pre-mRNA-splicing factor CEF1 family protein is a SANT/Myb-like DNA-binding domain-containing protein, similar to CEF1 that is involved in pre-mRNA splicing and cell cycle control
pre-mRNA splicing factor component; This family is a region of the Myb-Related Cdc5p/Cef1 ...
404-655
9.14e-101
pre-mRNA splicing factor component; This family is a region of the Myb-Related Cdc5p/Cef1 proteins, in fungi, and is part of the pre-mRNA splicing factor complex.
:
Pssm-ID: 463366 Cd Length: 227 Bit Score: 310.74 E-value: 9.14e-101
pre-mRNA splicing factor component; This family is a region of the Myb-Related Cdc5p/Cef1 ...
404-655
9.14e-101
pre-mRNA splicing factor component; This family is a region of the Myb-Related Cdc5p/Cef1 proteins, in fungi, and is part of the pre-mRNA splicing factor complex.
Pssm-ID: 463366 Cd Length: 227 Bit Score: 310.74 E-value: 9.14e-101
SANT/myb-like DNA-binding domain of Cell Division Cycle 5-Like Protein repeat II; In humans, ...
56-107
3.83e-29
SANT/myb-like DNA-binding domain of Cell Division Cycle 5-Like Protein repeat II; In humans, cell division cycle 5-like protein (CDC5) functions in pre-mRNA splicing in cell cycle control. The DNA-binding, myb-like domain of CDC5 is a member of the SANT/myb group. SANT is named after 'SWI3, ADA2, N-CoR and TFIIIB', several factors that share this domain. The SANT domain resembles the 3 alpha-helix bundle of DNA-binding Myb domains and is found in a diverse set of proteins.
Pssm-ID: 212557 [Multi-domain] Cd Length: 53 Bit Score: 110.09 E-value: 3.83e-29
pre-mRNA splicing factor component; This family is a region of the Myb-Related Cdc5p/Cef1 ...
404-655
9.14e-101
pre-mRNA splicing factor component; This family is a region of the Myb-Related Cdc5p/Cef1 proteins, in fungi, and is part of the pre-mRNA splicing factor complex.
Pssm-ID: 463366 Cd Length: 227 Bit Score: 310.74 E-value: 9.14e-101
SANT/myb-like DNA-binding domain of Cell Division Cycle 5-Like Protein repeat II; In humans, ...
56-107
3.83e-29
SANT/myb-like DNA-binding domain of Cell Division Cycle 5-Like Protein repeat II; In humans, cell division cycle 5-like protein (CDC5) functions in pre-mRNA splicing in cell cycle control. The DNA-binding, myb-like domain of CDC5 is a member of the SANT/myb group. SANT is named after 'SWI3, ADA2, N-CoR and TFIIIB', several factors that share this domain. The SANT domain resembles the 3 alpha-helix bundle of DNA-binding Myb domains and is found in a diverse set of proteins.
Pssm-ID: 212557 [Multi-domain] Cd Length: 53 Bit Score: 110.09 E-value: 3.83e-29
'SWI3, ADA2, N-CoR and TFIIIB' DNA-binding domains. Tandem copies of the domain bind telomeric ...
11-54
1.86e-11
'SWI3, ADA2, N-CoR and TFIIIB' DNA-binding domains. Tandem copies of the domain bind telomeric DNA tandem repeatsas part of the capping complex. Binding is sequence dependent for repeats which contain the G/C rich motif [C2-3 A (CA)1-6]. The domain is also found in regulatory transcriptional repressor complexes where it also binds DNA.
Pssm-ID: 238096 [Multi-domain] Cd Length: 45 Bit Score: 59.51 E-value: 1.86e-11
'SWI3, ADA2, N-CoR and TFIIIB' DNA-binding domains. Tandem copies of the domain bind telomeric ...
62-104
6.06e-05
'SWI3, ADA2, N-CoR and TFIIIB' DNA-binding domains. Tandem copies of the domain bind telomeric DNA tandem repeatsas part of the capping complex. Binding is sequence dependent for repeats which contain the G/C rich motif [C2-3 A (CA)1-6]. The domain is also found in regulatory transcriptional repressor complexes where it also binds DNA.
Pssm-ID: 238096 [Multi-domain] Cd Length: 45 Bit Score: 41.02 E-value: 6.06e-05
Telomere repeat binding factor-like DNA-binding domains of the SANT/myb-like family; Human ...
11-50
3.22e-04
Telomere repeat binding factor-like DNA-binding domains of the SANT/myb-like family; Human telomere repeat binding factors, TRF1 and TRF2, function as part of the 6 component shelterin complex. TRF2 binds DNA and recruits RAP1 (via binding to the RAP1 protein c-terminal (RCT)) and TIN2 in the protection of telomeres from DNA repair machinery. Metazoan shelterin consists of 3 DNA binding proteins (TRF2, TRF1, and POT1) and 3 recruited proteins that bind to one or more of these DNA-binding proteins (RAP1, TIN2, TPP1). Schizosaccharomyces pombe TAZ1 is an orthlog and binds RAP1. Human TRF1 and TRF2 bind double-stranded DNA. hTRF2 consists of a basic N-terminus, a TRF homology domain, the RAP1 binding motif (RBM), the TIN2 binding motif (TBM) and a myb-like DNA binding domain, SANT, named after 'SWI3, ADA2, N-CoR and TFIIIB', several factors that share this domain. Tandem copies of the domain bind telomeric DNA tandem repeats as part of the capping complex. The single myb-like domain of TRF-type proteins is similar to the tandem myb_like domains found in yeast RAP1.
Pssm-ID: 212558 [Multi-domain] Cd Length: 50 Bit Score: 39.09 E-value: 3.22e-04
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options