi protein; This family was originally identified in Drosophila and called mago nashi, it is a strict maternal effect, grandchildless-like, gene. The human homolog has been shown to interact with an RNA binding protein. An RNAi knockout of the C. elegans homolog causes masculinization of the germ line (Mog phenotype) hermaphrodites, suggesting it is involved in hermaphrodite germ-line sex determination. Mago nashi has been found to be part of the exon-exon junction complex that binds 20 nucleotides upstream of exon-exon junctions.


Pssm-ID: 460697  Cd Length: 142  Bit Score: 316.47  E-value: 2.48e-113
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1938877910   5 FYLRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDVMIRKEAYVHKSVMEELKRIIDDSEITKEDDALWPPPDRVG 84
Cdd:pfam02792   1 FYLRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDTLIRKEVYVSPAVLEELKRIIEDSEILKEDDAKWPEPDRVG 80
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1938877910  85 RQELEIVIGDEHISFTTSKIGSLIDVNQSKDPEGLRVFYYLVQDLKCLVFSLIGLHFKIKPI 146
Cdd:pfam02792  81 RQELEIVLGNEHISFTTSKIGSLSDVQNSKDPEGLRVFYYLVQDLKCLVFSLISLHFKIKPI 142
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH