glycoside hydrolase family 13 protein [Leifsonia sp. C5G2]
glycoside hydrolase family 13 protein( domain architecture ID 10183204)
glycoside hydrolase family 13 protein similar to alpha-glucosidase catalyzes the hydrolysis of terminal, non-reducing, alpha-glucosidic linkages of oligosaccharides to produce alpha-glucose
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||
AmyAc_OligoGlu_TS | cd11332 | Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; ... |
29-503 | 0e+00 | ||||||||
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), trehalose synthase (also called maltose alpha-D-glucosyltransferase), and related proteins; Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Trehalose synthase (EC 5.4.99.16) catalyzes the isomerization of maltose to produce trehalulose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. : Pssm-ID: 200471 [Multi-domain] Cd Length: 481 Bit Score: 749.10 E-value: 0e+00
|
||||||||||||
DUF3459 | pfam11941 | Domain of unknown function (DUF3459); This presumed domain is functionally uncharacterized. ... |
486-562 | 3.24e-04 | ||||||||
Domain of unknown function (DUF3459); This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 110 amino acids in length. This domain is found associated with pfam00128, pfam02922. : Pssm-ID: 432205 [Multi-domain] Cd Length: 92 Bit Score: 40.00 E-value: 3.24e-04
|
||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||
AmyAc_OligoGlu_TS | cd11332 | Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; ... |
29-503 | 0e+00 | |||||||||
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), trehalose synthase (also called maltose alpha-D-glucosyltransferase), and related proteins; Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Trehalose synthase (EC 5.4.99.16) catalyzes the isomerization of maltose to produce trehalulose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200471 [Multi-domain] Cd Length: 481 Bit Score: 749.10 E-value: 0e+00
|
|||||||||||||
AmyA | COG0366 | Glycosidase/amylase (phosphorylase) [Carbohydrate transport and metabolism]; |
27-494 | 5.30e-172 | |||||||||
Glycosidase/amylase (phosphorylase) [Carbohydrate transport and metabolism]; Pssm-ID: 440135 [Multi-domain] Cd Length: 413 Bit Score: 493.61 E-value: 5.30e-172
|
|||||||||||||
trehalose_treC | TIGR02403 | alpha,alpha-phosphotrehalase; Trehalose is a glucose disaccharide that serves in many ... |
30-546 | 3.09e-109 | |||||||||
alpha,alpha-phosphotrehalase; Trehalose is a glucose disaccharide that serves in many biological systems as a compatible solute for protection against hyperosmotic and thermal stress. This family describes trehalose-6-phosphate hydrolase, product of the treC (or treA) gene, which is often found together with a trehalose uptake transporter and a trehalose operon repressor. Pssm-ID: 274115 [Multi-domain] Cd Length: 543 Bit Score: 337.39 E-value: 3.09e-109
|
|||||||||||||
PRK10933 | PRK10933 | trehalose-6-phosphate hydrolase; Provisional |
28-503 | 7.41e-85 | |||||||||
trehalose-6-phosphate hydrolase; Provisional Pssm-ID: 182849 [Multi-domain] Cd Length: 551 Bit Score: 274.32 E-value: 7.41e-85
|
|||||||||||||
Alpha-amylase | pfam00128 | Alpha amylase, catalytic domain; Alpha amylase is classified as family 13 of the glycosyl ... |
53-412 | 2.96e-76 | |||||||||
Alpha amylase, catalytic domain; Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain. Pssm-ID: 395077 [Multi-domain] Cd Length: 334 Bit Score: 244.96 E-value: 2.96e-76
|
|||||||||||||
Aamy | smart00642 | Alpha-amylase domain; |
38-131 | 3.32e-38 | |||||||||
Alpha-amylase domain; Pssm-ID: 214758 [Multi-domain] Cd Length: 166 Bit Score: 138.23 E-value: 3.32e-38
|
|||||||||||||
DUF3459 | pfam11941 | Domain of unknown function (DUF3459); This presumed domain is functionally uncharacterized. ... |
486-562 | 3.24e-04 | |||||||||
Domain of unknown function (DUF3459); This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 110 amino acids in length. This domain is found associated with pfam00128, pfam02922. Pssm-ID: 432205 [Multi-domain] Cd Length: 92 Bit Score: 40.00 E-value: 3.24e-04
|
|||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||
AmyAc_OligoGlu_TS | cd11332 | Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; ... |
29-503 | 0e+00 | |||||||||
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), trehalose synthase (also called maltose alpha-D-glucosyltransferase), and related proteins; Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Trehalose synthase (EC 5.4.99.16) catalyzes the isomerization of maltose to produce trehalulose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200471 [Multi-domain] Cd Length: 481 Bit Score: 749.10 E-value: 0e+00
|
|||||||||||||
AmyA | COG0366 | Glycosidase/amylase (phosphorylase) [Carbohydrate transport and metabolism]; |
27-494 | 5.30e-172 | |||||||||
Glycosidase/amylase (phosphorylase) [Carbohydrate transport and metabolism]; Pssm-ID: 440135 [Multi-domain] Cd Length: 413 Bit Score: 493.61 E-value: 5.30e-172
|
|||||||||||||
AmyAc_OligoGlu_like | cd11331 | Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; ... |
29-503 | 8.01e-150 | |||||||||
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase) and related proteins; Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomalto-oligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200470 [Multi-domain] Cd Length: 450 Bit Score: 438.30 E-value: 8.01e-150
|
|||||||||||||
AmyAc_OligoGlu | cd11330 | Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; ... |
30-515 | 2.22e-144 | |||||||||
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase) and related proteins; Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomalto-oligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200469 [Multi-domain] Cd Length: 472 Bit Score: 425.14 E-value: 2.22e-144
|
|||||||||||||
AmyAc_SI_OligoGlu_DGase | cd11333 | Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called ... |
32-495 | 1.18e-138 | |||||||||
Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins; The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200472 [Multi-domain] Cd Length: 428 Bit Score: 409.15 E-value: 1.18e-138
|
|||||||||||||
AmyAc_maltase | cd11328 | Alpha amylase catalytic domain found in maltase (also known as alpha glucosidase) and related ... |
27-500 | 4.36e-110 | |||||||||
Alpha amylase catalytic domain found in maltase (also known as alpha glucosidase) and related proteins; Maltase (EC 3.2.1.20) hydrolyzes the terminal, non-reducing (1->4)-linked alpha-D-glucose residues in maltose, releasing alpha-D-glucose. In most cases, maltase is equivalent to alpha-glucosidase, but the term "maltase" emphasizes the disaccharide nature of the substrate from which glucose is cleaved, and the term "alpha-glucosidase" emphasizes the bond, whether the substrate is a disaccharide or polysaccharide. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200467 [Multi-domain] Cd Length: 470 Bit Score: 337.28 E-value: 4.36e-110
|
|||||||||||||
trehalose_treC | TIGR02403 | alpha,alpha-phosphotrehalase; Trehalose is a glucose disaccharide that serves in many ... |
30-546 | 3.09e-109 | |||||||||
alpha,alpha-phosphotrehalase; Trehalose is a glucose disaccharide that serves in many biological systems as a compatible solute for protection against hyperosmotic and thermal stress. This family describes trehalose-6-phosphate hydrolase, product of the treC (or treA) gene, which is often found together with a trehalose uptake transporter and a trehalose operon repressor. Pssm-ID: 274115 [Multi-domain] Cd Length: 543 Bit Score: 337.39 E-value: 3.09e-109
|
|||||||||||||
AmyAc_SLC3A1 | cd11359 | Alpha amylase catalytic domain found in Solute Carrier family 3 member 1 proteins; SLC3A1, ... |
29-500 | 1.52e-105 | |||||||||
Alpha amylase catalytic domain found in Solute Carrier family 3 member 1 proteins; SLC3A1, also called Neutral and basic amino acid transport protein rBAT or NBAT, plays a role in amino acid and cystine absorption. Mutations in the gene encoding SLC3A1 causes cystinuria, an autosomal recessive disorder characterized by the failure of proximal tubules to reabsorb filtered cystine and dibasic amino acids. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200494 [Multi-domain] Cd Length: 456 Bit Score: 325.08 E-value: 1.52e-105
|
|||||||||||||
AmyAc_bac2_AmyA | cd11316 | Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1, ... |
34-503 | 5.23e-94 | |||||||||
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase); AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200455 [Multi-domain] Cd Length: 403 Bit Score: 293.33 E-value: 5.23e-94
|
|||||||||||||
AmyAc_TreS | cd11334 | Alpha amylase catalytic domain found in Trehalose synthetase; Trehalose synthetase (TreS) ... |
30-494 | 9.10e-87 | |||||||||
Alpha amylase catalytic domain found in Trehalose synthetase; Trehalose synthetase (TreS) catalyzes the reversible interconversion of trehalose and maltose. The enzyme catalyzes the reaction in both directions, but the preferred substrate is maltose. Glucose is formed as a by-product of this reaction. It is believed that the catalytic mechanism may involve the cutting of the incoming disaccharide and transfer of a glucose to an enzyme-bound glucose. This enzyme also catalyzes production of a glucosamine disaccharide from maltose and glucosamine. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200473 [Multi-domain] Cd Length: 447 Bit Score: 275.98 E-value: 9.10e-87
|
|||||||||||||
PRK10933 | PRK10933 | trehalose-6-phosphate hydrolase; Provisional |
28-503 | 7.41e-85 | |||||||||
trehalose-6-phosphate hydrolase; Provisional Pssm-ID: 182849 [Multi-domain] Cd Length: 551 Bit Score: 274.32 E-value: 7.41e-85
|
|||||||||||||
Alpha-amylase | pfam00128 | Alpha amylase, catalytic domain; Alpha amylase is classified as family 13 of the glycosyl ... |
53-412 | 2.96e-76 | |||||||||
Alpha amylase, catalytic domain; Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain. Pssm-ID: 395077 [Multi-domain] Cd Length: 334 Bit Score: 244.96 E-value: 2.96e-76
|
|||||||||||||
AmyAc_2 | cd11348 | Alpha amylase catalytic domain found in an uncharacterized protein family; The Alpha-amylase ... |
35-491 | 4.40e-57 | |||||||||
Alpha amylase catalytic domain found in an uncharacterized protein family; The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The catalytic triad (DED) is not present here. The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200486 [Multi-domain] Cd Length: 429 Bit Score: 197.53 E-value: 4.40e-57
|
|||||||||||||
AmyAc_CMD | cd11338 | Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins; ... |
33-503 | 5.44e-50 | |||||||||
Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins; Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200477 [Multi-domain] Cd Length: 389 Bit Score: 177.29 E-value: 5.44e-50
|
|||||||||||||
Aamy | smart00642 | Alpha-amylase domain; |
38-131 | 3.32e-38 | |||||||||
Alpha-amylase domain; Pssm-ID: 214758 [Multi-domain] Cd Length: 166 Bit Score: 138.23 E-value: 3.32e-38
|
|||||||||||||
AmyAc_family | cd00551 | Alpha amylase catalytic domain family; The Alpha-amylase family comprises the largest family ... |
35-374 | 7.49e-38 | |||||||||
Alpha amylase catalytic domain family; The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; and C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost this catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200451 [Multi-domain] Cd Length: 260 Bit Score: 140.39 E-value: 7.49e-38
|
|||||||||||||
AmyAc_arch_bac_AmyA | cd11313 | Alpha amylase catalytic domain found in archaeal and bacterial Alpha-amylases (also called 1, ... |
30-409 | 1.56e-33 | |||||||||
Alpha amylase catalytic domain found in archaeal and bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase); AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes firmicutes, bacteroidetes, and proteobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200452 [Multi-domain] Cd Length: 336 Bit Score: 130.36 E-value: 1.56e-33
|
|||||||||||||
AmyAc_maltase-like | cd11329 | Alpha amylase catalytic domain family found in maltase; Maltase (EC 3.2.1.20) hydrolyzes the ... |
24-277 | 1.02e-31 | |||||||||
Alpha amylase catalytic domain family found in maltase; Maltase (EC 3.2.1.20) hydrolyzes the terminal, non-reducing (1->4)-linked alpha-D-glucose residues in maltose, releasing alpha-D-glucose. The catalytic triad (DED) which is highly conserved in the other maltase group is not present in this subfamily. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200468 [Multi-domain] Cd Length: 477 Bit Score: 128.27 E-value: 1.02e-31
|
|||||||||||||
AmyAc_Amylosucrase | cd11324 | Alpha amylase catalytic domain found in Amylosucrase; Amylosucrase is a glucosyltransferase ... |
27-348 | 2.32e-31 | |||||||||
Alpha amylase catalytic domain found in Amylosucrase; Amylosucrase is a glucosyltransferase that catalyzes the transfer of a D-glucopyranosyl moiety from sucrose onto an acceptor molecule. When the acceptor is another saccharide, only alpha-1,4 linkages are produced. Unlike most amylopolysaccharide synthases, it does not require any alpha-D-glucosyl nucleoside diphosphate substrate. In the presence of glycogen it catalyzes the transfer of a D-glucose moiety onto a glycogen branch, but in its absence, it hydrolyzes sucrose and synthesizes polymers, smaller maltosaccharides, and sucrose isoforms. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200463 Cd Length: 536 Bit Score: 128.07 E-value: 2.32e-31
|
|||||||||||||
AmyAc_AmyMalt_CGTase_like | cd11320 | Alpha amylase catalytic domain found in maltogenic amylases, cyclodextrin glycosyltransferase, ... |
35-237 | 8.28e-25 | |||||||||
Alpha amylase catalytic domain found in maltogenic amylases, cyclodextrin glycosyltransferase, and related proteins; Enzymes such as amylases, cyclomaltodextrinase (CDase), and cyclodextrin glycosyltransferase (CGTase) degrade starch to smaller oligosaccharides by hydrolyzing the alpha-D-(1,4) linkages between glucose residues. In the case of CGTases, an additional cyclization reaction is catalyzed yielding mixtures of cyclic oligosaccharides which are referred to as alpha-, beta-, or gamma-cyclodextrins (CDs), consisting of six, seven, or eight glucose residues, respectively. CGTases are characterized depending on the major product of the cyclization reaction. Besides having similar catalytic site residues, amylases and CGTases contain carbohydrate binding domains that are distant from the active site and are implicated in attaching the enzyme to raw starch granules and in guiding the amylose chain into the active site. The maltogenic alpha-amylase from Bacillus is a five-domain structure, unlike most alpha-amylases, but similar to that of cyclodextrin glycosyltransferase. In addition to the A, B, and C domains, they have a domain D and a starch-binding domain E. Maltogenic amylase is an endo-acting amylase that has activity on cyclodextrins, terminally modified linear maltodextrins, and amylose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200459 [Multi-domain] Cd Length: 389 Bit Score: 106.60 E-value: 8.28e-25
|
|||||||||||||
AmyAc_bac_CMD_like_3 | cd11340 | Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins; ... |
35-290 | 1.15e-23 | |||||||||
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins; Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200479 [Multi-domain] Cd Length: 407 Bit Score: 103.44 E-value: 1.15e-23
|
|||||||||||||
AmyAc_Sucrose_phosphorylase-like | cd11343 | Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose ... |
40-310 | 3.08e-22 | |||||||||
Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase); Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200481 Cd Length: 445 Bit Score: 99.49 E-value: 3.08e-22
|
|||||||||||||
PRK10785 | PRK10785 | maltodextrin glucosidase; Provisional |
28-221 | 4.73e-21 | |||||||||
maltodextrin glucosidase; Provisional Pssm-ID: 236759 [Multi-domain] Cd Length: 598 Bit Score: 97.00 E-value: 4.73e-21
|
|||||||||||||
AmyAc_euk_bac_CMD_like | cd11353 | Alpha amylase catalytic domain found in eukaryotic and bacterial cyclomaltodextrinases and ... |
33-240 | 5.74e-19 | |||||||||
Alpha amylase catalytic domain found in eukaryotic and bacterial cyclomaltodextrinases and related proteins; Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is mainly bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200490 [Multi-domain] Cd Length: 366 Bit Score: 88.77 E-value: 5.74e-19
|
|||||||||||||
AmyAc_Sucrose_phosphorylase-like_1 | cd11356 | Alpha amylase catalytic domain found in sucrose phosphorylase-like proteins (also called ... |
64-310 | 7.15e-19 | |||||||||
Alpha amylase catalytic domain found in sucrose phosphorylase-like proteins (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase); Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200493 Cd Length: 458 Bit Score: 89.49 E-value: 7.15e-19
|
|||||||||||||
AmyAc_bac_CMD_like | cd11354 | Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins; ... |
34-234 | 5.63e-18 | |||||||||
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins; Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200491 [Multi-domain] Cd Length: 357 Bit Score: 85.84 E-value: 5.63e-18
|
|||||||||||||
AmyAc_MTSase | cd11336 | Alpha amylase catalytic domain found in maltooligosyl trehalose synthase (MTSase); ... |
54-146 | 1.25e-15 | |||||||||
Alpha amylase catalytic domain found in maltooligosyl trehalose synthase (MTSase); Maltooligosyl trehalose synthase (MTSase) domain. MTSase and maltooligosyl trehalose trehalohydrolase (MTHase) work together to produce trehalose. MTSase is responsible for converting the alpha-1,4-glucosidic linkage to an alpha,alpha-1,1-glucosidic linkage at the reducing end of the maltooligosaccharide through an intramolecular transglucosylation reaction, while MTHase hydrolyzes the penultimate alpha-1,4 linkage of the reducing end, resulting in the release of trehalose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200475 [Multi-domain] Cd Length: 660 Bit Score: 80.23 E-value: 1.25e-15
|
|||||||||||||
AmyAc_bac_CMD_like_2 | cd11339 | Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins; ... |
32-131 | 6.34e-15 | |||||||||
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins; Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200478 [Multi-domain] Cd Length: 344 Bit Score: 76.14 E-value: 6.34e-15
|
|||||||||||||
AmyAc_CMD_like | cd11337 | Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins; ... |
35-135 | 8.09e-15 | |||||||||
Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins; Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is mainly bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200476 [Multi-domain] Cd Length: 328 Bit Score: 75.64 E-value: 8.09e-15
|
|||||||||||||
AmyAc_5 | cd11352 | Alpha amylase catalytic domain found in an uncharacterized protein family; The Alpha-amylase ... |
22-168 | 4.45e-13 | |||||||||
Alpha amylase catalytic domain found in an uncharacterized protein family; The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200489 [Multi-domain] Cd Length: 443 Bit Score: 71.58 E-value: 4.45e-13
|
|||||||||||||
trehalose_TreY | TIGR02401 | malto-oligosyltrehalose synthase; This enzyme, formally named (1->4)-alpha-D-glucan ... |
62-160 | 6.13e-13 | |||||||||
malto-oligosyltrehalose synthase; This enzyme, formally named (1->4)-alpha-D-glucan 1-alpha-D-glucosylmutase, is the TreY enzyme of the TreYZ pathway of trehalose biosynthesis, an alternative to the OtsAB pathway. Trehalose may be incorporated into more complex compounds but is best known as compatible solute. It is one of the most effective osmoprotectants, and unlike the various betaines does not require nitrogen for its synthesis. [Energy metabolism, Biosynthesis and degradation of polysaccharides] Pssm-ID: 274113 [Multi-domain] Cd Length: 825 Bit Score: 71.67 E-value: 6.13e-13
|
|||||||||||||
PRK14511 | PRK14511 | malto-oligosyltrehalose synthase; |
54-146 | 1.95e-12 | |||||||||
malto-oligosyltrehalose synthase; Pssm-ID: 237740 [Multi-domain] Cd Length: 879 Bit Score: 70.01 E-value: 1.95e-12
|
|||||||||||||
TreY | COG3280 | Maltooligosyltrehalose synthase [Carbohydrate transport and metabolism]; |
58-146 | 2.66e-12 | |||||||||
Maltooligosyltrehalose synthase [Carbohydrate transport and metabolism]; Pssm-ID: 442511 [Multi-domain] Cd Length: 915 Bit Score: 69.84 E-value: 2.66e-12
|
|||||||||||||
AmyAc_Sucrose_phosphorylase | cd11355 | Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose ... |
40-241 | 6.47e-12 | |||||||||
Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase); Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200492 Cd Length: 433 Bit Score: 67.64 E-value: 6.47e-12
|
|||||||||||||
AmyAc_euk_AmyA | cd11319 | Alpha amylase catalytic domain found in eukaryotic Alpha-amylases (also called 1, ... |
31-129 | 7.46e-11 | |||||||||
Alpha amylase catalytic domain found in eukaryotic Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase); AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes eukaryotic alpha-amylases including proteins from fungi, sponges, and protozoans. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200458 [Multi-domain] Cd Length: 375 Bit Score: 64.12 E-value: 7.46e-11
|
|||||||||||||
malS | PRK09505 | alpha-amylase; Reviewed |
23-130 | 4.59e-10 | |||||||||
alpha-amylase; Reviewed Pssm-ID: 236543 [Multi-domain] Cd Length: 683 Bit Score: 62.38 E-value: 4.59e-10
|
|||||||||||||
AmyAc_bac_fung_AmyA | cd11318 | Alpha amylase catalytic domain found in bacterial and fungal Alpha amylases (also called 1, ... |
58-348 | 6.82e-10 | |||||||||
Alpha amylase catalytic domain found in bacterial and fungal Alpha amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase); AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes bacterial and fungal proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200457 [Multi-domain] Cd Length: 391 Bit Score: 60.99 E-value: 6.82e-10
|
|||||||||||||
PRK14507 | PRK14507 | malto-oligosyltrehalose synthase; |
62-162 | 3.19e-09 | |||||||||
malto-oligosyltrehalose synthase; Pssm-ID: 237737 [Multi-domain] Cd Length: 1693 Bit Score: 60.12 E-value: 3.19e-09
|
|||||||||||||
AmyAc_3 | cd11349 | Alpha amylase catalytic domain found in an uncharacterized protein family; The Alpha-amylase ... |
35-319 | 3.78e-09 | |||||||||
Alpha amylase catalytic domain found in an uncharacterized protein family; The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200487 [Multi-domain] Cd Length: 456 Bit Score: 59.22 E-value: 3.78e-09
|
|||||||||||||
AmyAc_4 | cd11350 | Alpha amylase catalytic domain found in an uncharacterized protein family; The Alpha-amylase ... |
35-134 | 4.97e-09 | |||||||||
Alpha amylase catalytic domain found in an uncharacterized protein family; The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200488 [Multi-domain] Cd Length: 390 Bit Score: 58.44 E-value: 4.97e-09
|
|||||||||||||
PRK09441 | PRK09441 | cytoplasmic alpha-amylase; Reviewed |
58-348 | 6.26e-08 | |||||||||
cytoplasmic alpha-amylase; Reviewed Pssm-ID: 236518 [Multi-domain] Cd Length: 479 Bit Score: 55.28 E-value: 6.26e-08
|
|||||||||||||
PRK14510 | PRK14510 | bifunctional glycogen debranching protein GlgX/4-alpha-glucanotransferase; |
31-241 | 7.81e-08 | |||||||||
bifunctional glycogen debranching protein GlgX/4-alpha-glucanotransferase; Pssm-ID: 237739 [Multi-domain] Cd Length: 1221 Bit Score: 55.66 E-value: 7.81e-08
|
|||||||||||||
AmyAc_arch_bac_plant_AmyA | cd11314 | Alpha amylase catalytic domain found in archaeal, bacterial, and plant Alpha-amylases (also ... |
58-128 | 8.14e-08 | |||||||||
Alpha amylase catalytic domain found in archaeal, bacterial, and plant Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase); AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes AmyA from bacteria, archaea, water fleas, and plants. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200453 [Multi-domain] Cd Length: 302 Bit Score: 54.15 E-value: 8.14e-08
|
|||||||||||||
AmyAc_GlgE_like | cd11344 | Alpha amylase catalytic domain found in GlgE-like proteins; GlgE is a (1,4)-a-D-glucan: ... |
37-232 | 9.63e-08 | |||||||||
Alpha amylase catalytic domain found in GlgE-like proteins; GlgE is a (1,4)-a-D-glucan:phosphate a-D-maltosyltransferase, involved in a-glucan biosynthesis in bacteria. It is also an anti-tuberculosis drug target. GlgE isoform I from Streptomyces coelicolor has the same catalytic and very similar kinetic properties to GlgE from Mycobacterium tuberculosis. GlgE from Streptomyces coelicolor forms a homodimer with each subunit comprising five domains (A, B, C, N, and S) and 2 inserts. Domain A is a catalytic alpha-amylase-type domain that along with domain N, which has a beta-sandwich fold and forms the core of the dimer interface, binds cyclodextrins. Domain A, B, and the 2 inserts define a well conserved donor pocket that binds maltose. Cyclodextrins competitively inhibit the binding of maltooligosaccharides to the S. coelicolor enzyme, indicating that the hydrophobic patch overlaps with the acceptor binding site. This is not the case in M. tuberculosis GlgE because cyclodextrins do not inhibit this enzyme, despite acceptor length specificity being conserved. Domain C is hypothesized to help stabilize domain A and could be involved in substrate binding. Domain S is a helix bundle that is inserted within the N domain and it plays a role in the dimer interface and interacts directly with domain B. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200482 [Multi-domain] Cd Length: 355 Bit Score: 54.15 E-value: 9.63e-08
|
|||||||||||||
AmyAc_bac1_AmyA | cd11315 | Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1, ... |
35-234 | 9.89e-08 | |||||||||
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase); AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Firmicutes, Proteobacteria, Actinobacteria, and Cyanobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200454 [Multi-domain] Cd Length: 352 Bit Score: 54.21 E-value: 9.89e-08
|
|||||||||||||
AmyAc_GTHase | cd11325 | Alpha amylase catalytic domain found in Glycosyltrehalose trehalohydrolase (also called ... |
27-128 | 5.12e-07 | |||||||||
Alpha amylase catalytic domain found in Glycosyltrehalose trehalohydrolase (also called Maltooligosyl trehalose Trehalohydrolase); Glycosyltrehalose trehalohydrolase (GTHase) was discovered as part of a coupled system for the production of trehalose from soluble starch. In the first half of the reaction, glycosyltrehalose synthase (GTSase), an intramolecular glycosyl transferase, converts the glycosidic bond between the last two glucose residues of amylose from an alpha-1,4 bond to an alpha-1,1 bond, making a non-reducing glycosyl trehaloside. In the second half of the reaction, GTHase cleaves the alpha-1,4 glycosidic bond adjacent to the trehalose moiety to release trehalose and malto-oligosaccharide. Like isoamylase and other glycosidases that recognize branched oligosaccharides, GTHase contains an N-terminal extension and does not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Glycosyltrehalose Trehalohydrolase Maltooligosyltrehalose Trehalohydrolase Pssm-ID: 200464 [Multi-domain] Cd Length: 436 Bit Score: 52.16 E-value: 5.12e-07
|
|||||||||||||
AmyAc_MTase_N | cd11335 | Alpha amylase catalytic domain found in maltosyltransferase; Maltosyltransferase (MTase), a ... |
22-136 | 1.27e-06 | |||||||||
Alpha amylase catalytic domain found in maltosyltransferase; Maltosyltransferase (MTase), a maltodextrin glycosyltransferase, acts on starch and maltooligosaccharides. It catalyzes the transfer of maltosyl units from alpha-1,4-linked glucans or maltooligosaccharides to other alpha-1,4-linked glucans, maltooligosaccharides or glucose. MTase is a homodimer. The catalytic core domain has the (beta/alpha) 8 barrel fold with the active-site cleft formed at the C-terminal end of the barrel. Substrate binding experiments have led to the location of two distinct maltose-binding sites: one lies in the active-site cleft and the other is located in a pocket adjacent to the active-site cleft. It is a member of the alpha-amylase family, but unlike typical alpha-amylases, MTase does not require calcium for activity and lacks two histidine residues which are predicted to be critical for binding the glucose residue adjacent to the scissile bond in the substrates. The common reaction chemistry of the alpha-amylase family of enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200474 [Multi-domain] Cd Length: 538 Bit Score: 51.15 E-value: 1.27e-06
|
|||||||||||||
AmyAc_SLC3A2 | cd11345 | Alpha amylase catalytic domain found in solute carrier family 3 member 2 proteins; 4F2 ... |
30-136 | 6.99e-06 | |||||||||
Alpha amylase catalytic domain found in solute carrier family 3 member 2 proteins; 4F2 cell-surface antigen heavy chain (hc) is a protein that in humans is encoded by the SLC3A2 gene. 4F2hc is a multifunctional type II membrane glycoprotein involved in amino acid transport and cell fusion, adhesion, and transformation. It is related to bacterial alpha-glycosidases, but lacks alpha-glycosidase activity. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200483 [Multi-domain] Cd Length: 326 Bit Score: 48.21 E-value: 6.99e-06
|
|||||||||||||
AmyAc_1 | cd11347 | Alpha amylase catalytic domain found in an uncharacterized protein family; The Alpha-amylase ... |
60-240 | 1.23e-04 | |||||||||
Alpha amylase catalytic domain found in an uncharacterized protein family; The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200485 [Multi-domain] Cd Length: 391 Bit Score: 44.54 E-value: 1.23e-04
|
|||||||||||||
AmyAc_plant_IsoA | cd11346 | Alpha amylase catalytic domain family found in plant isoamylases; Two types of debranching ... |
35-242 | 1.67e-04 | |||||||||
Alpha amylase catalytic domain family found in plant isoamylases; Two types of debranching enzymes exist in plants: isoamylase-type (EC 3.2.1.68) and a pullulanase-type (EC 3.2.1.41, also known as limit-dextrinase). These efficiently hydrolyze alpha-(1,6)-linkages in amylopectin and pullulan. This group does not contain the conserved catalytic triad present in other alpha-amylase-like proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Pssm-ID: 200484 [Multi-domain] Cd Length: 347 Bit Score: 44.00 E-value: 1.67e-04
|
|||||||||||||
DUF3459 | pfam11941 | Domain of unknown function (DUF3459); This presumed domain is functionally uncharacterized. ... |
486-562 | 3.24e-04 | |||||||||
Domain of unknown function (DUF3459); This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 110 amino acids in length. This domain is found associated with pfam00128, pfam02922. Pssm-ID: 432205 [Multi-domain] Cd Length: 92 Bit Score: 40.00 E-value: 3.24e-04
|
|||||||||||||
GlgB | COG0296 | 1,4-alpha-glucan branching enzyme [Carbohydrate transport and metabolism]; |
31-128 | 3.36e-03 | |||||||||
1,4-alpha-glucan branching enzyme [Carbohydrate transport and metabolism]; Pssm-ID: 440065 [Multi-domain] Cd Length: 625 Bit Score: 40.12 E-value: 3.36e-03
|
|||||||||||||
Blast search parameters | ||||
|