glyoxalase domain-containing protein 5 [Scophthalmus maximus]
VOC family protein( domain architecture ID 10163535)
vicinal oxygen chelate (VOC) family protein uses a metal center to coordinate a substrate, intermediate, or transition state through vicinal oxygen atoms
List of domain hits
Name | Accession | Description | Interval | E-value | |||
GLOD5 | cd07253 | Human glyoxalase domain-containing protein 5 and similar proteins; Uncharacterized subfamily ... |
39-161 | 6.34e-76 | |||
Human glyoxalase domain-containing protein 5 and similar proteins; Uncharacterized subfamily of VOC family contains human glyoxalase domain-containing protein 5 and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. : Pssm-ID: 319916 [Multi-domain] Cd Length: 123 Bit Score: 222.49 E-value: 6.34e-76
|
|||||||
Name | Accession | Description | Interval | E-value | |||
GLOD5 | cd07253 | Human glyoxalase domain-containing protein 5 and similar proteins; Uncharacterized subfamily ... |
39-161 | 6.34e-76 | |||
Human glyoxalase domain-containing protein 5 and similar proteins; Uncharacterized subfamily of VOC family contains human glyoxalase domain-containing protein 5 and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319916 [Multi-domain] Cd Length: 123 Bit Score: 222.49 E-value: 6.34e-76
|
|||||||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
41-161 | 6.41e-18 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 75.03 E-value: 6.41e-18
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
41-158 | 5.42e-09 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 51.68 E-value: 5.42e-09
|
|||||||
glyox_I | TIGR00068 | lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and ... |
42-101 | 4.54e-03 | |||
lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and glyoxalase I. Glyoxylase I is a homodimer in many species. In some eukaryotes, including yeasts and plants, the orthologous protein carries a tandem duplication, is twice as long, and hits this model twice. [Central intermediary metabolism, Amino sugars, Energy metabolism, Other] Pssm-ID: 272886 Cd Length: 150 Bit Score: 35.94 E-value: 4.54e-03
|
|||||||
Name | Accession | Description | Interval | E-value | |||
GLOD5 | cd07253 | Human glyoxalase domain-containing protein 5 and similar proteins; Uncharacterized subfamily ... |
39-161 | 6.34e-76 | |||
Human glyoxalase domain-containing protein 5 and similar proteins; Uncharacterized subfamily of VOC family contains human glyoxalase domain-containing protein 5 and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319916 [Multi-domain] Cd Length: 123 Bit Score: 222.49 E-value: 6.34e-76
|
|||||||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
41-161 | 6.41e-18 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 75.03 E-value: 6.41e-18
|
|||||||
CatE | COG2514 | Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; |
39-158 | 6.33e-17 | |||
Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 442004 [Multi-domain] Cd Length: 141 Bit Score: 72.68 E-value: 6.33e-17
|
|||||||
VOC_like | cd08354 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
58-158 | 9.63e-12 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319942 Cd Length: 122 Bit Score: 58.92 E-value: 9.63e-12
|
|||||||
VOC | cd06587 | vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ... |
44-158 | 2.97e-10 | |||
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. Pssm-ID: 319898 [Multi-domain] Cd Length: 112 Bit Score: 54.84 E-value: 2.97e-10
|
|||||||
VOC_BsCatE_like_N | cd07255 | N-terminal of Bacillus subtilis CatE like protein; Uncharacterized subfamily of VOC ... |
41-158 | 4.72e-09 | |||
N-terminal of Bacillus subtilis CatE like protein; Uncharacterized subfamily of VOC superfamily contains Bacillus subtilis CatE and similar proteins. CatE is proposed to function as Catechol-2,3-dioxygenase. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319918 Cd Length: 124 Bit Score: 51.54 E-value: 4.72e-09
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
41-158 | 5.42e-09 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 51.68 E-value: 5.42e-09
|
|||||||
BphC2-C3-RGP6_C_like | cd08348 | The single-domain 2,3-dihydroxybiphenyl 1,2-dioxygenases; This subfamily contains Rhodococcus ... |
42-170 | 1.93e-07 | |||
The single-domain 2,3-dihydroxybiphenyl 1,2-dioxygenases; This subfamily contains Rhodococcus globerulus P6 BphC2-RGP6 and BphC3-RGP6, and similar proteins. BphC catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, yielding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. This is the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). This subfamily of BphCs belongs to the type I extradiol dioxygenase family, which require a metal in the active site in its catalytic mechanism. Most type I extradiol dioxygenases are activated by Fe(II). Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. For example, three types of BphC enzymes have been found in Rhodococcus globerulus (BphC1-RGP6 - BphC3-RGP6), all three enzymes are type I extradiol dioxygenases. BphC2-RGP6 and BphC3-RGP6 are one-domain dioxygenases, which form hexamers. BphC1-RGP6 has an internal duplication, it is a two-domain dioxygenase which forms octamers, its two domains do not belong to this subfamily. Pssm-ID: 319936 Cd Length: 137 Bit Score: 47.90 E-value: 1.93e-07
|
|||||||
VOC | COG3324 | Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function ... |
41-158 | 3.50e-06 | |||
Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function prediction only]; Pssm-ID: 442553 [Multi-domain] Cd Length: 119 Bit Score: 43.86 E-value: 3.50e-06
|
|||||||
VOC_like | cd07245 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
42-158 | 3.61e-06 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319909 [Multi-domain] Cd Length: 117 Bit Score: 43.85 E-value: 3.61e-06
|
|||||||
VOC_like | cd07264 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
44-158 | 2.59e-05 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319925 [Multi-domain] Cd Length: 118 Bit Score: 41.55 E-value: 2.59e-05
|
|||||||
FosB | cd08363 | fosfomycin resistant protein subfamily FosB; This subfamily family contains FosB, a fosfomycin ... |
42-158 | 8.82e-05 | |||
fosfomycin resistant protein subfamily FosB; This subfamily family contains FosB, a fosfomycin resistant protein. FosB is a Mg(2+)-dependent L-cysteine thiol transferase. Fosfomycin inhibits the enzyme UDP-nacetylglucosamine-3-enolpyruvyltransferase (MurA), which catalyzes the first committed step in bacterial cell wall biosynthesis. FosB catalyzes the Mg(II) dependent addition of L-cysteine to the epoxide ring of fosfomycin, (1R,2S)-epoxypropylphosphonic acid, rendering it inactive. FosB is evolutionarily related to glyoxalase I and type I extradiol dioxygenases. Pssm-ID: 319951 [Multi-domain] Cd Length: 131 Bit Score: 40.41 E-value: 8.82e-05
|
|||||||
ED_TypeI_classII_C | cd08343 | C-terminal domain of type I, class II extradiol dioxygenases, catalytic domain; This family ... |
43-159 | 1.16e-04 | |||
C-terminal domain of type I, class II extradiol dioxygenases, catalytic domain; This family contains the C-terminal, catalytic domain of type I, class II extradiol dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site; extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon, whereas intradiol enzymes cleave the aromatic ring between two hydroxyl groups. Extradiol dioxygenases are classified into type I and type II enzymes. Type I extradiol dioxygenases include class I and class II enzymes. These two classes of enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. The extradiol dioxygenases represented in this family are type I, class II enzymes, and are composed of the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. A catalytically essential metal, Fe(II) or Mn(II), presents in all the enzymes in this family. Pssm-ID: 319931 Cd Length: 132 Bit Score: 39.99 E-value: 1.16e-04
|
|||||||
ED_TypeI_classII_N | cd16360 | N-terminal domain of type I, class II extradiol dioxygenases; This family contains the ... |
44-159 | 2.42e-04 | |||
N-terminal domain of type I, class II extradiol dioxygenases; This family contains the N-terminal non-catalytic domain of type I, class II extradiol dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site; extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon, whereas intradiol enzymes cleave the aromatic ring between two hydroxyl groups. Extradiol dioxygenases are classified into type I and type II enzymes. Type I extradiol dioxygenases include class I and class II enzymes. These two classes of enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. The extradiol dioxygenases represented in this family are type I, class II enzymes, and are composed of the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. A catalytically essential metal, Fe(II) or Mn(II), presents in all the enzymes in this family. Pssm-ID: 319967 Cd Length: 111 Bit Score: 38.84 E-value: 2.42e-04
|
|||||||
GLOD4_C | cd16357 | C-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; ... |
44-94 | 2.25e-03 | |||
C-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; Uncharacterized subfamily of the vicinal oxygen chelate (VOC) superfamily contains human glyoxalase domain-containing protein 4 and similar proteins. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319964 Cd Length: 114 Bit Score: 35.99 E-value: 2.25e-03
|
|||||||
PhnB | COG2764 | Zn-dependent glyoxalase, PhnB family [Energy production and conversion]; |
46-159 | 4.23e-03 | |||
Zn-dependent glyoxalase, PhnB family [Energy production and conversion]; Pssm-ID: 442048 [Multi-domain] Cd Length: 118 Bit Score: 35.22 E-value: 4.23e-03
|
|||||||
glyox_I | TIGR00068 | lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and ... |
42-101 | 4.54e-03 | |||
lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and glyoxalase I. Glyoxylase I is a homodimer in many species. In some eukaryotes, including yeasts and plants, the orthologous protein carries a tandem duplication, is twice as long, and hits this model twice. [Central intermediary metabolism, Amino sugars, Energy metabolism, Other] Pssm-ID: 272886 Cd Length: 150 Bit Score: 35.94 E-value: 4.54e-03
|
|||||||
HppD | COG3185 | 4-hydroxyphenylpyruvate dioxygenase and related hemolysins [Amino acid transport and ... |
36-68 | 6.70e-03 | |||
4-hydroxyphenylpyruvate dioxygenase and related hemolysins [Amino acid transport and metabolism, General function prediction only]; Pssm-ID: 442418 [Multi-domain] Cd Length: 333 Bit Score: 36.02 E-value: 6.70e-03
|
|||||||
BphC5-RrK37_N_like | cd08362 | N-terminal, non-catalytic, domain of BphC5 (2,3-dihydroxybiphenyl 1,2-dioxygenase) from ... |
39-159 | 6.71e-03 | |||
N-terminal, non-catalytic, domain of BphC5 (2,3-dihydroxybiphenyl 1,2-dioxygenase) from Rhodococcus rhodochrous K37, and similar proteins; 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). The enzyme contains a N-terminal and a C-terminal domain of similar structure fold, resulting from an ancient gene duplication. BphC belongs to the type I extradiol dioxygenase family, which requires a metal in the active site for its catalytic activity. Polychlorinated biphenyl degrading bacteria demonstrate multiplicity of BphCs. Bacterium Rhodococcus rhodochrous K37 has eight genes encoding BphC enzymes. This family includes the N-terminal domain of BphC5-RrK37. The crystal structure of the protein from Novosphingobium aromaticivorans has a Mn(II)in the active site, although most proteins of type I extradiol dioxygenases are activated by Fe(II). Pssm-ID: 319950 [Multi-domain] Cd Length: 120 Bit Score: 34.92 E-value: 6.71e-03
|
|||||||
Blast search parameters | ||||
|