NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1916927452|ref|XP_036375384|]
View 

transcription factor Maf-like [Megalops cyprinoides]

Protein Classification

bZIP transcription factor( domain architecture ID 10200400)

basic leucine zipper (bZIP) transcription factor binds to the promoter regions of genes to control their expression; similar to mammalian transcription factor MafA/MafB

CATH:  1.20.5.170
PubMed:  7780801|23661758
SCOP:  4003836

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
bZIP_Maf_large cd14718
Basic leucine zipper (bZIP) domain of large musculoaponeurotic fibrosarcoma (Maf) proteins: a ...
305-373 2.63e-45

Basic leucine zipper (bZIP) domain of large musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain; Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The large Mafs (c-Maf, MafA, MafB, and neural retina leucine zipper or NRL) contain an N-terminal transactivation domain, a linker region of varying size, an anxillary DNA-binding domain, a C-terminal bZIP domain. They function as critical regulators of terminal differentiation in the blood and in many tissues such as bone, brain, kidney, pancreas, and retina. MafA and MafB also play crucial roles in islet beta cells; they regulate genes essential for glucose sensing and insulin secretion cooperatively and sequentially. Large Mafs are also implicated in oncogenesis; MafB and c-Maf chromosomal translocations result in multiple myelomas. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


:

Pssm-ID: 269866  Cd Length: 70  Bit Score: 150.51  E-value: 2.63e-45
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1916927452 305 KDEVVRLKQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRERDAYKTRYEKL 373
Cdd:cd14718     1 KEEVIRLKQKRRTLKNRGYAQSCRSKRVQQRHVLESEKCQLQQQVEQLKQEVSRLARERDAYKEKYEKL 69
 
Name Accession Description Interval E-value
bZIP_Maf_large cd14718
Basic leucine zipper (bZIP) domain of large musculoaponeurotic fibrosarcoma (Maf) proteins: a ...
305-373 2.63e-45

Basic leucine zipper (bZIP) domain of large musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain; Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The large Mafs (c-Maf, MafA, MafB, and neural retina leucine zipper or NRL) contain an N-terminal transactivation domain, a linker region of varying size, an anxillary DNA-binding domain, a C-terminal bZIP domain. They function as critical regulators of terminal differentiation in the blood and in many tissues such as bone, brain, kidney, pancreas, and retina. MafA and MafB also play crucial roles in islet beta cells; they regulate genes essential for glucose sensing and insulin secretion cooperatively and sequentially. Large Mafs are also implicated in oncogenesis; MafB and c-Maf chromosomal translocations result in multiple myelomas. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269866  Cd Length: 70  Bit Score: 150.51  E-value: 2.63e-45
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1916927452 305 KDEVVRLKQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRERDAYKTRYEKL 373
Cdd:cd14718     1 KEEVIRLKQKRRTLKNRGYAQSCRSKRVQQRHVLESEKCQLQQQVEQLKQEVSRLARERDAYKEKYEKL 69
bZIP_Maf pfam03131
bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region ...
283-373 3.62e-40

bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region leucine zipper (bZIP) domain, which mediates their dimerization and DNA binding property. Thus, this family is probably related to pfam00170. This family also includes the DNA_binding domain of Skn-1, this domain lacks the leucine zipper found in other bZip domains, and binds DNA is a monomer.


Pssm-ID: 427158 [Multi-domain]  Cd Length: 92  Bit Score: 137.86  E-value: 3.62e-40
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1916927452 283 FSDEQLVSLSVRELNRHLRGVSKDEVVRLKQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRE 362
Cdd:pfam03131   1 LSDEELLSMSVREFNRFLRGLTEEEVIRLKQRRRRLKNRGYAQSCRKRRLQQKESLEKERSELREQLERLVQELSRLRQE 80
                          90
                  ....*....|.
gi 1916927452 363 RDAYKTRYEKL 373
Cdd:pfam03131  81 LDALKRRNEQL 91
BRLZ smart00338
basic region leucin zipper;
311-372 2.74e-13

basic region leucin zipper;


Pssm-ID: 197664 [Multi-domain]  Cd Length: 65  Bit Score: 64.12  E-value: 2.74e-13
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1916927452  311 LKQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRERDAYKTRYEK 372
Cdd:smart00338   4 EKRRRRRERNREAARRSRERKKAEIEELERKVEQLEAENERLKKEIERLRRELEKLKSELEE 65
GumC COG3206
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis];
287-375 6.70e-03

Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis];


Pssm-ID: 442439 [Multi-domain]  Cd Length: 687  Bit Score: 38.46  E-value: 6.70e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1916927452 287 QLVSLSVRELNRHlrgvskDEVVRLKQKRRTLKNRGYAQSCR--------YKRLQHRHA-LESEKHVLTQQLEQL---QR 354
Cdd:COG3206   278 ELAELSARYTPNH------PDVIALRAQIAALRAQLQQEAQRilasleaeLEALQAREAsLQAQLAQLEARLAELpelEA 351
                          90       100
                  ....*....|....*....|.
gi 1916927452 355 ELSRVLRERDAYKTRYEKLVS 375
Cdd:COG3206   352 ELRRLEREVEVARELYESLLQ 372
 
Name Accession Description Interval E-value
bZIP_Maf_large cd14718
Basic leucine zipper (bZIP) domain of large musculoaponeurotic fibrosarcoma (Maf) proteins: a ...
305-373 2.63e-45

Basic leucine zipper (bZIP) domain of large musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain; Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The large Mafs (c-Maf, MafA, MafB, and neural retina leucine zipper or NRL) contain an N-terminal transactivation domain, a linker region of varying size, an anxillary DNA-binding domain, a C-terminal bZIP domain. They function as critical regulators of terminal differentiation in the blood and in many tissues such as bone, brain, kidney, pancreas, and retina. MafA and MafB also play crucial roles in islet beta cells; they regulate genes essential for glucose sensing and insulin secretion cooperatively and sequentially. Large Mafs are also implicated in oncogenesis; MafB and c-Maf chromosomal translocations result in multiple myelomas. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269866  Cd Length: 70  Bit Score: 150.51  E-value: 2.63e-45
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1916927452 305 KDEVVRLKQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRERDAYKTRYEKL 373
Cdd:cd14718     1 KEEVIRLKQKRRTLKNRGYAQSCRSKRVQQRHVLESEKCQLQQQVEQLKQEVSRLARERDAYKEKYEKL 69
bZIP_Maf pfam03131
bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region ...
283-373 3.62e-40

bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region leucine zipper (bZIP) domain, which mediates their dimerization and DNA binding property. Thus, this family is probably related to pfam00170. This family also includes the DNA_binding domain of Skn-1, this domain lacks the leucine zipper found in other bZip domains, and binds DNA is a monomer.


Pssm-ID: 427158 [Multi-domain]  Cd Length: 92  Bit Score: 137.86  E-value: 3.62e-40
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1916927452 283 FSDEQLVSLSVRELNRHLRGVSKDEVVRLKQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRE 362
Cdd:pfam03131   1 LSDEELLSMSVREFNRFLRGLTEEEVIRLKQRRRRLKNRGYAQSCRKRRLQQKESLEKERSELREQLERLVQELSRLRQE 80
                          90
                  ....*....|.
gi 1916927452 363 RDAYKTRYEKL 373
Cdd:pfam03131  81 LDALKRRNEQL 91
bZIP_Maf_small cd14717
Basic leucine zipper (bZIP) domain of small musculoaponeurotic fibrosarcoma (Maf) proteins: a ...
305-373 2.25e-28

Basic leucine zipper (bZIP) domain of small musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain; Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The small Mafs (MafF, MafK, and MafG) do not contain a transactivation domain but do harbor the anxillary DNA-binding domain and a C-terminal bZIP domain. They form dimers with cap'n'collar (CNC) proteins that harbor transactivation domains, and they act either as activators or repressors depending on their dimerization partner. CNC transcription factors include NFE2 (nuclear factor, erythroid-derived 2) and similar proteins NFE2L1 (NFE2-like 1), NFE2L2, and NFE2L3, as well as BACH1 and BACH2. Small Mafs play roles in stress response and detoxification pathways. They also regulate the expression of betaA-globin and other genes activated during erythropoiesis. They have been implicated in various diseases such as diabetes, neurological diseases, thrombocytopenia and cancer. Triple deletion of the three small Mafs is embryonically lethal. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269865 [Multi-domain]  Cd Length: 70  Bit Score: 105.91  E-value: 2.25e-28
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1916927452 305 KDEVVRLKQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRERDAYKTRYEKL 373
Cdd:cd14717     1 KEEIIRLKQRRRTLKNRGYAASCRIKRVTQKEELEKQKAELQQEVEKLARENASMRLELDALRSKYEAL 69
bZIP_Maf cd14697
Basic leucine zipper (bZIP) domain of musculoaponeurotic fibrosarcoma (Maf) proteins: a ...
305-374 6.05e-28

Basic leucine zipper (bZIP) domain of musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain; Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The large Mafs (c-Maf, MafA, MafB, NRL) contain an N-terminal transactivation domain, a linker region of varying size, an anxillary DNA-binding domain, and a C-terminal bZIP domain. They function as critical regulators of terminal differentiation in the blood and in many tissues such as bone, brain, kidney, pancreas, and retina. The small Mafs (MafF, MafK, MafG) do not contain a transactivation domain. They form dimers with cap'n'collar (CNC) proteins that harbor transactivation domains, and they act either as activators or repressors depending on their dimerization partner. They play roles in stress response and detoxification pathways. They have been implicated in various diseases such as diabetes, neurological diseases, thrombocytopenia and cancer. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269845 [Multi-domain]  Cd Length: 70  Bit Score: 104.77  E-value: 6.05e-28
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1916927452 305 KDEVVRLKQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRERDAYKTRYEKLV 374
Cdd:cd14697     1 KEEVIQLKQKRRTLKNRGYAQSCRAKRVQQKEQLENEKAELRSQIEELKEENSELQQELDYYKQKFEALA 70
BRLZ smart00338
basic region leucin zipper;
311-372 2.74e-13

basic region leucin zipper;


Pssm-ID: 197664 [Multi-domain]  Cd Length: 65  Bit Score: 64.12  E-value: 2.74e-13
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1916927452  311 LKQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRERDAYKTRYEK 372
Cdd:smart00338   4 EKRRRRRERNREAARRSRERKKAEIEELERKVEQLEAENERLKKEIERLRRELEKLKSELEE 65
bZIP cd14686
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ...
312-364 1.34e-08

Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269834 [Multi-domain]  Cd Length: 52  Bit Score: 50.62  E-value: 1.34e-08
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1916927452 312 KQKRRtLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRERD 364
Cdd:cd14686     1 KERRR-ERNREAARRSRERKKERIEELEEEVEELEEENEELKAELEELRAEVE 52
bZIP_CNC cd14698
Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding ...
315-373 1.79e-07

Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding and dimerization domain; CNC proteins form a subfamily of Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. This subfamily includes Drosophila Cnc and four vertebrate counterparts, NFE2 (nuclear factor, erythroid-derived 2), NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). It also includes BACH1 and BACH2, which contain an additional BTB domain (Broad complex###Tramtrack###Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain). CNC proteins function during development and/or contribute in maintaining homeostasis during stress responses. In flies, Cnc functions both in development and in stress responses. In vertebrates, several CNC proteins encoded by distinct genes show varying functions and expression patterns. NFE2 is required for the proper development of platelets while the three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269846 [Multi-domain]  Cd Length: 68  Bit Score: 48.02  E-value: 1.79e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1916927452 315 RRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRERDAYKTRYEKL 373
Cdd:cd14698     9 RRRGKNKVAAQNCRKRKLDQISTLEDEVDELKEEKEKLLKERDELEAETREMKDKYSQL 67
bZIP_XBP1 cd14691
Basic leucine zipper (bZIP) domain of X-box binding protein 1 (XBP1) and similar proteins: a ...
311-363 3.92e-05

Basic leucine zipper (bZIP) domain of X-box binding protein 1 (XBP1) and similar proteins: a DNA-binding and dimerization domain; XBP1, a member of the Basic leucine zipper (bZIP) family, is the key transcription factor that orchestrates the unfolded protein response (UPR). It is the most conserved component of the UPR and is critical for cell fate determination in response to ER stress. The inositol-requiring enzyme 1 (IRE1)-XBP1 pathway is one of the three major sensors at the ER membrane that initiates the UPR upon activation. IRE1, a type I transmembrane protein kinase and endoribonuclease, oligomerizes upon ER stress leading to its increased activity. It splices the XBP1 mRNA, producing a variant that translocates to the nucleus and activates its target genes, which are involved in protein folding, degradation, and trafficking. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269839 [Multi-domain]  Cd Length: 58  Bit Score: 41.04  E-value: 3.92e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1916927452 311 LKQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRvLRER 363
Cdd:cd14691     2 EKDLRRKLKNRVAAQTARDRKKARMDELEERVRELEEENQKLRAENES-LRAR 53
bZIP_BACH cd14719
Basic leucine zipper (bZIP) domain of BTB and CNC homolog (BACH) proteins: a DNA-binding and ...
315-373 9.66e-05

Basic leucine zipper (bZIP) domain of BTB and CNC homolog (BACH) proteins: a DNA-binding and dimerization domain; BACH proteins are Cap'n'Collar (CNC) Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. In addition, they contain a BTB domain (Broad complex-Tramtrack-Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain) that is absent in other CNC proteins. Veterbrates contain two members, BACH1 and BACH2. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. It has also been implicated as the master regulator of breast cancer bone metastasis. The BACH1 bZIP transcription factor should not be confused with the protein originally named as BRCA1-Associated C-terminal Helicase1 (BACH1), which has been renamed BRIP1 (BRCA1 Interacting Protein C-terminal Helicase1) and also called FANCJ. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. It plays an important role in class switching and somatic hypermutation of immunoglobulin genes. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269867 [Multi-domain]  Cd Length: 71  Bit Score: 40.17  E-value: 9.66e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1916927452 315 RRTLKNRGYAQSCRYKRLQHRHALESEkhvltqqLEQLQRELSRVLRERDAYKTRYEKL 373
Cdd:cd14719    12 RRRSKNRIAAQRCRKRKLDCIQNLECE-------IKKLVCEKEKLLGERNQLKASMGEL 63
bZIP_NFE2-like cd14720
Basic leucine zipper (bZIP) domain of Nuclear Factor, Erythroid-derived 2 (NFE2) and similar ...
315-367 1.62e-04

Basic leucine zipper (bZIP) domain of Nuclear Factor, Erythroid-derived 2 (NFE2) and similar proteins: a DNA-binding and dimerization domain; This subfamily is composed of NFE2 and NFE2-like proteins including NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). These are Cap'n'Collar (CNC) Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. NFE2 functions in development; it is required for the proper development of platelets. The three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. As the master regulator of the antioxidant defense pathway, it plays roles in the biology of inflammation, obesity, and cancer. Nrf1 is an essential protein that binds to the antioxidant response element (ARE) and is also involved in regulating oxidative stress. In addition, it also regulates genes involved in cell and tissue differentiation, inflammation, and hepatocyte homeostasis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269868 [Multi-domain]  Cd Length: 68  Bit Score: 39.59  E-value: 1.62e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1916927452 315 RRTLKNRGYAQSCRYKRLQHRHALESEkhvltqqLEQLQRELSRVLRERDAYK 367
Cdd:cd14720     9 RRRGKNKVAAQNCRKRKLDNIVGLEDE-------VEQLQRQREKLLREKAENA 54
bZIP_CREB1 cd14690
Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 1 (CREB1) ...
312-362 2.00e-04

Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 1 (CREB1) and similar proteins: a DNA-binding and dimerization domain; CREB1 is a Basic leucine zipper (bZIP) transcription factor that plays a role in propagating signals initiated by receptor activation through the induction of cAMP-responsive genes. Because it responds to many signal transduction pathways, CREB1 is implicated to function in many processes including learning, memory, circadian rhythm, immune response, and reproduction, among others. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269838 [Multi-domain]  Cd Length: 55  Bit Score: 38.77  E-value: 2.00e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1916927452 312 KQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELsRVLRE 362
Cdd:cd14690     1 KRQLRLEKNREAARECRRKKKEYVKCLENRVAVLENENKELREEL-KILKE 50
bZIP_Fos_like cd14699
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a ...
312-364 3.90e-04

Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a DNA-binding and dimerization domain; This subfamily is composed of Fos proteins (c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2), Activating Transcription Factor-3 (ATF-3), and similar proteins. Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of bZIP dimers of the Jun and Fos families, and to a lesser extent, ATF and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. ATF3 is induced by various stress signals such as cytokines, genotoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269847 [Multi-domain]  Cd Length: 59  Bit Score: 38.40  E-value: 3.90e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1916927452 312 KQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRERD 364
Cdd:cd14699     1 RRRKRRERNKVAAAKCRQRRRELMEELQAEVEQLEDENEKLQSEIANLRSEKE 53
bZIP_u1 cd14810
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ...
312-362 1.68e-03

Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; uncharacterized subfamily; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269872  Cd Length: 52  Bit Score: 36.08  E-value: 1.68e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1916927452 312 KQKRRtLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRVLRE 362
Cdd:cd14810     1 KEKRQ-LRNKISARNFRARRKEYITQLEEQVADRDAEIEQLRAELRALRNE 50
bZIP_1 pfam00170
bZIP transcription factor; The Pfam entry includes the basic region and the leucine zipper ...
312-378 1.81e-03

bZIP transcription factor; The Pfam entry includes the basic region and the leucine zipper region.


Pssm-ID: 395118 [Multi-domain]  Cd Length: 60  Bit Score: 36.20  E-value: 1.81e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1916927452 312 KQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRvlrerdaYKTRYEKLVSTNE 378
Cdd:pfam00170   1 KREKRKQSNREAARRSRQRKQAYIEELERRVKALEGENKTLRSELEE-------LKKEVEKLKSKNK 60
bZIP_plant_RF2 cd14703
Basic leucine zipper (bZIP) domain of Plant RF2-like transcription factors: a DNA-binding and ...
315-355 1.92e-03

Basic leucine zipper (bZIP) domain of Plant RF2-like transcription factors: a DNA-binding and dimerization domain; This subfamily is composed of plant bZIP transciption factors with similarity to Oryza sativa RF2a and RF2b, which are important for plant development. They interact with, as homodimers or heterodimers with each other, and activate transcription from the RTBV (rice tungro bacilliform virus) promoter, which is regulated by sequence-specific DNA-binding proteins that bind to the essential cis element BoxII. RF2a and RF2b show differences in binding affinities to BoxII, expression patterns in different rice organs, and subcellular localization. Transgenic rice with increased RF2a and RF2b display increased resistance to rice tungro disease (RTD) with no impact on plant development. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269851 [Multi-domain]  Cd Length: 52  Bit Score: 36.01  E-value: 1.92e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*...
gi 1916927452 315 RRTLKNRGYAQSCRYKRLQH-------RHALESEKHVLTQQLEQLQRE 355
Cdd:cd14703     3 KRILANRQSAQRSRERKLQYiselerkVQTLQTEVATLSAQLALLEQE 50
bZIP_Jun cd14696
Basic leucine zipper (bZIP) domain of Jun proteins and similar proteins: a DNA-binding and ...
312-363 3.07e-03

Basic leucine zipper (bZIP) domain of Jun proteins and similar proteins: a DNA-binding and dimerization domain; Jun is a member of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are three Jun proteins: c-Jun, JunB, and JunD. c-Jun is the most potent transcriptional activator of the AP-1 proteins. Both c-Jun and JunB are essential during development; deletion of either results in embryonic lethality in mice. c-Jun is essential in hepatogenesis and liver erythropoiesis, while JunB is required in vasculogenesis and angiogenesis in extraembryonic tissues. While JunD is dispensable in embryonic development, it is involved in transcription regulation of target genes that help cells to cope with environmental signals. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269844 [Multi-domain]  Cd Length: 61  Bit Score: 35.63  E-value: 3.07e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1916927452 312 KQKRRTLKNRGYAQSCRYKRLQHRHALESEKHVLTQQLEQLQRELSRvLRER 363
Cdd:cd14696     1 KLERKRARNRIAASKCRKRKLERIARLEDKVKELKNQNSELTSTASL-LREQ 51
GumC COG3206
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis];
287-375 6.70e-03

Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis];


Pssm-ID: 442439 [Multi-domain]  Cd Length: 687  Bit Score: 38.46  E-value: 6.70e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1916927452 287 QLVSLSVRELNRHlrgvskDEVVRLKQKRRTLKNRGYAQSCR--------YKRLQHRHA-LESEKHVLTQQLEQL---QR 354
Cdd:COG3206   278 ELAELSARYTPNH------PDVIALRAQIAALRAQLQQEAQRilasleaeLEALQAREAsLQAQLAQLEARLAELpelEA 351
                          90       100
                  ....*....|....*....|.
gi 1916927452 355 ELSRVLRERDAYKTRYEKLVS 375
Cdd:COG3206   352 ELRRLEREVEVARELYESLLQ 372
HOOK pfam05622
HOOK protein coiled-coil region; This family consists of several HOOK1, 2 and 3 proteins from ...
329-373 6.85e-03

HOOK protein coiled-coil region; This family consists of several HOOK1, 2 and 3 proteins from different eukaryotic organizms. The different members of the human gene family are HOOK1, HOOK2 and HOOK3. Different domains have been identified in the three human HOOK proteins, and it was demonstrated that the highly conserved NH2-domain mediates attachment to microtubules, whereas this central coiled-coil motif mediates homodimerization and the more divergent C-terminal domains are involved in binding to specific organelles (organelle-binding domains). It has been demonstrated that endogenous HOOK3 binds to Golgi membranes, whereas both HOOK1 and HOOK2 are localized to discrete but unidentified cellular structures. In mice the Hook1 gene is predominantly expressed in the testis. Hook1 function is necessary for the correct positioning of microtubular structures within the haploid germ cell. Disruption of Hook1 function in mice causes abnormal sperm head shape and fragile attachment of the flagellum to the sperm head. This entry includes the central coiled-coiled domain and the divergent C-terminal domain.


Pssm-ID: 461694 [Multi-domain]  Cd Length: 528  Bit Score: 38.52  E-value: 6.85e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1916927452 329 YKR----LQHRHALESEKHV--------LTQQLEQLQRELSRVLRERDAYKTRYEKL 373
Cdd:pfam05622 188 YKRqvqeLHGKLSEESKKADklefeykkLEEKLEALQKEKERLIIERDTLRETNEEL 244
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH