non-ribosomal peptide synthetase is a modular multidomain enzyme that acts as an assembly line to catalyze the biosynthesis of complex natural products
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
3505-3913
1.40e-121
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
:
Pssm-ID: 187656 [Multi-domain] Cd Length: 436 Bit Score: 392.89 E-value: 1.40e-121
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
2005-2413
5.13e-113
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
:
Pssm-ID: 187656 [Multi-domain] Cd Length: 436 Bit Score: 368.23 E-value: 5.13e-113
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
5009-5443
2.11e-95
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
:
Pssm-ID: 187656 [Multi-domain] Cd Length: 436 Bit Score: 317.77 E-value: 2.11e-95
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. ...
4707-4990
2.24e-67
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. Structural analysis shows these DH domains are double hotdogs in which the active site contains a histidine from the N-terminal hotdog and an aspartate from the C-terminal hotdog. Studies have uncovered that a substrate tunnel formed between the DH domains may be essential for loading substrates and unloading products.
:
Pssm-ID: 434191 Cd Length: 296 Bit Score: 231.49 E-value: 2.24e-67
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. ...
3208-3494
6.82e-55
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. Structural analysis shows these DH domains are double hotdogs in which the active site contains a histidine from the N-terminal hotdog and an aspartate from the C-terminal hotdog. Studies have uncovered that a substrate tunnel formed between the DH domains may be essential for loading substrates and unloading products.
:
Pssm-ID: 434191 Cd Length: 296 Bit Score: 195.28 E-value: 6.82e-55
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. ...
1701-1994
1.65e-42
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. Structural analysis shows these DH domains are double hotdogs in which the active site contains a histidine from the N-terminal hotdog and an aspartate from the C-terminal hotdog. Studies have uncovered that a substrate tunnel formed between the DH domains may be essential for loading substrates and unloading products.
:
Pssm-ID: 434191 Cd Length: 296 Bit Score: 159.85 E-value: 1.65e-42
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the ...
3944-4026
1.40e-14
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the prosthetic group of acyl carrier proteins (ACP) in some multienzyme complexes where it serves as a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups.
:
Pssm-ID: 214834 [Multi-domain] Cd Length: 86 Bit Score: 71.90 E-value: 1.40e-14
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the ...
2446-2525
1.60e-14
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the prosthetic group of acyl carrier proteins (ACP) in some multienzyme complexes where it serves as a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups.
:
Pssm-ID: 214834 [Multi-domain] Cd Length: 86 Bit Score: 71.90 E-value: 1.60e-14
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS ...
6-434
0e+00
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS/NRPSs), similar to Bacillus subtilis PksJ; Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. Hybrid PKS/NRPS create polymers containing both polyketide and amide linkages. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Members of this subfamily have the typical C-domain HHxxxD motif. PksJ is involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is important in secondary metabolism. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain.
Pssm-ID: 380472 [Multi-domain] Cd Length: 430 Bit Score: 797.29 E-value: 0e+00
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different ...
2578-3011
0e+00
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different products, called polyketides, by successive decarboxylating Claisen condensations. PKSs can be divided into 2 groups, modular type I PKSs consisting of one or more large multifunctional proteins and iterative type II PKSs, complexes of several monofunctional subunits.
Pssm-ID: 238429 [Multi-domain] Cd Length: 421 Bit Score: 645.77 E-value: 0e+00
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different ...
4078-4510
0e+00
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different products, called polyketides, by successive decarboxylating Claisen condensations. PKSs can be divided into 2 groups, modular type I PKSs consisting of one or more large multifunctional proteins and iterative type II PKSs, complexes of several monofunctional subunits.
Pssm-ID: 238429 [Multi-domain] Cd Length: 421 Bit Score: 626.51 E-value: 0e+00
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different ...
1091-1513
1.09e-165
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different products, called polyketides, by successive decarboxylating Claisen condensations. PKSs can be divided into 2 groups, modular type I PKSs consisting of one or more large multifunctional proteins and iterative type II PKSs, complexes of several monofunctional subunits.
Pssm-ID: 238429 [Multi-domain] Cd Length: 421 Bit Score: 519.04 E-value: 1.09e-165
amino acid adenylation domain; This model represents a domain responsible for the specific ...
494-905
4.02e-149
amino acid adenylation domain; This model represents a domain responsible for the specific recognition of amino acids and activation as adenylyl amino acids. The reaction catalyzed is aa + ATP -> aa-AMP + PPi. These domains are usually found as components of multi-domain non-ribosomal peptide synthetases and are usually called "A-domains" in that context. A-domains are almost invariably followed by "T-domains" (thiolation domains, pfam00550) to which the amino acid adenylate is transferred as a thiol-ester to a bound pantetheine cofactor with the release of AMP (these are also called peptide carrier proteins, or PCPs. When the A-domain does not represent the first module (corresponding to the first amino acid in the product molecule) it is usually preceded by a "C-domain" (condensation domain, pfam00668) which catalyzes the ligation of two amino acid thiol-esters from neighboring modules. This domain is a subset of the AMP-binding domain found in Pfam (pfam00501) which also hits substrate--CoA ligases and luciferases. Sequences scoring in between trusted and noise for this model may be ambiguous as to whether they activate amino acids or other molecules lacking an alpha amino group.
Pssm-ID: 273779 [Multi-domain] Cd Length: 409 Bit Score: 470.98 E-value: 4.02e-149
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the ...
2580-3013
3.32e-148
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the thiolase family and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains.
Pssm-ID: 214836 [Multi-domain] Cd Length: 298 Bit Score: 463.34 E-value: 3.32e-148
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the ...
4080-4512
2.61e-145
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the thiolase family and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains.
Pssm-ID: 214836 [Multi-domain] Cd Length: 298 Bit Score: 455.25 E-value: 2.61e-145
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
3505-3913
1.40e-121
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187656 [Multi-domain] Cd Length: 436 Bit Score: 392.89 E-value: 1.40e-121
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the ...
1093-1516
8.46e-118
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the thiolase family and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains.
Pssm-ID: 214836 [Multi-domain] Cd Length: 298 Bit Score: 376.28 E-value: 8.46e-118
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
2005-2413
5.13e-113
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187656 [Multi-domain] Cd Length: 436 Bit Score: 368.23 E-value: 5.13e-113
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar ...
2578-2826
5.26e-103
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains. The N-terminal domain contains most of the structures involved in dimer formation and also the active site cysteine.
Pssm-ID: 425468 [Multi-domain] Cd Length: 251 Bit Score: 331.91 E-value: 5.26e-103
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar ...
4078-4324
6.85e-99
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains. The N-terminal domain contains most of the structures involved in dimer formation and also the active site cysteine.
Pssm-ID: 425468 [Multi-domain] Cd Length: 251 Bit Score: 319.97 E-value: 6.85e-99
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
5009-5443
2.11e-95
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187656 [Multi-domain] Cd Length: 436 Bit Score: 317.77 E-value: 2.11e-95
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this ...
2579-3097
4.18e-86
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this alignment are involved in omega-3 polyunsaturated fatty acid biosynthesis, such as the protein PfaA from the eicosapentaenoic acid biosynthesis operon in Photobacterium profundum strain SS9. PfaA is encoded together with PfaB, PfaC, and PfaD, and the functions of the individual polypeptides have not yet been described. More distant homologs of PfaA, also included with the reach of this model, appear to be involved in polyketide-like biosynthetic mechanisms of polyunsaturated fatty acid biosynthesis, an alternative to the more familiar iterated mechanism of chain extension and desaturation, and in most cases are encoded near genes for homologs of PfaB, PfaC, and/or PfaD.
Pssm-ID: 274311 [Multi-domain] Cd Length: 2582 Bit Score: 318.10 E-value: 4.18e-86
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this ...
4079-4598
8.47e-86
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this alignment are involved in omega-3 polyunsaturated fatty acid biosynthesis, such as the protein PfaA from the eicosapentaenoic acid biosynthesis operon in Photobacterium profundum strain SS9. PfaA is encoded together with PfaB, PfaC, and PfaD, and the functions of the individual polypeptides have not yet been described. More distant homologs of PfaA, also included with the reach of this model, appear to be involved in polyketide-like biosynthetic mechanisms of polyunsaturated fatty acid biosynthesis, an alternative to the more familiar iterated mechanism of chain extension and desaturation, and in most cases are encoded near genes for homologs of PfaB, PfaC, and/or PfaD.
Pssm-ID: 274311 [Multi-domain] Cd Length: 2582 Bit Score: 316.95 E-value: 8.47e-86
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar ...
1091-1340
5.23e-70
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains. The N-terminal domain contains most of the structures involved in dimer formation and also the active site cysteine.
Pssm-ID: 425468 [Multi-domain] Cd Length: 251 Bit Score: 237.15 E-value: 5.23e-70
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step ...
3681-3866
3.99e-68
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 214833 [Multi-domain] Cd Length: 180 Bit Score: 228.91 E-value: 3.99e-68
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. ...
4707-4990
2.24e-67
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. Structural analysis shows these DH domains are double hotdogs in which the active site contains a histidine from the N-terminal hotdog and an aspartate from the C-terminal hotdog. Studies have uncovered that a substrate tunnel formed between the DH domains may be essential for loading substrates and unloading products.
Pssm-ID: 434191 Cd Length: 296 Bit Score: 231.49 E-value: 2.24e-67
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the ...
3681-3866
2.95e-60
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 430138 [Multi-domain] Cd Length: 180 Bit Score: 206.26 E-value: 2.95e-60
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this ...
1090-1603
2.75e-58
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this alignment are involved in omega-3 polyunsaturated fatty acid biosynthesis, such as the protein PfaA from the eicosapentaenoic acid biosynthesis operon in Photobacterium profundum strain SS9. PfaA is encoded together with PfaB, PfaC, and PfaD, and the functions of the individual polypeptides have not yet been described. More distant homologs of PfaA, also included with the reach of this model, appear to be involved in polyketide-like biosynthetic mechanisms of polyunsaturated fatty acid biosynthesis, an alternative to the more familiar iterated mechanism of chain extension and desaturation, and in most cases are encoded near genes for homologs of PfaB, PfaC, and/or PfaD.
Pssm-ID: 274311 [Multi-domain] Cd Length: 2582 Bit Score: 226.43 E-value: 2.75e-58
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. ...
3208-3494
6.82e-55
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. Structural analysis shows these DH domains are double hotdogs in which the active site contains a histidine from the N-terminal hotdog and an aspartate from the C-terminal hotdog. Studies have uncovered that a substrate tunnel formed between the DH domains may be essential for loading substrates and unloading products.
Pssm-ID: 434191 Cd Length: 296 Bit Score: 195.28 E-value: 6.82e-55
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step ...
2180-2365
9.62e-55
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 214833 [Multi-domain] Cd Length: 180 Bit Score: 190.39 E-value: 9.62e-55
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the ...
2180-2365
2.18e-49
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 430138 [Multi-domain] Cd Length: 180 Bit Score: 175.06 E-value: 2.18e-49
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step ...
5235-5399
1.44e-46
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 214833 [Multi-domain] Cd Length: 180 Bit Score: 166.89 E-value: 1.44e-46
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. ...
1701-1994
1.65e-42
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. Structural analysis shows these DH domains are double hotdogs in which the active site contains a histidine from the N-terminal hotdog and an aspartate from the C-terminal hotdog. Studies have uncovered that a substrate tunnel formed between the DH domains may be essential for loading substrates and unloading products.
Pssm-ID: 434191 Cd Length: 296 Bit Score: 159.85 E-value: 1.65e-42
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the ...
5247-5399
3.09e-33
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 430138 [Multi-domain] Cd Length: 180 Bit Score: 128.83 E-value: 3.09e-33
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the ...
3944-4026
1.40e-14
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the prosthetic group of acyl carrier proteins (ACP) in some multienzyme complexes where it serves as a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups.
Pssm-ID: 214834 [Multi-domain] Cd Length: 86 Bit Score: 71.90 E-value: 1.40e-14
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the ...
2446-2525
1.60e-14
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the prosthetic group of acyl carrier proteins (ACP) in some multienzyme complexes where it serves as a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups.
Pssm-ID: 214834 [Multi-domain] Cd Length: 86 Bit Score: 71.90 E-value: 1.60e-14
Phosphopantetheine attachment site; A 4'-phosphopantetheine prosthetic group is attached ...
3957-4016
1.35e-13
Phosphopantetheine attachment site; A 4'-phosphopantetheine prosthetic group is attached through a serine. This prosthetic group acts as a a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. This domain forms a four helix bundle. This family includes members not included in Prosite. The inclusion of these members is supported by sequence analysis and functional evidence. The related domain of Swiss:P19828 has the attachment serine replaced by an alanine.
Pssm-ID: 425746 [Multi-domain] Cd Length: 62 Bit Score: 68.36 E-value: 1.35e-13
Phosphopantetheine attachment site; A 4'-phosphopantetheine prosthetic group is attached ...
2458-2515
4.94e-12
Phosphopantetheine attachment site; A 4'-phosphopantetheine prosthetic group is attached through a serine. This prosthetic group acts as a a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. This domain forms a four helix bundle. This family includes members not included in Prosite. The inclusion of these members is supported by sequence analysis and functional evidence. The related domain of Swiss:P19828 has the attachment serine replaced by an alanine.
Pssm-ID: 425746 [Multi-domain] Cd Length: 62 Bit Score: 63.74 E-value: 4.94e-12
iterative type I PKS product template domain; Sequences found by this model are the so-called ...
4715-4922
9.94e-11
iterative type I PKS product template domain; Sequences found by this model are the so-called product template (PT) domain of various fungal iterative type I polyketide synthases. This domain resembles pfam14765, designated polyketide synthase dehydratase by Pfam, but members of that family are primarily bacterial, where type I PKS are predominantly modular, not iterative. The dehydratase active site residues well-conserved in pfam14765 (His in the first hot dog domain, Asp in the second hot dog domain) seem well conserved in this family also.
Pssm-ID: 275325 Cd Length: 324 Bit Score: 66.88 E-value: 9.94e-11
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the ...
985-1057
9.96e-10
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the prosthetic group of acyl carrier proteins (ACP) in some multienzyme complexes where it serves as a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups.
Pssm-ID: 214834 [Multi-domain] Cd Length: 86 Bit Score: 58.03 E-value: 9.96e-10
iterative type I PKS product template domain; Sequences found by this model are the so-called ...
1709-1907
6.17e-06
iterative type I PKS product template domain; Sequences found by this model are the so-called product template (PT) domain of various fungal iterative type I polyketide synthases. This domain resembles pfam14765, designated polyketide synthase dehydratase by Pfam, but members of that family are primarily bacterial, where type I PKS are predominantly modular, not iterative. The dehydratase active site residues well-conserved in pfam14765 (His in the first hot dog domain, Asp in the second hot dog domain) seem well conserved in this family also.
Pssm-ID: 275325 Cd Length: 324 Bit Score: 51.85 E-value: 6.17e-06
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS ...
6-434
0e+00
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS/NRPSs), similar to Bacillus subtilis PksJ; Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. Hybrid PKS/NRPS create polymers containing both polyketide and amide linkages. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Members of this subfamily have the typical C-domain HHxxxD motif. PksJ is involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is important in secondary metabolism. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain.
Pssm-ID: 380472 [Multi-domain] Cd Length: 430 Bit Score: 797.29 E-value: 0e+00
The adenylation domain of nonribosomal peptide synthetases (NRPS); The adenylation (A) domain ...
481-969
0e+00
The adenylation domain of nonribosomal peptide synthetases (NRPS); The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341253 [Multi-domain] Cd Length: 444 Bit Score: 649.59 E-value: 0e+00
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different ...
2578-3011
0e+00
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different products, called polyketides, by successive decarboxylating Claisen condensations. PKSs can be divided into 2 groups, modular type I PKSs consisting of one or more large multifunctional proteins and iterative type II PKSs, complexes of several monofunctional subunits.
Pssm-ID: 238429 [Multi-domain] Cd Length: 421 Bit Score: 645.77 E-value: 0e+00
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different ...
4078-4510
0e+00
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different products, called polyketides, by successive decarboxylating Claisen condensations. PKSs can be divided into 2 groups, modular type I PKSs consisting of one or more large multifunctional proteins and iterative type II PKSs, complexes of several monofunctional subunits.
Pssm-ID: 238429 [Multi-domain] Cd Length: 421 Bit Score: 626.51 E-value: 0e+00
Peptide Synthetase; The adenylation (A) domain of NRPS recognizes a specific amino acid or ...
470-969
0e+00
Peptide Synthetase; The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341301 [Multi-domain] Cd Length: 488 Bit Score: 568.83 E-value: 0e+00
bacitracin synthetase and related proteins; This family of the adenylation (A) domain of ...
471-969
0e+00
bacitracin synthetase and related proteins; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetases 1, 2, and 3 (BA1, also known as ATP-dependent cysteine adenylase or cysteine activase, BA2, also known as ATP-dependent lysine adenylase or lysine activase, and BA3, also known as ATP-dependent isoleucine adenylase or isoleucine activase) in Bacilli. Bacitracin is a mixture of related cyclic peptides used as a polypeptide antibiotic. This family also includes gramicidin synthetase 1 involved in synthesis of the cyclic peptide antibiotic gramicidin S via activation of phenylalanine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341310 [Multi-domain] Cd Length: 490 Bit Score: 566.19 E-value: 0e+00
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different ...
1091-1513
1.09e-165
polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different products, called polyketides, by successive decarboxylating Claisen condensations. PKSs can be divided into 2 groups, modular type I PKSs consisting of one or more large multifunctional proteins and iterative type II PKSs, complexes of several monofunctional subunits.
Pssm-ID: 238429 [Multi-domain] Cd Length: 421 Bit Score: 519.04 E-value: 1.09e-165
The adenylation domain of nonribosomal peptide synthetases (NRPS), including Bacillus subtilis ...
471-969
1.84e-165
The adenylation domain of nonribosomal peptide synthetases (NRPS), including Bacillus subtilis termination module Surfactin (SrfA-C); The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and, in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the adenylation domain of the Bacillus subtilis termination module (Surfactin domain, SrfA-C) which recognizes a specific amino acid building block, which is then activated and transferred to the terminal thiol of the 4'-phosphopantetheine (Ppan) arm of the downstream peptidyl carrier protein (PCP) domain.
Pssm-ID: 341282 [Multi-domain] Cd Length: 483 Bit Score: 521.38 E-value: 1.84e-165
similar to adenylation domain of chondramide synthase cmdD; This family of the adenylation (A) ...
481-969
1.19e-159
similar to adenylation domain of chondramide synthase cmdD; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes phosphinothricin tripeptide (PTT, phosphinothricylalanylalanine) synthetase, where PTT is a natural-product antibiotic and potent herbicide that is produced by Streptomyces hygroscopicus. This adenylation domain has been confirmed to directly activate beta-tyrosine, and fluorinated chondramides are produced through precursor-directed biosynthesis. Also included in this family is chondramide synthase D (also known as ATP-dependent phenylalanine adenylase or phenylalanine activase or tyrosine activase). Chondramides A-D are depsipeptide antitumor and antifungal antibiotics produced by C. crocatus, are a class of mixed peptide/polyketide depsipeptides comprised of three amino acids (alanine, N-methyltryptophan, plus the unusual amino acid beta-tyrosine or alpha-methoxy-beta-tyrosine) and a polyketide chain ([E]-7-hydroxy-2,4,6-trimethyloct-4-enoic acid).
Pssm-ID: 341307 [Multi-domain] Cd Length: 436 Bit Score: 502.55 E-value: 1.19e-159
The adenylation domain of nonribosomal peptide synthetases (NRPS), including salinosporamide A ...
481-969
1.51e-159
The adenylation domain of nonribosomal peptide synthetases (NRPS), including salinosporamide A polyketide synthase; The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the myxovirescin (TA) antibiotic biosynthetic gene in Myxococcus xanthus; TA production plays a role in predation. It also includes the salinosporamide A polyketide synthase which is involved in the biosynthesis of salinosporamide A, a marine microbial metabolite whose chlorine atom is crucial for potent proteasome inhibition and anticancer activity.
Pssm-ID: 341281 [Multi-domain] Cd Length: 470 Bit Score: 503.75 E-value: 1.51e-159
similar to adenylation domain of anabaenopeptin synthetase (ApnA); This family of the ...
468-969
9.37e-157
similar to adenylation domain of anabaenopeptin synthetase (ApnA); This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes Planktothrix agardhii anabaenopeptin synthetase (ApnA A1), which is capable of activating two chemically distinct amino acids (Arg and Tyr). Structural studies show that the architecture of the active site forces Arg to adopt a Tyr-like conformation, thus explaining the bispecificity. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341299 [Multi-domain] Cd Length: 465 Bit Score: 495.42 E-value: 9.37e-157
similar to adenylation domain of virginiamycin S synthetase; This family of the adenylation (A) ...
473-970
1.18e-152
similar to adenylation domain of virginiamycin S synthetase; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes virginiamycin S synthetase (VisG) in Streptomyces virginiae; VisG is involved in virginiamycin S (VS) biosynthesis as the provider of an L-pheGly molecule, a highly specific substrate for the last condensation step by VisF. This family also includes linear gramicidin synthetase B (LgrB) in Brevibacillus brevis. Substrate specificity analysis using residues of the substrate-binding pockets of all 16 adenylation domains has shown good agreement of the substrate amino acids predicted with the sequence of linear gramicidin. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341306 [Multi-domain] Cd Length: 491 Bit Score: 484.93 E-value: 1.18e-152
amino acid adenylation domain; This model represents a domain responsible for the specific ...
494-905
4.02e-149
amino acid adenylation domain; This model represents a domain responsible for the specific recognition of amino acids and activation as adenylyl amino acids. The reaction catalyzed is aa + ATP -> aa-AMP + PPi. These domains are usually found as components of multi-domain non-ribosomal peptide synthetases and are usually called "A-domains" in that context. A-domains are almost invariably followed by "T-domains" (thiolation domains, pfam00550) to which the amino acid adenylate is transferred as a thiol-ester to a bound pantetheine cofactor with the release of AMP (these are also called peptide carrier proteins, or PCPs. When the A-domain does not represent the first module (corresponding to the first amino acid in the product molecule) it is usually preceded by a "C-domain" (condensation domain, pfam00668) which catalyzes the ligation of two amino acid thiol-esters from neighboring modules. This domain is a subset of the AMP-binding domain found in Pfam (pfam00501) which also hits substrate--CoA ligases and luciferases. Sequences scoring in between trusted and noise for this model may be ambiguous as to whether they activate amino acids or other molecules lacking an alpha amino group.
Pssm-ID: 273779 [Multi-domain] Cd Length: 409 Bit Score: 470.98 E-value: 4.02e-149
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the ...
2580-3013
3.32e-148
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the thiolase family and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains.
Pssm-ID: 214836 [Multi-domain] Cd Length: 298 Bit Score: 463.34 E-value: 3.32e-148
The adenylation domain of nonribosomal peptide synthetases (NRPS), including Saframycin A gene ...
469-969
5.76e-148
The adenylation domain of nonribosomal peptide synthetases (NRPS), including Saframycin A gene cluster from Streptomyces lavendulae; The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the saframycin A gene cluster from Streptomyces lavendulae which implicates the NRPS system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. It also includes saframycin Mx1 produced by Myxococcus xanthus NRPS.
Pssm-ID: 341280 [Multi-domain] Cd Length: 447 Bit Score: 469.49 E-value: 5.76e-148
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the ...
4080-4512
2.61e-145
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the thiolase family and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains.
Pssm-ID: 214836 [Multi-domain] Cd Length: 298 Bit Score: 455.25 E-value: 2.61e-145
non-ribosomal peptide synthetase; This family of the adenylation (A) domain of nonribosomal ...
481-969
1.75e-142
non-ribosomal peptide synthetase; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes pyoverdine biosynthesis protein PvdJ involved in the synthesis of pyoverdine, which consists of a chromophore group attached to a variable peptide chain and comprises around 6-12 amino acids that are specific for each Pseudomonas species, and for which the peptide might be first synthesized before the chromophore assembly. Also included is ornibactin biosynthesis protein OrbI; ornibactin is a tetrapeptide siderophore with an l-ornithine-d-hydroxyaspartate-l-serine-l-ornithine backbone. The adenylation domain at the N-terminal of OrbI possibly initiates the ornibactin with the binding of N5-hydroxyornithine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341304 [Multi-domain] Cd Length: 450 Bit Score: 453.75 E-value: 1.75e-142
similar to adenylation domain of cytotrienin synthetase CytC1; This family of the adenylation ...
481-969
1.89e-142
similar to adenylation domain of cytotrienin synthetase CytC1; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes Streptomyces sp. cytotrienin synthetase (CytC1), a relatively promiscuous adenylation enzyme that installs the aminoacyl moieties on the phosphopantetheinyl arm of the holo carrier protein CytC2. Also included are Streptomyces sp Thr1, involved in the biosynthesis of 4-chlorothreonine, Pseudomonas aeruginosa pyoverdine synthetase D (PvdD), involved in the biosynthesis of the siderophore pyoverdine and Pseudomonas syringae syringopeptin synthetase, where syringpeptin is a necrosis-inducing phytotoxin that functions as a virulence determinant in the plant-pathogen interaction. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341298 [Multi-domain] Cd Length: 450 Bit Score: 453.69 E-value: 1.89e-142
similar to adenylation domain of plipastatin synthase (PpsD); This family of the adenylation ...
481-969
1.41e-137
similar to adenylation domain of plipastatin synthase (PpsD); This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetase 1 (BacA) in Bacillus licheniformis, tyrocidine synthetase in Brevibacillus brevis, plipastatin synthase (PpsD, an important antifungal protein) in Bacillus subtilis and mannopeptimycin peptide synthetase (MppB) in Streptomyces hygroscopicus. Plipastatin has strong fungitoxic activity and is involved in inhibition of phospholipase A2 and biofilm formation. Bacitracin, a mixture of related cyclic peptides, is used as a polypeptide antibiotic while function of tyrocidine is thought to be regulation of sporulation. MppB is involved in biosynthetic pathway of mannopeptimycin, a novel class of mannosylated lipoglycopeptides. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341305 [Multi-domain] Cd Length: 447 Bit Score: 439.60 E-value: 1.41e-137
gramicidin S synthase 2, also known as ATP-dependent proline adenylase; This family of the ...
480-969
2.37e-135
gramicidin S synthase 2, also known as ATP-dependent proline adenylase; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) contains gramicidin S synthase 2 (also known as ATP-dependent proline adenylase or proline activase or ProA). ProA is a multifunctional enzyme involved in synthesis of the cyclic peptide antibiotic gramicidin S and able to activate and polymerize the amino acids proline, valine, ornithine and leucine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341311 [Multi-domain] Cd Length: 479 Bit Score: 434.59 E-value: 2.37e-135
The adenylation (A) domain of siderophore-synthesizing nonribosomal peptide synthetases (NRPS); ...
469-969
1.43e-133
The adenylation (A) domain of siderophore-synthesizing nonribosomal peptide synthetases (NRPS); The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. This family of siderophore-synthesizing NRPS includes the third adenylation domain of SidN from the endophytic fungus Neotyphodium lolii, ferrichrome siderophore synthetase, HC-toxin synthetase, and enniatin synthase. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341242 [Multi-domain] Cd Length: 481 Bit Score: 429.27 E-value: 1.43e-133
The adenylation domain of nonribosomal peptide synthetases (NRPS), including ...
481-969
7.17e-130
The adenylation domain of nonribosomal peptide synthetases (NRPS), including Streptoalloteichus tallysomycin biosynthesis genes; The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the TLM biosynthetic gene cluster from Streptoalloteichus that consists of nine NRPS genes; the N-terminal module of TlmVI (NRPS-5) and the starter module of BlmVI (NRPS-5) are comprised of the acyl CoA ligase (AL) and acyl carrier protein (ACP)-like domains, which are thought to be involved in the biosynthesis of the beta-aminoalaninamide moiety.
Pssm-ID: 341279 [Multi-domain] Cd Length: 477 Bit Score: 418.60 E-value: 7.17e-130
adenylation (A) domain of linear gramicidin synthetase (LgrA) and similar proteins; This ...
470-969
3.47e-129
adenylation (A) domain of linear gramicidin synthetase (LgrA) and similar proteins; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes linear gramicidin synthetase (LgrA) in Brevibacillus brevis. LgrA has a formylation domain fused to the N-terminal end that formylates its substrate for linear gramicidin synthesis to proceed. This formyl group is essential for the clinically important antibacterial activity of gramicidin by enabling head-to-head gramicidin dimers to make a beta-helical pore in gram-positive bacterial membranes, allowing free passage of monovalent cations, destroying the ion gradient and killing bacteria. This family also includes bacitracin synthetase 1 (known as ATP-dependent cysteine adenylase or BA1); it activates cysteine, incorporates two D-amino acids, releases and cyclizes the mature bacitracin, an antibiotic that is a mixture of related cyclic peptides that disrupt gram positive bacteria by interfering with cell wall and peptidoglycan synthesis. Also included is surfactin synthetase which activates and polymerizes the amino acids Leu, Glu, Asp, and Val to form the antibiotic surfactin.
Pssm-ID: 341300 [Multi-domain] Cd Length: 440 Bit Score: 415.03 E-value: 3.47e-129
N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase; This family contains ACV ...
481-969
3.04e-124
N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase; This family contains ACV synthetase (ACVS, EC 6.3.2.26; also known as N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase or delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase) is involved in medically important antibiotic biosynthesis. ACV synthetase is active in an early step in the penicillin G biosynthesis pathway which involves the formation of the tripeptide 6-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV); each of the constituent amino acids of the tripeptide ACV are activated as aminoacyl-adenylates with peptide bonds formed through the participation of amino acid thioester intermediates. ACV is then cyclized by the action of isopenicillin N synthase.
Pssm-ID: 341303 [Multi-domain] Cd Length: 453 Bit Score: 401.39 E-value: 3.04e-124
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
3505-3913
1.40e-121
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187656 [Multi-domain] Cd Length: 436 Bit Score: 392.89 E-value: 1.40e-121
D-alanine:D-alanyl carrier protein ligase (DltA) and similar proteins; This family includes ...
477-969
3.24e-120
D-alanine:D-alanyl carrier protein ligase (DltA) and similar proteins; This family includes D-alanyl carrier protein ligase DltA and aliphatic beta-amino acid adenylation enzymes IdnL1 and CmiS6. DltA incorporates D-ala in techoic acids in gram-positive bacteria via a two-step process, starting with adenylation of D-alanine that transfers D-alanine to the D-alanyl carrier protein. IdnL1, a short-chain aliphatic beta-amino acid adenylation enzyme, recognizes 3-aminobutanoic acid, and is involved in the synthesis of the macrolactam antibiotic incednine. CmiS6 is a medium-chain beta-amino acid adenylation enzyme that recognizes 3-aminononanoic acid, and is involved in the synthesis of cremimycin, also a macrolactam antibiotic. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341267 [Multi-domain] Cd Length: 449 Bit Score: 389.68 E-value: 3.24e-120
nonribosomal peptide synthase GliP-like; This family includes the adenylation (A) domain of ...
471-971
1.35e-118
nonribosomal peptide synthase GliP-like; This family includes the adenylation (A) domain of nonribosomal peptide synthases (NRPS) gliotoxin biosynthesis protein P (GliP), thioclapurine biosynthesis protein P (tcpP) and Sirodesmin biosynthesis protein P (SirP). In the filamentous fungus Aspergillus fumigatus, NRPS GliP is involved in the biosynthesis of gliotoxin, which is initiated by the condensation of serine and phenylalanine. Studies show that GliP is not required for invasive aspergillosis, suggesting that the principal targets of gliotoxin are neutrophils or other phagocytes. SirP is a phytotoxin produced by the fungus Leptosphaeria maculans, which causes blackleg disease of canola (Brassica napus). In the fungus Claviceps purpurea, NRPS tcpP catalyzes condensation of tyrosine and glycine, part of biosynthesis of an unusual class of epipolythiodioxopiperazines (ETPs) that lacks the reactive thiol group for toxicity. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341308 [Multi-domain] Cd Length: 433 Bit Score: 384.35 E-value: 1.35e-118
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the ...
1093-1516
8.46e-118
Beta-ketoacyl synthase; The structure of beta-ketoacyl synthase is similar to that of the thiolase family and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains.
Pssm-ID: 214836 [Multi-domain] Cd Length: 298 Bit Score: 376.28 E-value: 8.46e-118
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
2005-2413
5.13e-113
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187656 [Multi-domain] Cd Length: 436 Bit Score: 368.23 E-value: 5.13e-113
LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar ...
8-434
2.15e-107
LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar domains including the C-domain of SgcC5, a free-standing NRPS with both ester- and amide- bond forming activity; LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Streptomyces globisporus SgcC5 is a free-standing NRPS condensation enzyme (rather than a modular NRPS), which catalyzes the condensation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1phenyl-1,2-ethanediol, forming an ester bond, during the synthesis of the chromoprotein enediyne antitumor antibiotic C-1027. It has some acceptor substrate promiscuity as it has been shown to also catalyze the formation of an amide bond between SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and a mimic of the enediyne core acceptor substrate having an amine at its C-2 position. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains.
Pssm-ID: 380454 [Multi-domain] Cd Length: 427 Bit Score: 351.66 E-value: 2.15e-107
O-succinylbenzoic acid-CoA ligase MenE or related acyl-CoA synthetase (AMP-forming) [Lipid ...
469-972
1.93e-106
O-succinylbenzoic acid-CoA ligase MenE or related acyl-CoA synthetase (AMP-forming) [Lipid transport and metabolism]; O-succinylbenzoic acid-CoA ligase MenE or related acyl-CoA synthetase (AMP-forming) is part of the Pathway/BioSystem: Menaquinone biosynthesis
Pssm-ID: 440087 [Multi-domain] Cd Length: 452 Bit Score: 350.26 E-value: 1.93e-106
Condensation domain; This domain is found in many multi-domain enzymes which synthesize ...
8-443
2.12e-105
Condensation domain; This domain is found in many multi-domain enzymes which synthesize peptide antibiotics. This domain catalyzes a condensation reaction to form peptide bonds in non- ribosomal peptide biosynthesis. It is usually found to the carboxy side of a phosphopantetheine binding domain (pfam00550). It has been shown that mutations in the HHXXXDG motif abolish activity suggesting this is part of the active site.
Pssm-ID: 395541 [Multi-domain] Cd Length: 454 Bit Score: 347.01 E-value: 2.12e-105
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar ...
2578-2826
5.26e-103
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains. The N-terminal domain contains most of the structures involved in dimer formation and also the active site cysteine.
Pssm-ID: 425468 [Multi-domain] Cd Length: 251 Bit Score: 331.91 E-value: 5.26e-103
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar ...
4078-4324
6.85e-99
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains. The N-terminal domain contains most of the structures involved in dimer formation and also the active site cysteine.
Pssm-ID: 425468 [Multi-domain] Cd Length: 251 Bit Score: 319.97 E-value: 6.85e-99
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
5009-5443
2.11e-95
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187656 [Multi-domain] Cd Length: 436 Bit Score: 317.77 E-value: 2.11e-95
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this ...
2579-3097
4.18e-86
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this alignment are involved in omega-3 polyunsaturated fatty acid biosynthesis, such as the protein PfaA from the eicosapentaenoic acid biosynthesis operon in Photobacterium profundum strain SS9. PfaA is encoded together with PfaB, PfaC, and PfaD, and the functions of the individual polypeptides have not yet been described. More distant homologs of PfaA, also included with the reach of this model, appear to be involved in polyketide-like biosynthetic mechanisms of polyunsaturated fatty acid biosynthesis, an alternative to the more familiar iterated mechanism of chain extension and desaturation, and in most cases are encoded near genes for homologs of PfaB, PfaC, and/or PfaD.
Pssm-ID: 274311 [Multi-domain] Cd Length: 2582 Bit Score: 318.10 E-value: 4.18e-86
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this ...
4079-4598
8.47e-86
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this alignment are involved in omega-3 polyunsaturated fatty acid biosynthesis, such as the protein PfaA from the eicosapentaenoic acid biosynthesis operon in Photobacterium profundum strain SS9. PfaA is encoded together with PfaB, PfaC, and PfaD, and the functions of the individual polypeptides have not yet been described. More distant homologs of PfaA, also included with the reach of this model, appear to be involved in polyketide-like biosynthetic mechanisms of polyunsaturated fatty acid biosynthesis, an alternative to the more familiar iterated mechanism of chain extension and desaturation, and in most cases are encoded near genes for homologs of PfaB, PfaC, and/or PfaD.
Pssm-ID: 274311 [Multi-domain] Cd Length: 2582 Bit Score: 316.95 E-value: 8.47e-86
D-alanine--poly(phosphoribitol) ligase, subunit 1; This model represents the enzyme (also ...
471-969
1.10e-79
D-alanine--poly(phosphoribitol) ligase, subunit 1; This model represents the enzyme (also called D-alanine-D-alanyl carrier protein ligase) which activates D-alanine as an adenylate via the reaction D-ala + ATP -> D-ala-AMP + PPi, and further catalyzes the condensation of the amino acid adenylate with the D-alanyl carrier protein (D-ala-ACP). The D-alanine is then further transferred to teichoic acid in the biosynthesis of lipoteichoic acid (LTA) and wall teichoic acid (WTA) in gram positive bacteria, both polysacchatides. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan]
Pssm-ID: 273780 [Multi-domain] Cd Length: 502 Bit Score: 274.71 E-value: 1.10e-79
L-aminoadipate-semialdehyde dehydrogenase; Members of this protein family are ...
196-1090
1.63e-79
L-aminoadipate-semialdehyde dehydrogenase; Members of this protein family are L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31), product of the LYS2 gene. It is also called alpha-aminoadipate reductase. In fungi, lysine is synthesized via aminoadipate. Currently, all members of this family are fungal.
Pssm-ID: 274582 [Multi-domain] Cd Length: 1389 Bit Score: 293.12 E-value: 1.63e-79
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar ...
1091-1340
5.23e-70
Beta-ketoacyl synthase, N-terminal domain; The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains. The N-terminal domain contains most of the structures involved in dimer formation and also the active site cysteine.
Pssm-ID: 425468 [Multi-domain] Cd Length: 251 Bit Score: 237.15 E-value: 5.23e-70
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step ...
3681-3866
3.99e-68
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 214833 [Multi-domain] Cd Length: 180 Bit Score: 228.91 E-value: 3.99e-68
LCL-type Condensation domain of non-ribosomal peptide synthetases (NRPSs) and similar domains; ...
8-434
5.18e-68
LCL-type Condensation domain of non-ribosomal peptide synthetases (NRPSs) and similar domains; LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains.
Pssm-ID: 380461 [Multi-domain] Cd Length: 432 Bit Score: 238.32 E-value: 5.18e-68
Adenylate forming domain, Class I, also known as the ANL superfamily; This family is known as ...
615-964
5.98e-68
Adenylate forming domain, Class I, also known as the ANL superfamily; This family is known as the ANL (acyl-CoA synthetases, the NRPS adenylation domains, and the Luciferase enzymes) superfamily. It includes acyl- and aryl-CoA ligases, as well as the adenylation domain of nonribosomal peptide synthetases and firefly luciferases.The adenylate-forming enzymes catalyze an ATP-dependent two-step reaction to first activate a carboxylate substrate as an adenylate and then transfer the carboxylate to the pantetheine group of either coenzyme A or an acyl-carrier protein. The active site of the domain is located at the interface of a large N-terminal subdomain and a smaller C-terminal subdomain.
Pssm-ID: 341228 [Multi-domain] Cd Length: 336 Bit Score: 234.49 E-value: 5.98e-68
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. ...
4707-4990
2.24e-67
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. Structural analysis shows these DH domains are double hotdogs in which the active site contains a histidine from the N-terminal hotdog and an aspartate from the C-terminal hotdog. Studies have uncovered that a substrate tunnel formed between the DH domains may be essential for loading substrates and unloading products.
Pssm-ID: 434191 Cd Length: 296 Bit Score: 231.49 E-value: 2.24e-67
acyl-CoA synthetase family member 4; This family of the adenylation (A) domain of nonribosomal ...
481-969
6.09e-67
acyl-CoA synthetase family member 4; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) contains acyl-CoA synthethase family member 4, also known as 2-aminoadipic 6-semialdehyde dehydrogenase or aminoadipate-semialdehyde dehydrogenase, most of which are uncharacterized. Acyl-CoA synthetase catalyzes the initial reaction in fatty acid metabolism, by forming a thioester with CoA. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341309 [Multi-domain] Cd Length: 449 Bit Score: 235.83 E-value: 6.09e-67
Beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS), type I and II. KASs are responsible ...
2579-3011
1.03e-65
Beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS), type I and II. KASs are responsible for the elongation steps in fatty acid biosynthesis. KASIII catalyses the initial condensation and KAS I and II catalyze further elongation steps by Claisen condensation of malonyl-acyl carrier protein (ACP) with acyl-ACP.
Pssm-ID: 238430 [Multi-domain] Cd Length: 406 Bit Score: 230.89 E-value: 1.03e-65
3-oxoacyl-(acyl-carrier-protein) synthase [Lipid transport and metabolism, Secondary ...
2580-3014
6.46e-65
3-oxoacyl-(acyl-carrier-protein) synthase [Lipid transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]; 3-oxoacyl-(acyl-carrier-protein) synthase is part of the Pathway/BioSystem: Fatty acid biosynthesis
Pssm-ID: 440073 [Multi-domain] Cd Length: 409 Bit Score: 228.44 E-value: 6.46e-65
SgcC5 is a non-ribosomal peptide synthetase (NRPS) condensation enzyme with ester- and amide- ...
8-434
3.54e-64
SgcC5 is a non-ribosomal peptide synthetase (NRPS) condensation enzyme with ester- and amide- bond forming activity and similar C-domains of modular NRPSs; SgcC5 is a free-standing NRPS condensation enzyme (rather than a modular NRPS), which catalyzes the condensation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1phenyl-1,2-ethanediol, forming an ester bond, during the synthesis of the chromoprotein enediyne antitumor antibiotic C-1027. It has some acceptor substrate promiscuity as it has been shown to also catalyze the formation of an amide bond between SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and a mimic of the enediyne core acceptor substrate having an amine at its C-2 position. This subfamily also includes similar C-domains of modular NRPSs such as Penicillium chrysogenum N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase PCBAB. Condensation (C) domains of NRPSs normally catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
Pssm-ID: 380462 [Multi-domain] Cd Length: 427 Bit Score: 226.88 E-value: 3.54e-64
Prokaryotic long-chain fatty acid CoA synthetases similar to Escherichia coli FadD; This ...
471-969
6.94e-63
Prokaryotic long-chain fatty acid CoA synthetases similar to Escherichia coli FadD; This subfamily of the AMP-forming adenylation family contains Escherichia coli FadD and similar prokaryotic fatty acid CoA synthetases. FadD was characterized as a long-chain fatty acid CoA synthetase. The gene fadD is regulated by the fatty acid regulatory protein FadR. Fatty acid CoA synthetase catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, followed by the formation of a fatty acyl-CoA. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions.
Pssm-ID: 341259 [Multi-domain] Cd Length: 468 Bit Score: 224.75 E-value: 6.94e-63
3-oxoacyl-(acyl-carrier-protein) synthase [Lipid transport and metabolism, Secondary ...
4080-4513
2.31e-62
3-oxoacyl-(acyl-carrier-protein) synthase [Lipid transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]; 3-oxoacyl-(acyl-carrier-protein) synthase is part of the Pathway/BioSystem: Fatty acid biosynthesis
Pssm-ID: 440073 [Multi-domain] Cd Length: 409 Bit Score: 221.12 E-value: 2.31e-62
beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 2, complex (x); Ketoreductase, a module of the multidomain polyketide synthase, has 2 subdomains, each corresponding to a short-chain dehydrogenases/reductase (SDR) family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerizes but is composed of 2 subdomains, each resembling an SDR monomer. In some instances, as in porcine FAS, an enoyl reductase (a Rossman fold NAD binding domain of the MDR family) module is inserted between the sub-domains. The active site resembles that of typical SDRs, except that the usual positions of the catalytic asparagine and tyrosine are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular polyketide synthases are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) fatty acid synthase. In some instances, such as porcine FAS , an enoyl reductase module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-ketoacyl reductase (KR), forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-enoyl reductase (ER). Polyketide syntheses also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes the KR domain of the Lyngbya majuscule Jam J, -K, and #L which are encoded on the jam gene cluster and are involved in the synthesis of the Jamaicamides (neurotoxins); Lyngbya majuscule Jam P belongs to a different KR_FAS_SDR_x subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187658 [Multi-domain] Cd Length: 376 Bit Score: 215.61 E-value: 8.36e-61
Beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS), type I and II. KASs are responsible ...
4079-4510
1.14e-60
Beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS), type I and II. KASs are responsible for the elongation steps in fatty acid biosynthesis. KASIII catalyses the initial condensation and KAS I and II catalyze further elongation steps by Claisen condensation of malonyl-acyl carrier protein (ACP) with acyl-ACP.
Pssm-ID: 238430 [Multi-domain] Cd Length: 406 Bit Score: 216.25 E-value: 1.14e-60
acyl-CoA ligase (AMP-forming), exosortase A-associated; This group of proteins contains an ...
469-971
1.56e-60
acyl-CoA ligase (AMP-forming), exosortase A-associated; This group of proteins contains an AMP-binding domain (pfam00501) associated with acyl CoA-ligases. These proteins are generally found in genomes containing the exosortase/PEP-CTERM protein expoert system, specifically the type 1 variant of this system described by the Genome Property GenProp0652. When found in this context they are invariably present next to a decarboxylase enzyme. A number of sequences from Burkholderia species also hit this model, but the genomic context is obviously different. The hypothesis of a constant substrate for this family is only strong where the exosortase context is present.
Pssm-ID: 211788 [Multi-domain] Cd Length: 517 Bit Score: 219.27 E-value: 1.56e-60
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the ...
3681-3866
2.95e-60
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 430138 [Multi-domain] Cd Length: 180 Bit Score: 206.26 E-value: 2.95e-60
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this ...
1090-1603
2.75e-58
polyketide-type polyunsaturated fatty acid synthase PfaA; Members of the seed for this alignment are involved in omega-3 polyunsaturated fatty acid biosynthesis, such as the protein PfaA from the eicosapentaenoic acid biosynthesis operon in Photobacterium profundum strain SS9. PfaA is encoded together with PfaB, PfaC, and PfaD, and the functions of the individual polypeptides have not yet been described. More distant homologs of PfaA, also included with the reach of this model, appear to be involved in polyketide-like biosynthetic mechanisms of polyunsaturated fatty acid biosynthesis, an alternative to the more familiar iterated mechanism of chain extension and desaturation, and in most cases are encoded near genes for homologs of PfaB, PfaC, and/or PfaD.
Pssm-ID: 274311 [Multi-domain] Cd Length: 2582 Bit Score: 226.43 E-value: 2.75e-58
LCL-type Condensation domain of nonribosomal peptide synthetases (NRPSs) and similar domains; ...
8-434
1.28e-56
LCL-type Condensation domain of nonribosomal peptide synthetases (NRPSs) and similar domains; LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains.
Pssm-ID: 380463 [Multi-domain] Cd Length: 433 Bit Score: 205.35 E-value: 1.28e-56
Alpha-aminoadipate reductase; This family contains L-2-aminoadipate reductase, also known as ...
491-970
5.72e-56
Alpha-aminoadipate reductase; This family contains L-2-aminoadipate reductase, also known as alpha-aminoadipate reductase (EC 1.2.1.95) or alpha-AR or L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31), which catalyzes the activation of alpha-aminoadipate by ATP-dependent adenylation and the reduction of activated alpha-aminoadipate by NADPH. The activated alpha-aminoadipate is bound to the phosphopantheinyl group of the enzyme itself before it is reduced to (S)-2-amino-6-oxohexanoate.
Pssm-ID: 341302 [Multi-domain] Cd Length: 520 Bit Score: 205.83 E-value: 5.72e-56
fatty acyl-CoA synthetase, including FadD13; This family contains fatty acyl-CoA synthetases, ...
473-964
7.22e-56
fatty acyl-CoA synthetase, including FadD13; This family contains fatty acyl-CoA synthetases, including Mycobacterium tuberculosis acid-induced operon MymA encoding the fatty acyl-CoA synthetase FadD13 which is essential for virulence and intracellular growth of the pathogen. The fatty acyl-CoA synthetase activates lipids before entering into the metabolic pathways and is also involved in transmembrane lipid transport. However, unlike soluble fatty acyl-CoA synthetases, but like the mammalian integral-membrane very-long-chain acyl-CoA synthetases, FadD13 accepts lipid substrates up to the maximum length of C26, and this is facilitated by an extensive hydrophobic tunnel from the active site to a positively charged patch. Also included is feruloyl-CoA synthetase (Fcs) in Rhodococcus strains where it is involved in biotechnological vanillin production from eugenol and ferulic acid via a non-beta-oxidative pathway.
Pssm-ID: 341286 [Multi-domain] Cd Length: 435 Bit Score: 203.23 E-value: 7.22e-56
Condensation domain of nonribosomal peptide synthetases (NRPSs); Condensation (C) domains of ...
8-434
9.44e-56
Condensation domain of nonribosomal peptide synthetases (NRPSs); Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long, with various activities such as antibiotic, antifungal, antitumor and immunosuppression. There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
Pssm-ID: 380453 [Multi-domain] Cd Length: 427 Bit Score: 202.64 E-value: 9.44e-56
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. ...
3208-3494
6.82e-55
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. Structural analysis shows these DH domains are double hotdogs in which the active site contains a histidine from the N-terminal hotdog and an aspartate from the C-terminal hotdog. Studies have uncovered that a substrate tunnel formed between the DH domains may be essential for loading substrates and unloading products.
Pssm-ID: 434191 Cd Length: 296 Bit Score: 195.28 E-value: 6.82e-55
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step ...
2180-2365
9.62e-55
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 214833 [Multi-domain] Cd Length: 180 Bit Score: 190.39 E-value: 9.62e-55
decarboxylating condensing enzymes; Family of enzymes that catalyze the formation of a new ...
2665-3011
3.87e-54
decarboxylating condensing enzymes; Family of enzymes that catalyze the formation of a new carbon-carbon bond by a decarboxylating Claisen-like condensation reaction. Members are involved in the synthesis of fatty acids and polyketides, a diverse group of natural products. Both pathways are an iterative series of additions of small carbon units, usually acetate, to a nascent acyl group. There are 2 classes of decarboxylating condensing enzymes, which can be distinguished by sequence similarity, type of active site residues and type of primer units (acetyl CoA or acyl carrier protein (ACP) linked units).
Pssm-ID: 238421 [Multi-domain] Cd Length: 332 Bit Score: 194.78 E-value: 3.87e-54
Firefly luciferase of light emitting insects and 4-Coumarate-CoA Ligase (4CL); This family ...
489-965
4.41e-54
Firefly luciferase of light emitting insects and 4-Coumarate-CoA Ligase (4CL); This family contains insect firefly luciferases that share significant sequence similarity to plant 4-coumarate:coenzyme A ligases, despite their functional diversity. Luciferase catalyzes the production of light in the presence of MgATP, molecular oxygen, and luciferin. In the first step, luciferin is activated by acylation of its carboxylate group with ATP, resulting in an enzyme-bound luciferyl adenylate. In the second step, luciferyl adenylate reacts with molecular oxygen, producing an enzyme-bound excited state product (Luc=O*) and releasing AMP. This excited-state product then decays to the ground state (Luc=O), emitting a quantum of visible light.
Pssm-ID: 341237 [Multi-domain] Cd Length: 486 Bit Score: 199.36 E-value: 4.41e-54
ketoreductase (KR) and fatty acid synthase (FAS), complex (x) SDRs; Ketoreductase, a module of ...
3603-3911
1.99e-52
ketoreductase (KR) and fatty acid synthase (FAS), complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. In some instances, such as porcine FAS, an enoyl reductase (ER) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consist of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthase uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-KR, forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-ER. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187582 [Multi-domain] Cd Length: 375 Bit Score: 191.06 E-value: 1.99e-52
decarboxylating condensing enzymes; Family of enzymes that catalyze the formation of a new ...
4165-4510
5.24e-52
decarboxylating condensing enzymes; Family of enzymes that catalyze the formation of a new carbon-carbon bond by a decarboxylating Claisen-like condensation reaction. Members are involved in the synthesis of fatty acids and polyketides, a diverse group of natural products. Both pathways are an iterative series of additions of small carbon units, usually acetate, to a nascent acyl group. There are 2 classes of decarboxylating condensing enzymes, which can be distinguished by sequence similarity, type of active site residues and type of primer units (acetyl CoA or acyl carrier protein (ACP) linked units).
Pssm-ID: 238421 [Multi-domain] Cd Length: 332 Bit Score: 188.61 E-value: 5.24e-52
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS ...
8-434
1.32e-51
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS/NRPSs); Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. Hybrid PKS/NRPS create polymers containing both polyketide and amide linkages. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Most members of this subfamily have the typical C-domain HHxxxD motif, a few such as Monascus pilosus lovastatin nonaketide synthase MokA have a non-canonical HRxxxD motif in the C-domain and are unable to catalyze amide-bond formation. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain.
Pssm-ID: 380455 [Multi-domain] Cd Length: 421 Bit Score: 190.36 E-value: 1.32e-51
3-oxoacyl-(acyl-carrier-protein) synthase [Lipid transport and metabolism, Secondary ...
1093-1517
2.67e-51
3-oxoacyl-(acyl-carrier-protein) synthase [Lipid transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]; 3-oxoacyl-(acyl-carrier-protein) synthase is part of the Pathway/BioSystem: Fatty acid biosynthesis
Pssm-ID: 440073 [Multi-domain] Cd Length: 409 Bit Score: 188.77 E-value: 2.67e-51
DCL-type Condensation domain of nonribosomal peptide synthetases (NRPSs), which catalyzes the ...
8-434
4.09e-50
DCL-type Condensation domain of nonribosomal peptide synthetases (NRPSs), which catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor; The DCL-type Condensation (C) domain catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. This domain is D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L)); this is in contrast with the standard LCL domains which catalyze peptide bond formation between two L-amino acids, and the restriction of ribosomes to use only L-amino acids. C domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains in addition to the LCL- and DCL-types such as starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
Pssm-ID: 380465 [Multi-domain] Cd Length: 423 Bit Score: 185.87 E-value: 4.09e-50
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS ...
8-433
9.95e-50
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS/NRPSs); Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. Hybrid PKS/NRPS create polymers containing both polyketide and amide linkages. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Most members of this subfamily have the typical C-domain HHXXXD motif. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain.
Pssm-ID: 380471 [Multi-domain] Cd Length: 430 Bit Score: 185.16 E-value: 9.95e-50
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the ...
2180-2365
2.18e-49
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 430138 [Multi-domain] Cd Length: 180 Bit Score: 175.06 E-value: 2.18e-49
Beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS), type I and II. KASs are responsible ...
1093-1514
6.71e-49
Beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS), type I and II. KASs are responsible for the elongation steps in fatty acid biosynthesis. KASIII catalyses the initial condensation and KAS I and II catalyze further elongation steps by Claisen condensation of malonyl-acyl carrier protein (ACP) with acyl-ACP.
Pssm-ID: 238430 [Multi-domain] Cd Length: 406 Bit Score: 181.97 E-value: 6.71e-49
Beta-ketoacyl synthase, C-terminal domain; The structure of beta-ketoacyl synthase is similar ...
2834-2958
7.80e-49
Beta-ketoacyl synthase, C-terminal domain; The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains.
Pssm-ID: 426989 Cd Length: 118 Bit Score: 170.83 E-value: 7.80e-49
Beta-ketoacyl synthase, C-terminal domain; The structure of beta-ketoacyl synthase is similar ...
4332-4454
6.75e-47
Beta-ketoacyl synthase, C-terminal domain; The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains.
Pssm-ID: 426989 Cd Length: 118 Bit Score: 165.43 E-value: 6.75e-47
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step ...
5235-5399
1.44e-46
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 214833 [Multi-domain] Cd Length: 180 Bit Score: 166.89 E-value: 1.44e-46
Starter Condensation domains, found in the first module of nonribosomal peptide synthetases ...
8-434
2.20e-46
Starter Condensation domains, found in the first module of nonribosomal peptide synthetases (NRPSs); Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. While standard C-domains catalyze peptide bond formation between two amino acids, an initial, ('starter') C-domain may instead acylate an amino acid with a fatty acid. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
Pssm-ID: 380456 [Multi-domain] Cd Length: 419 Bit Score: 174.86 E-value: 2.20e-46
Beta-ketoacyl synthase, C-terminal domain; The structure of beta-ketoacyl synthase is similar ...
1348-1467
4.43e-46
Beta-ketoacyl synthase, C-terminal domain; The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains.
Pssm-ID: 426989 Cd Length: 118 Bit Score: 163.12 E-value: 4.43e-46
beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 2, complex (x); Ketoreductase, a module of the multidomain polyketide synthase, has 2 subdomains, each corresponding to a short-chain dehydrogenases/reductase (SDR) family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerizes but is composed of 2 subdomains, each resembling an SDR monomer. In some instances, as in porcine FAS, an enoyl reductase (a Rossman fold NAD binding domain of the MDR family) module is inserted between the sub-domains. The active site resembles that of typical SDRs, except that the usual positions of the catalytic asparagine and tyrosine are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular polyketide synthases are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) fatty acid synthase. In some instances, such as porcine FAS , an enoyl reductase module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-ketoacyl reductase (KR), forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-enoyl reductase (ER). Polyketide syntheses also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes the KR domain of the Lyngbya majuscule Jam J, -K, and #L which are encoded on the jam gene cluster and are involved in the synthesis of the Jamaicamides (neurotoxins); Lyngbya majuscule Jam P belongs to a different KR_FAS_SDR_x subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187658 [Multi-domain] Cd Length: 376 Bit Score: 172.47 E-value: 4.64e-46
decarboxylating condensing enzymes; Family of enzymes that catalyze the formation of a new ...
1178-1513
1.37e-45
decarboxylating condensing enzymes; Family of enzymes that catalyze the formation of a new carbon-carbon bond by a decarboxylating Claisen-like condensation reaction. Members are involved in the synthesis of fatty acids and polyketides, a diverse group of natural products. Both pathways are an iterative series of additions of small carbon units, usually acetate, to a nascent acyl group. There are 2 classes of decarboxylating condensing enzymes, which can be distinguished by sequence similarity, type of active site residues and type of primer units (acetyl CoA or acyl carrier protein (ACP) linked units).
Pssm-ID: 238421 [Multi-domain] Cd Length: 332 Bit Score: 169.74 E-value: 1.37e-45
Malonyl-CoA synthetase (MCS); MCS catalyzes the formation of malonyl-CoA in a two-step ...
482-971
5.04e-44
Malonyl-CoA synthetase (MCS); MCS catalyzes the formation of malonyl-CoA in a two-step reaction consisting of the adenylation of malonate with ATP, followed by malonyl transfer from malonyl-AMP to CoA. Malonic acid and its derivatives are the building blocks of polyketides and malonyl-CoA serves as the substrate of polyketide synthases. Malonyl-CoA synthetase has broad substrate tolerance and can activate a variety of malonyl acid derivatives. MCS may play an important role in biosynthesis of polyketides, the important secondary metabolites with therapeutic and agrochemical utility.
Pssm-ID: 341264 [Multi-domain] Cd Length: 442 Bit Score: 168.62 E-value: 5.04e-44
Putative long-chain fatty acid CoA ligase; The members of this family are putative long-chain ...
492-969
6.81e-44
Putative long-chain fatty acid CoA ligase; The members of this family are putative long-chain fatty acyl-CoA synthetases, which catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. Fatty acyl-CoA synthetases are responsible for fatty acid degradation as well as physiological regulation of cellular functions via the production of fatty acyl-CoA esters.
Pssm-ID: 341258 [Multi-domain] Cd Length: 430 Bit Score: 168.04 E-value: 6.81e-44
"elongating" condensing enzymes are a subclass of decarboxylating condensing enzymes, ...
2578-3011
2.70e-43
"elongating" condensing enzymes are a subclass of decarboxylating condensing enzymes, including beta-ketoacyl [ACP] synthase, type I and II and polyketide synthases.They are characterized by the utlization of acyl carrier protein (ACP) thioesters as primer substrates, as well as the nature of their active site residues.
Pssm-ID: 238424 [Multi-domain] Cd Length: 407 Bit Score: 165.69 E-value: 2.70e-43
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ...
511-970
5.82e-43
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions.
Pssm-ID: 341246 [Multi-domain] Cd Length: 457 Bit Score: 166.08 E-value: 5.82e-43
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. ...
1701-1994
1.65e-42
Polyketide synthase dehydratase; This is the dehydratase domain of polyketide synthases. Structural analysis shows these DH domains are double hotdogs in which the active site contains a histidine from the N-terminal hotdog and an aspartate from the C-terminal hotdog. Studies have uncovered that a substrate tunnel formed between the DH domains may be essential for loading substrates and unloading products.
Pssm-ID: 434191 Cd Length: 296 Bit Score: 159.85 E-value: 1.65e-42
Benzoate CoA ligase (BCL) and 4-Hydroxybenzoate-Coenzyme A Ligase (4-HBA-CoA ligase); Benzoate ...
469-969
2.21e-42
Benzoate CoA ligase (BCL) and 4-Hydroxybenzoate-Coenzyme A Ligase (4-HBA-CoA ligase); Benzoate CoA ligase and 4-hydroxybenzoate-coenzyme A ligase catalyze the first activating step for benzoate and 4-hydroxybenzoate catabolic pathways, respectively. Although these two enzymes share very high sequence homology, they have their own substrate preference. The reaction proceeds via a two-step process; the first ATP-dependent step forms the substrate-AMP intermediate, while the second step forms the acyl-CoA ester, releasing the AMP. Aromatic compounds represent the second most abundant class of organic carbon compounds after carbohydrates. Some bacteria can use benzoic acid or benzenoid compounds as the sole source of carbon and energy through degradation. Benzoate CoA ligase and 4-hydroxybenzoate-Coenzyme A ligase are key enzymes of this process.
Pssm-ID: 341269 [Multi-domain] Cd Length: 508 Bit Score: 165.62 E-value: 2.21e-42
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ...
490-969
3.94e-42
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. Members of this family include DitJ from Pseudomonas and similar proteins.
Pssm-ID: 341257 [Multi-domain] Cd Length: 422 Bit Score: 162.46 E-value: 3.94e-42
ketoreductase (KR), subgroup 1, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
3676-3910
8.15e-42
ketoreductase (KR), subgroup 1, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes KR domains found in many multidomain PKSs, including six of seven Sorangium cellulosum PKSs (encoded by spiDEFGHIJ) which participate in the synthesis of the polyketide scaffold of the cytotoxic spiroketal polyketide spirangien. These seven PKSs have either a single PKS module (SpiF), two PKR modules (SpiD,-E,-I,-J), or three PKS modules (SpiG,-H). This subfamily includes the single KR domain of SpiF, the first KR domains of SpiE,-G,H,-I,and #J, the third KR domain of SpiG, and the second KR domain of SpiH. The second KR domains of SpiE,-G, I, and #J, and the KR domains of SpiD, belong to a different KR_FAS_SDR subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187655 [Multi-domain] Cd Length: 480 Bit Score: 163.11 E-value: 8.15e-42
Uncharacterized subfamily of medium-chain acyl-CoA synthetase (MACS); MACS catalyzes the ...
494-969
1.36e-41
Uncharacterized subfamily of medium-chain acyl-CoA synthetase (MACS); MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. MACS enzymes are localized to mitochondria.
Pssm-ID: 341275 [Multi-domain] Cd Length: 439 Bit Score: 161.45 E-value: 1.36e-41
2,3-dihydroxybenzoate-AMP ligase; 2,3-dihydroxybenzoate-AMP ligase activates 2,3-dihydroxybenzoate (DHB) by ligation of AMP from ATP with the release of pyrophosphate. However, it can also catalyze the ATP-PPi exchange for 2,3-DHB analogs, such as salicyclic acid (o-hydrobenzoate), as well as 2,4-DHB and 2,5-DHB, but with less efficiency. Proteins in this family are the stand-alone adenylation components of non-ribosomal peptide synthases (NRPSs) involved in the biosynthesis of siderophores, which are low molecular weight iron-chelating compounds synthesized by many bacteria to aid in the acquisition of this vital trace elements. In Escherichia coli, the 2,3-dihydroxybenzoate-AMP ligase is called EntE, the adenylation component of the enterobactin NRPS system.
Pssm-ID: 341244 [Multi-domain] Cd Length: 482 Bit Score: 162.11 E-value: 1.88e-41
beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 2, complex (x); Ketoreductase, a module of the multidomain polyketide synthase, has 2 subdomains, each corresponding to a short-chain dehydrogenases/reductase (SDR) family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerizes but is composed of 2 subdomains, each resembling an SDR monomer. In some instances, as in porcine FAS, an enoyl reductase (a Rossman fold NAD binding domain of the MDR family) module is inserted between the sub-domains. The active site resembles that of typical SDRs, except that the usual positions of the catalytic asparagine and tyrosine are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular polyketide synthases are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) fatty acid synthase. In some instances, such as porcine FAS , an enoyl reductase module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-ketoacyl reductase (KR), forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-enoyl reductase (ER). Polyketide syntheses also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes the KR domain of the Lyngbya majuscule Jam J, -K, and #L which are encoded on the jam gene cluster and are involved in the synthesis of the Jamaicamides (neurotoxins); Lyngbya majuscule Jam P belongs to a different KR_FAS_SDR_x subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187658 [Multi-domain] Cd Length: 376 Bit Score: 156.29 E-value: 1.86e-40
"elongating" condensing enzymes are a subclass of decarboxylating condensing enzymes, ...
4078-4510
4.14e-40
"elongating" condensing enzymes are a subclass of decarboxylating condensing enzymes, including beta-ketoacyl [ACP] synthase, type I and II and polyketide synthases.They are characterized by the utlization of acyl carrier protein (ACP) thioesters as primer substrates, as well as the nature of their active site residues.
Pssm-ID: 238424 [Multi-domain] Cd Length: 407 Bit Score: 156.06 E-value: 4.14e-40
ketoreductase (KR) and fatty acid synthase (FAS), complex (x) SDRs; Ketoreductase, a module of ...
2103-2413
7.46e-40
ketoreductase (KR) and fatty acid synthase (FAS), complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. In some instances, such as porcine FAS, an enoyl reductase (ER) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consist of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthase uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-KR, forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-ER. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187582 [Multi-domain] Cd Length: 375 Bit Score: 154.46 E-value: 7.46e-40
ketoreductase (KR) and fatty acid synthase (FAS), complex (x) SDRs; Ketoreductase, a module of ...
5126-5441
2.81e-39
ketoreductase (KR) and fatty acid synthase (FAS), complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. In some instances, such as porcine FAS, an enoyl reductase (ER) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consist of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthase uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-KR, forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-ER. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187582 [Multi-domain] Cd Length: 375 Bit Score: 152.92 E-value: 2.81e-39
Uncharacterized subfamily of Acetyl-CoA synthetase like family (ACS); This family is most ...
493-974
3.87e-39
Uncharacterized subfamily of Acetyl-CoA synthetase like family (ACS); This family is most similar to acetyl-CoA synthetase. Acetyl-CoA synthetase (ACS) catalyzes the formation of acetyl-CoA from acetate, CoA, and ATP. Synthesis of acetyl-CoA is carried out in a two-step reaction. In the first step, the enzyme catalyzes the synthesis of acetyl-AMP intermediate from acetate and ATP. In the second step, acetyl-AMP reacts with CoA to produce acetyl-CoA. This enzyme is only present in bacteria.
Pssm-ID: 341273 [Multi-domain] Cd Length: 442 Bit Score: 154.20 E-value: 3.87e-39
Benzoate CoA ligase (BCL) and similar adenylate forming enzymes; This family contains benzoate ...
485-969
5.33e-39
Benzoate CoA ligase (BCL) and similar adenylate forming enzymes; This family contains benzoate CoA ligase (BCL) and related ligases that catalyze the acylation of benzoate derivatives, 2-aminobenzoate and 4-hydroxybenzoate. Aromatic compounds represent the second most abundant class of organic carbon compounds after carbohydrates. Xenobiotic aromatic compounds are also a major class of man-made pollutants. Some bacteria use benzoate as the sole source of carbon and energy through benzoate degradation. Benzoate degradation starts with its activation to benzoyl-CoA by benzoate CoA ligase. The reaction catalyzed by benzoate CoA ligase proceeds via a two-step process; the first ATP-dependent step forms an acyl-AMP intermediate, and the second step forms the acyl-CoA ester with release of the AMP.
Pssm-ID: 341243 [Multi-domain] Cd Length: 436 Bit Score: 153.77 E-value: 5.33e-39
Long-chain fatty acid CoA synthetases and Bubblegum-like very long-chain fatty acid CoA ...
491-969
4.21e-38
Long-chain fatty acid CoA synthetases and Bubblegum-like very long-chain fatty acid CoA synthetases; This family includes long-chain fatty acid (C12-C20) CoA synthetases and Bubblegum-like very long-chain (>C20) fatty acid CoA synthetases. FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Eukaryotes generally have multiple isoforms of LC-FACS genes with multiple splice variants. For example, nine genes are found in Arabidopsis and six genes are expressed in mammalian cells. Drosophila melanogaster mutant bubblegum (BGM) have elevated levels of very-long-chain fatty acids (VLCFA) caused by a defective gene later named bubblegum. The human homolog (hsBG) of bubblegum has been characterized as a very long chain fatty acid CoA synthetase that functions specifically in the brain; hsBG may play a central role in brain VLCFA metabolism and myelinogenesis. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions.
Pssm-ID: 341233 [Multi-domain] Cd Length: 452 Bit Score: 151.59 E-value: 4.21e-38
beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 3, complex (x); Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. In some instances, such as porcine FAS, an enoyl reductase (ER) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-KR, forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta- ER. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes KR domains found in many multidomain PKSs, including six of seven Sorangium cellulosum PKSs (encoded by spiDEFGHIJ) which participate in the synthesis of the polyketide scaffold of the cytotoxic spiroketal polyketide spirangien. These seven PKSs have either a single PKS module (SpiF), two PKR modules (SpiD,-E,-I,-J), or three PKS modules (SpiG,-H). This subfamily includes the second KR domains of SpiE,-G, I, and -J, both KR domains of SpiD, and the third KR domain of SpiH. The single KR domain of SpiF, the first and second KR domains of SpiH, the first KR domains of SpiE,-G,- I, and -J, and the third KR domain of SpiG, belong to a different KR_FAS_SDR subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187659 [Multi-domain] Cd Length: 448 Bit Score: 149.34 E-value: 1.85e-37
4-Chlorobenzoate-CoA ligase (CBAL); CBAL catalyzes the conversion of 4-chlorobenzoate (4-CB) ...
469-969
1.16e-36
4-Chlorobenzoate-CoA ligase (CBAL); CBAL catalyzes the conversion of 4-chlorobenzoate (4-CB) to 4-chlorobenzoyl-coenzyme A (4-CB-CoA) by the two-step adenylation and thioester-forming reactions. 4-Chlorobenzoate (4-CBA) is an environmental pollutant derived from microbial breakdown of aromatic pollutants, such as polychlorinated biphenyls (PCBs), DDT, and certain herbicides. The 4-CBA degrading pathway converts 4-CBA to the metabolite 4-hydroxybezoate (4-HBA), allowing some soil-dwelling microbes to utilize 4-CBA as an alternate carbon source. This pathway consists of three chemical steps catalyzed by 4-CBA-CoA ligase, 4-CBA-CoA dehalogenase, and 4HBA-CoA thioesterase in sequential reactions.
Pssm-ID: 341247 [Multi-domain] Cd Length: 493 Bit Score: 148.04 E-value: 1.16e-36
4-Coumarate-CoA Ligase (4CL); 4-Coumarate:coenzyme A ligase is a key enzyme in the ...
463-969
2.62e-36
4-Coumarate-CoA Ligase (4CL); 4-Coumarate:coenzyme A ligase is a key enzyme in the phenylpropanoid metabolic pathway for monolignol and flavonoid biosynthesis. It catalyzes the synthesis of hydroxycinnamate-CoA thioesters in a two-step reaction, involving the formation of hydroxycinnamate-AMP anhydride and the nucleophilic substitution of AMP by CoA. The phenylpropanoid pathway is one of the most important secondary metabolism pathways in plants and hydroxycinnamate-CoA thioesters are the precursors of lignin and other important phenylpropanoids.
Pssm-ID: 341230 [Multi-domain] Cd Length: 505 Bit Score: 147.38 E-value: 2.62e-36
Cyclohexanecarboxylate-CoA ligase (also called cyclohex-1-ene-1-carboxylate:CoA ligase); ...
492-971
3.21e-36
Cyclohexanecarboxylate-CoA ligase (also called cyclohex-1-ene-1-carboxylate:CoA ligase); Cyclohexanecarboxylate-CoA ligase activates the aliphatic ring compound, cyclohexanecarboxylate, for degradation. It catalyzes the synthesis of cyclohexanecarboxylate-CoA thioesters in a two-step reaction involving the formation of cyclohexanecarboxylate-AMP anhydride, followed by the nucleophilic substitution of AMP by CoA.
Pssm-ID: 341229 [Multi-domain] Cd Length: 437 Bit Score: 145.60 E-value: 3.21e-36
Subfamily of fatty acid CoA ligase (FACL) similar to Fum10p of Gibberella moniliformis; FACL ...
481-969
1.40e-35
Subfamily of fatty acid CoA ligase (FACL) similar to Fum10p of Gibberella moniliformis; FACL catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, followed by the formation of a fatty acyl-CoA. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. Fum10p is a fatty acid CoA ligase involved in the synthesis of fumonisin, a polyketide mycotoxin, in Gibberella moniliformis.
Pssm-ID: 341249 [Multi-domain] Cd Length: 493 Bit Score: 144.76 E-value: 1.40e-35
Terminal Condensation (CT)-like domains of nonribosomal peptide synthetases (NRPSs); Unlike bacterial NRPS, which typically have specialized terminal thioesterase (TE) domains to cyclize peptide products, many fungal NRPSs employ a terminal condensation-like (CT) domain to produce macrocyclic peptidyl products (e.g. cyclosporine and echinocandin). Domains in this subfamily (which includes both terminal and non-terminal domains) typically have a non-canonical conserved [SN]HxxxDx(14)Y motif at their active site compared to the standard Condensation (C) domain active site motif (HHxxxD). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain.
Pssm-ID: 380464 [Multi-domain] Cd Length: 401 Bit Score: 137.05 E-value: 1.03e-33
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the ...
5247-5399
3.09e-33
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.
Pssm-ID: 430138 [Multi-domain] Cd Length: 180 Bit Score: 128.83 E-value: 3.09e-33
Condensing enzymes; Family of enzymes that catalyze a (decarboxylating or non-decarboxylating) ...
2665-3011
3.31e-33
Condensing enzymes; Family of enzymes that catalyze a (decarboxylating or non-decarboxylating) Claisen-like condensation reaction. Members are share strong structural similarity, and are involved in the synthesis and degradation of fatty acids, and the production of polyketides, a diverse group of natural products.
Pssm-ID: 238201 [Multi-domain] Cd Length: 254 Bit Score: 131.41 E-value: 3.31e-33
O-succinylbenzoic acid-CoA ligase; This family contains O-succinylbenzoyl-CoA (OSB-CoA) ...
616-972
1.96e-32
O-succinylbenzoic acid-CoA ligase; This family contains O-succinylbenzoyl-CoA (OSB-CoA) synthetase (also known as O-succinylbenzoic acid CoA ligase) that belongs to the ANL superfamily and catalyzes the ligation of CoA to o-succinylbenzoate (OSB). It includes MenE in the bacterial menaquinone biosynthesis pathway which is a promising target for the development of novel antibacterial agents. MenE catalyzes CoA ligation via an acyl-adenylate intermediate; tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogs of this intermediate provide a pathway toward the development of optimized MenE inhibitors.
Pssm-ID: 341285 [Multi-domain] Cd Length: 325 Bit Score: 131.30 E-value: 1.96e-32
Condensing enzymes; Family of enzymes that catalyze a (decarboxylating or non-decarboxylating) ...
4165-4510
2.75e-31
Condensing enzymes; Family of enzymes that catalyze a (decarboxylating or non-decarboxylating) Claisen-like condensation reaction. Members are share strong structural similarity, and are involved in the synthesis and degradation of fatty acids, and the production of polyketides, a diverse group of natural products.
Pssm-ID: 238201 [Multi-domain] Cd Length: 254 Bit Score: 125.63 E-value: 2.75e-31
C-terminal domain of the acyl-acyl carrier protein synthetase (also called ...
491-972
8.41e-31
C-terminal domain of the acyl-acyl carrier protein synthetase (also called 2-acylglycerophosphoethanolamine acyltransferase, Aas); Acyl-acyl carrier protein synthase (Aas) is a membrane protein responsible for a minor pathway of incorporating exogenous fatty acids into membrane phospholipids. Its in vitro activity is characterized by the ligation of free fatty acids between 8 and 18 carbons in length to the acyl carrier protein sulfydryl group (ACP-SH) in the presence of ATP and Mg2+. However, its in vivo function is as a 2-acylglycerophosphoethanolamine (2-acyl-GPE) acyltransferase. The reaction occurs in two steps: the acyl chain is first esterified to acyl carrier protein (ACP) via a thioester bond, followed by a second step where the acyl chain is transferred to a 2-acyllysophospholipid, thus completing the transacylation reaction. This model represents the C-terminal domain of the enzyme, which belongs to the class I adenylate-forming enzyme family, including acyl-CoA synthetases.
Pssm-ID: 341235 [Multi-domain] Cd Length: 490 Bit Score: 130.53 E-value: 8.41e-31
beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 1, complex (x) SDRs; NADP-dependent KR domain of the multidomain type I FAS, a complex SDR family. This subfamily also includes proteins identified as polyketide synthase (PKS), a protein with related modular protein architecture and similar function. It includes the KR domains of mammalian and chicken FAS, and Dictyostelium discoideum putative polyketide synthases (PKSs). These KR domains contain two subdomains, each of which is related to SDR Rossmann fold domains. However, while the C-terminal subdomain has an active site similar to the other SDRs and a NADP-binding capability, the N-terminal SDR-like subdomain is truncated and lacks these functions, serving a supportive structural role. In some instances, such as porcine FAS, an enoyl reductase (a Rossman fold NAD-binding domain of the medium-chain dehydrogenase/reductase, MDR family) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-ketoacyl reductase (KR), forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-enoyl reductase (ER); this KR and ER are members of the SDR family. This KR subfamily has an active site tetrad with a similar 3D orientation compared to archetypical SDRs, but the active site Lys and Asn residue positions are swapped. The characteristic NADP-binding is typical of the multidomain complex SDRs, with a GGXGXXG NADP binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187657 [Multi-domain] Cd Length: 452 Bit Score: 127.18 E-value: 5.98e-30
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ...
619-969
1.09e-29
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions.
Pssm-ID: 341241 [Multi-domain] Cd Length: 349 Bit Score: 123.93 E-value: 1.09e-29
Medium-chain acyl-CoA synthetase (MACS or ACSM); MACS catalyzes the two-step activation of ...
493-971
1.88e-29
Medium-chain acyl-CoA synthetase (MACS or ACSM); MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. The acyl-CoA is a key intermediate in many important biosynthetic and catabolic processes.
Pssm-ID: 341276 [Multi-domain] Cd Length: 428 Bit Score: 125.14 E-value: 1.88e-29
The adenylation domain (A domain) of a family of nonribosomal peptide synthetases (NRPSs) ...
493-972
4.89e-29
The adenylation domain (A domain) of a family of nonribosomal peptide synthetases (NRPSs) synthesizing toxins and antitumor agents; The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino)-acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. This family includes NRPSs that synthesize toxins and antitumor agents; for example, TubE for Tubulysine, CrpA for cryptophycin, TdiA for terrequinone A, KtzG for kutzneride, and Vlm1/Vlm2 for Valinomycin. Nonribosomal peptide synthetases are large multifunctional enzymes which synthesize many therapeutically useful peptides. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and, in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341232 [Multi-domain] Cd Length: 540 Bit Score: 125.86 E-value: 4.89e-29
Uncharacterized subfamily of fatty acid CoA ligase (FACL); The members of this family are ...
488-966
1.28e-28
Uncharacterized subfamily of fatty acid CoA ligase (FACL); The members of this family are bacterial long-chain fatty acid CoA synthetase, most of which are as yet uncharacterized. LC-FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions.
Pssm-ID: 341240 [Multi-domain] Cd Length: 463 Bit Score: 123.32 E-value: 1.28e-28
Medium-chain acyl-CoA synthetase (MACS) of AAE_MA like; MACS catalyzes the two-step activation ...
470-973
1.53e-28
Medium-chain acyl-CoA synthetase (MACS) of AAE_MA like; MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This family of MACS enzymes is found in archaea and bacteria. It is represented by the acyl-adenylating enzyme from Methanosarcina acetivorans (AAE_MA). AAE_MA is most active with propionate, butyrate, and the branched analogs: 2-methyl-propionate, butyrate, and pentanoate. The specific activity is weaker for smaller or larger acids.
Pssm-ID: 341274 [Multi-domain] Cd Length: 537 Bit Score: 124.53 E-value: 1.53e-28
"elongating" condensing enzymes are a subclass of decarboxylating condensing enzymes, ...
1092-1512
2.02e-28
"elongating" condensing enzymes are a subclass of decarboxylating condensing enzymes, including beta-ketoacyl [ACP] synthase, type I and II and polyketide synthases.They are characterized by the utlization of acyl carrier protein (ACP) thioesters as primer substrates, as well as the nature of their active site residues.
Pssm-ID: 238424 [Multi-domain] Cd Length: 407 Bit Score: 121.78 E-value: 2.02e-28
O-succinylbenzoate-CoA ligase (also known as O-succinylbenzoate-CoA synthase, OSB-CoA ...
492-969
3.04e-28
O-succinylbenzoate-CoA ligase (also known as O-succinylbenzoate-CoA synthase, OSB-CoA synthetase, or MenE); O-succinylbenzoic acid-CoA synthase catalyzes the coenzyme A (CoA)- and ATP-dependent conversion of o-succinylbenzoic acid to o-succinylbenzoyl-CoA. The reaction is the fourth step of the biosynthesis pathway of menaquinone (vitamin K2). In certain bacteria, menaquinone is used during fumarate reduction in anaerobic respiration. In cyanobacteria, the product of the menaquinone pathway is phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone), a molecule used exclusively as an electron transfer cofactor in Photosystem 1. In green sulfur bacteria and heliobacteria, menaquinones are used as loosely bound secondary electron acceptors in the photosynthetic reaction center.
Pssm-ID: 341238 [Multi-domain] Cd Length: 411 Bit Score: 121.30 E-value: 3.04e-28
Uncharacterized subfamily of medium-chain acyl-CoA synthetase (MACS); MACS catalyzes the ...
493-971
7.51e-28
Uncharacterized subfamily of medium-chain acyl-CoA synthetase (MACS); MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. MACS enzymes are localized to mitochondria.
Pssm-ID: 341277 [Multi-domain] Cd Length: 437 Bit Score: 120.70 E-value: 7.51e-28
Long-chain fatty acid CoA synthetase; This family includes long-chain fatty acid (C12-C20) CoA ...
493-908
8.25e-28
Long-chain fatty acid CoA synthetase; This family includes long-chain fatty acid (C12-C20) CoA synthetases, including an Arabidopsis gene At4g14070 that plays a role in activation and elongation of exogenous fatty acids. FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Eukaryotes generally have multiple isoforms of LC-FACS genes with multiple splice variants. For example, nine genes are found in Arabidopsis and six genes are expressed in mammalian cells. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions.
Pssm-ID: 341295 [Multi-domain] Cd Length: 468 Bit Score: 120.93 E-value: 8.25e-28
Fatty acyl-AMP ligase (FAAL); FAAL belongs to the class I adenylate forming enzyme family and ...
477-966
2.23e-27
Fatty acyl-AMP ligase (FAAL); FAAL belongs to the class I adenylate forming enzyme family and is homologous to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, FAALs produce only the acyl adenylate and are unable to perform the thioester-forming reaction, while FACLs perform a two-step catalytic reaction; AMP ligation followed by CoA ligation using ATP and CoA as cofactors. FAALs have insertion motifs between the N-terminal and C-terminal subdomains that distinguish them from the FACLs. This insertion motif precludes the binding of CoA, thus preventing CoA ligation. It has been suggested that the acyl adenylates serve as substrates for multifunctional polyketide synthases to permit synthesis of complex lipids such as phthiocerol dimycocerosate, sulfolipids, mycolic acids, and mycobactin.
Pssm-ID: 341254 [Multi-domain] Cd Length: 547 Bit Score: 120.81 E-value: 2.23e-27
Fatty acyl-CoA synthetases similar to LC-FACS from Thermus thermophiles; This family includes ...
489-971
3.36e-27
Fatty acyl-CoA synthetases similar to LC-FACS from Thermus thermophiles; This family includes fatty acyl-CoA synthetases that can activate medium-chain to long-chain fatty acids. They catalyze the ATP-dependent acylation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. The fatty acyl-CoA synthetases are responsible for fatty acid degradation as well as physiological regulation of cellular functions via the production of fatty acyl-CoA esters. The fatty acyl-CoA synthetase from Thermus thermophiles in this family catalyzes the long-chain fatty acid, myristoyl acid, while another member in this family, the AlkK protein identified from Pseudomonas oleovorans, targets medium chain fatty acids. This family also includes uncharacterized FACS proteins.
Pssm-ID: 341284 [Multi-domain] Cd Length: 518 Bit Score: 120.04 E-value: 3.36e-27
X-domain is a catalytically inactive Condensation-like domain shown to recruit oxygenases to ...
8-434
5.33e-27
X-domain is a catalytically inactive Condensation-like domain shown to recruit oxygenases to the non-ribosomal peptide synthetase (NRPS); The X-domain is a catalytically inactive member of the Condensation (C) domain family of non-ribosomal peptide synthetase (NRPS). It has been shown to recruit oxygenases to the NRPS to perform side-chain crosslinking in the production of glycopeptide antibiotics. C-domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as this X-domain, the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, and dual E/C (epimerization and condensation) domains. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity; members of this X-domain subfamily lack the second H of this motif.
Pssm-ID: 380468 [Multi-domain] Cd Length: 440 Bit Score: 117.97 E-value: 5.33e-27
Fatty acyl-CoA synthetases similar to LC-FACS from Thermus thermophiles and Arabidopsis; This ...
474-969
1.45e-25
Fatty acyl-CoA synthetases similar to LC-FACS from Thermus thermophiles and Arabidopsis; This family includes fatty acyl-CoA synthetases that can activate medium to long-chain fatty acids. These enzymes catalyze the ATP-dependent acylation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. Fatty acyl-CoA synthetases are responsible for fatty acid degradation as well as physiological regulation of cellular functions via the production of fatty acyl-CoA esters. The fatty acyl-CoA synthetase from Thermus thermophiles in this family has been shown to catalyze the long-chain fatty acid, myristoyl acid. Also included in this family are acyl activating enzymes from Arabidopsis, which contains a large number of proteins from this family with up to 63 different genes, many of which are uncharacterized.
Pssm-ID: 341283 [Multi-domain] Cd Length: 486 Bit Score: 114.32 E-value: 1.45e-25
2-aminobenzoate-CoA ligase (ABCL); ABCL catalyzes the initial step in the 2-aminobenzoate ...
483-969
4.59e-25
2-aminobenzoate-CoA ligase (ABCL); ABCL catalyzes the initial step in the 2-aminobenzoate aerobic degradation pathway by activating 2-aminobenzoate to 2-aminobenzoyl-CoA. The reaction is carried out via a two-step process; the first step is ATP-dependent and forms a 2-aminobenzoyl-AMP intermediate, and the second step forms the 2-aminobenzoyl-CoA ester and releases the AMP. 2-Aminobenzoyl-CoA is further converted to 2-amino-5-oxo-cyclohex-1-ene-1-carbonyl-CoA catalyzed by 2-aminobenzoyl-CoA monooxygenase/reductase. ABCL has been purified from cells aerobically grown with 2-aminobenzoate as sole carbon, energy, and nitrogen source, and has been characterized as a monomer.
Pssm-ID: 341268 [Multi-domain] Cd Length: 439 Bit Score: 112.19 E-value: 4.59e-25
Condensing enzymes; Family of enzymes that catalyze a (decarboxylating or non-decarboxylating) ...
1229-1513
1.30e-24
Condensing enzymes; Family of enzymes that catalyze a (decarboxylating or non-decarboxylating) Claisen-like condensation reaction. Members are share strong structural similarity, and are involved in the synthesis and degradation of fatty acids, and the production of polyketides, a diverse group of natural products.
Pssm-ID: 238201 [Multi-domain] Cd Length: 254 Bit Score: 106.37 E-value: 1.30e-24
DCL-type Condensation domains of nonribosomal peptide synthetases (NRPSs), such as terminal ...
8-364
2.13e-24
DCL-type Condensation domains of nonribosomal peptide synthetases (NRPSs), such as terminal fungal CT domains and Dual Epimerization/Condensation (E/C) domains; Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type [D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L))], which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
Pssm-ID: 380459 [Multi-domain] Cd Length: 419 Bit Score: 109.85 E-value: 2.13e-24
insect luciferase, similar to plant 4-coumarate: CoA ligases; This family contains insect ...
475-974
2.62e-24
insect luciferase, similar to plant 4-coumarate: CoA ligases; This family contains insect firefly luciferases that share significant sequence similarity to plant 4-coumarate:coenzyme A ligases, despite their functional diversity. Luciferase catalyzes the production of light in the presence of MgATP, molecular oxygen, and luciferin. In the first step, luciferin is activated by acylation of its carboxylate group with ATP, resulting in an enzyme-bound luciferyl adenylate. In the second step, luciferyl adenylate reacts with molecular oxygen, producing an enzyme-bound excited state product (Luc=O*) and releasing AMP. This excited-state product then decays to the ground state (Luc=O), emitting a quantum of visible light.
Pssm-ID: 341297 [Multi-domain] Cd Length: 532 Bit Score: 111.08 E-value: 2.62e-24
adenylate forming domain, fatty acid CoA ligase (FadD10); This family contains long chain ...
614-966
3.20e-24
adenylate forming domain, fatty acid CoA ligase (FadD10); This family contains long chain fatty acid CoA ligases, including FadD10 which is involved in the synthesis of a virulence-related lipopeptide. FadD10 is a fatty acyl-AMP ligase (FAAL) that transfers fatty acids to an acyl carrier protein. Structures of FadD10 in apo- and complexed form with dodecanoyl-AMP, show a novel open conformation, facilitated by its unique inter-domain and intermolecular interactions, which is critical for the enzyme to carry out the acyl transfer onto the acyl carrier protein (Rv0100) rather than coenzyme A.
Pssm-ID: 341290 [Multi-domain] Cd Length: 340 Bit Score: 107.73 E-value: 3.20e-24
Eukaryotic long-chain fatty acid CoA synthetase (LC-FACS); The members of this family are ...
493-867
3.53e-24
Eukaryotic long-chain fatty acid CoA synthetase (LC-FACS); The members of this family are eukaryotic fatty acid CoA synthetases that activate fatty acids with chain lengths of 12 to 20. LC-FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. Organisms tend to have multiple isoforms of LC-FACS genes with multiple splice variants. For example, nine genes are found in Arabidopsis and six genes are expressed in mammalian cells.
Pssm-ID: 341250 [Multi-domain] Cd Length: 545 Bit Score: 110.77 E-value: 3.53e-24
ketoreductase (KR), subgroup 1, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
2170-2409
5.95e-24
ketoreductase (KR), subgroup 1, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes KR domains found in many multidomain PKSs, including six of seven Sorangium cellulosum PKSs (encoded by spiDEFGHIJ) which participate in the synthesis of the polyketide scaffold of the cytotoxic spiroketal polyketide spirangien. These seven PKSs have either a single PKS module (SpiF), two PKR modules (SpiD,-E,-I,-J), or three PKS modules (SpiG,-H). This subfamily includes the single KR domain of SpiF, the first KR domains of SpiE,-G,H,-I,and #J, the third KR domain of SpiG, and the second KR domain of SpiH. The second KR domains of SpiE,-G, I, and #J, and the KR domains of SpiD, belong to a different KR_FAS_SDR subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187655 [Multi-domain] Cd Length: 480 Bit Score: 109.57 E-value: 5.95e-24
beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 1, complex (x) SDRs; NADP-dependent KR domain of the multidomain type I FAS, a complex SDR family. This subfamily also includes proteins identified as polyketide synthase (PKS), a protein with related modular protein architecture and similar function. It includes the KR domains of mammalian and chicken FAS, and Dictyostelium discoideum putative polyketide synthases (PKSs). These KR domains contain two subdomains, each of which is related to SDR Rossmann fold domains. However, while the C-terminal subdomain has an active site similar to the other SDRs and a NADP-binding capability, the N-terminal SDR-like subdomain is truncated and lacks these functions, serving a supportive structural role. In some instances, such as porcine FAS, an enoyl reductase (a Rossman fold NAD-binding domain of the medium-chain dehydrogenase/reductase, MDR family) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-ketoacyl reductase (KR), forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-enoyl reductase (ER); this KR and ER are members of the SDR family. This KR subfamily has an active site tetrad with a similar 3D orientation compared to archetypical SDRs, but the active site Lys and Asn residue positions are swapped. The characteristic NADP-binding is typical of the multidomain complex SDRs, with a GGXGXXG NADP binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187657 [Multi-domain] Cd Length: 452 Bit Score: 105.99 E-value: 6.36e-23
fatty acid-CoA ligase VraA; This family of acyl-CoA ligases includes Bacillus subtilis YhfT, ...
615-966
1.66e-22
fatty acid-CoA ligase VraA; This family of acyl-CoA ligases includes Bacillus subtilis YhfT, as well as long-chain fatty acid-CoA ligase VraA, all of which are as yet to be characterized. These proteins belong to the adenylate-forming enzymes which catalyze an ATP-dependent two-step reaction to first activate a carboxylate substrate as an adenylate and then transfer the carboxylate to the pantetheine group of either coenzyme A or an acyl-carrier protein. The active site of the domain is located at the interface of a large N-terminal subdomain and a smaller C-terminal subdomain
Pssm-ID: 341288 [Multi-domain] Cd Length: 320 Bit Score: 102.10 E-value: 1.66e-22
acetate-CoA ligase; This family includes acyl- and aryl-CoA ligases, as well as the ...
470-964
1.12e-21
acetate-CoA ligase; This family includes acyl- and aryl-CoA ligases, as well as the adenylation domain of nonribosomal peptide synthetases and firefly luciferases. The adenylate-forming enzymes catalyze an ATP-dependent two-step reaction to first activate a carboxylate substrate as an adenylate and then transfer the carboxylate to the pantetheine group of either coenzyme A or an acyl-carrier protein. The active site of the domain is located at the interface of a large N-terminal subdomain and a smaller C-terminal subdomain.
Pssm-ID: 341289 [Multi-domain] Cd Length: 587 Bit Score: 103.43 E-value: 1.12e-21
Condensation family domain with an atypical active site motif; Condensation (C) domains of ...
16-419
2.67e-21
Condensation family domain with an atypical active site motif; Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Members of this subfamily typically have a non-canonical conserved SHXXXDX(14)Y motif. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain.
Pssm-ID: 380460 [Multi-domain] Cd Length: 395 Bit Score: 99.95 E-value: 2.67e-21
acetate--CoA ligase; This model describes acetate-CoA ligase (EC 6.2.1.1), also called ...
477-978
3.74e-21
acetate--CoA ligase; This model describes acetate-CoA ligase (EC 6.2.1.1), also called acetyl-CoA synthetase and acetyl-activating enzyme. It catalyzes the reaction ATP + acetate + CoA = AMP + diphosphate + acetyl-CoA and belongs to the family of AMP-binding enzymes described by pfam00501.
Pssm-ID: 274022 [Multi-domain] Cd Length: 626 Bit Score: 101.94 E-value: 3.74e-21
beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 3, complex (x); Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. In some instances, such as porcine FAS, an enoyl reductase (ER) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-KR, forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta- ER. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes KR domains found in many multidomain PKSs, including six of seven Sorangium cellulosum PKSs (encoded by spiDEFGHIJ) which participate in the synthesis of the polyketide scaffold of the cytotoxic spiroketal polyketide spirangien. These seven PKSs have either a single PKS module (SpiF), two PKR modules (SpiD,-E,-I,-J), or three PKS modules (SpiG,-H). This subfamily includes the second KR domains of SpiE,-G, I, and -J, both KR domains of SpiD, and the third KR domain of SpiH. The single KR domain of SpiF, the first and second KR domains of SpiH, the first KR domains of SpiE,-G,- I, and -J, and the third KR domain of SpiG, belong to a different KR_FAS_SDR subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187659 [Multi-domain] Cd Length: 448 Bit Score: 100.03 E-value: 5.23e-21
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ...
618-965
6.56e-21
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions.
Pssm-ID: 341248 [Multi-domain] Cd Length: 364 Bit Score: 98.22 E-value: 6.56e-21
Uncharacterized acyl-CoA synthetase subfamily similar to Acetoacetyl-CoA synthetase; This ...
455-967
1.04e-19
Uncharacterized acyl-CoA synthetase subfamily similar to Acetoacetyl-CoA synthetase; This uncharacterized acyl-CoA synthetase family (EC 6.2.1.16, or acetoacetate#CoA ligase or acetoacetate:CoA ligase (AMP-forming)) is highly homologous to acetoacetyl-CoA synthetase. However, the proteins in this family exist in only bacteria and archaea. AACS is a cytosolic ligase that specifically activates acetoacetate to its coenzyme A ester by a two-step reaction. Acetoacetate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is the first step of the mevalonate pathway of isoprenoid biosynthesis via isopentenyl diphosphate. Isoprenoids are a large class of compounds found in all living organisms.
Pssm-ID: 341272 [Multi-domain] Cd Length: 610 Bit Score: 97.18 E-value: 1.04e-19
NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family [Lipid transport and ...
3682-3834
1.57e-19
NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family [Lipid transport and metabolism]; NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family is part of the Pathway/BioSystem: Fatty acid biosynthesis
Pssm-ID: 440651 [Multi-domain] Cd Length: 249 Bit Score: 91.39 E-value: 1.57e-19
Condensation domains of nonribosomal peptide synthetases (NRPSs) similar to the ester-bond ...
8-432
2.53e-19
Condensation domains of nonribosomal peptide synthetases (NRPSs) similar to the ester-bond forming Fusarium verticillioides FUM14 protein; Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) typically catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. However, some C-domains have ester-bond forming activity. This subfamily includes Fusarium verticillioides FUM14 (also known as NRPS8), a bi-domain protein with an ester-bond forming NRPS C-domain, which catalyzes linkages between an aminoacyl/peptidyl-PCP donor and a hydroxyl-containing acceptor. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. FUM14 has an altered active site motif DHTHCD instead of the typical HHxxxD motif seen in other subfamily members. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain.
Pssm-ID: 380467 [Multi-domain] Cd Length: 395 Bit Score: 93.90 E-value: 2.53e-19
Chain-length factor (CLF) is a factor required for polyketide chain initiation of aromatic ...
2579-3011
3.92e-18
Chain-length factor (CLF) is a factor required for polyketide chain initiation of aromatic antibiotic-producing polyketide synthases (PKSs) of filamentous bacteria. CLFs have been shown to have decarboxylase activity towards malonyl-acyl carrier protein (ACP). CLFs are similar to other elongation ketosynthase domains, but their active site cysteine is replaced by a conserved glutamine.
Pssm-ID: 238428 [Multi-domain] Cd Length: 399 Bit Score: 90.50 E-value: 3.92e-18
acyl-CoA synthetase FadD3 and similar proteins; This family contains long chain fatty acid CoA ...
619-964
6.44e-17
acyl-CoA synthetase FadD3 and similar proteins; This family contains long chain fatty acid CoA ligases, including FadD3 which is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria. The cholesterol catabolic pathway occurs in most mycolic acid-containing actinobacteria, such as Rhodococcus jostii RHA1, and is critical for Mycobacterium tuberculosis (Mtb) during infection. FadD3 catalyzes the ATP-dependent CoA thioesterification of 3a-alpha-H-4alpha(3'-propanoate)-7a-beta-methylhexahydro-1,5-indanedione (HIP) to yield HIP-CoA. Hydroxylated analogs of HIP, 5alpha-OH HIP and 1beta-OH HIP, can also be used.
Pssm-ID: 341293 [Multi-domain] Cd Length: 330 Bit Score: 85.63 E-value: 6.44e-17
Feruloyl-CoA synthetase (FCS); Feruloyl-CoA synthetase is an essential enzyme in the feruloyl ...
474-908
7.00e-17
Feruloyl-CoA synthetase (FCS); Feruloyl-CoA synthetase is an essential enzyme in the feruloyl acid degradation pathway and enables some proteobacteria to grow on media containing feruloyl acid as the sole carbon source. It catalyzes the transfer of CoA to the carboxyl group of ferulic acid, which then forms feruloyl-CoA in the presence of ATP and Mg2. The resulting feruloyl-CoA is further degraded to vanillin and acetyl-CoA. Feruloyl-CoA synthetase (FCS) is a subfamily of the adenylate-forming enzymes superfamily.
Pssm-ID: 341245 [Multi-domain] Cd Length: 561 Bit Score: 87.87 E-value: 7.00e-17
Eukaryotic long-chain fatty acid CoA synthetase (LC-FACS), including fungal proteins; The ...
493-897
4.79e-16
Eukaryotic long-chain fatty acid CoA synthetase (LC-FACS), including fungal proteins; The members of this family are eukaryotic fatty acid CoA synthetases (EC 6.2.1.3) that activate fatty acids with chain lengths of 12 to 20 and includes fungal proteins. They act on a wide range of long-chain saturated and unsaturated fatty acids, but the enzymes from different tissues show some variation in specificity. LC-FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. Organisms tend to have multiple isoforms of LC-FACS genes with multiple splice variants. For example, nine genes are found in Arabidopsis and six genes are expressed in mammalian cells. In Schizosaccharomyces pombe, lcf1 gene encodes a new fatty acyl-CoA synthetase that preferentially recognizes myristic acid as a substrate.
Pssm-ID: 341294 [Multi-domain] Cd Length: 507 Bit Score: 84.96 E-value: 4.79e-16
beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 3, complex (x); Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. In some instances, such as porcine FAS, an enoyl reductase (ER) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-KR, forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta- ER. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes KR domains found in many multidomain PKSs, including six of seven Sorangium cellulosum PKSs (encoded by spiDEFGHIJ) which participate in the synthesis of the polyketide scaffold of the cytotoxic spiroketal polyketide spirangien. These seven PKSs have either a single PKS module (SpiF), two PKR modules (SpiD,-E,-I,-J), or three PKS modules (SpiG,-H). This subfamily includes the second KR domains of SpiE,-G, I, and -J, both KR domains of SpiD, and the third KR domain of SpiH. The single KR domain of SpiF, the first and second KR domains of SpiH, the first KR domains of SpiE,-G,- I, and -J, and the third KR domain of SpiG, belong to a different KR_FAS_SDR subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187659 [Multi-domain] Cd Length: 448 Bit Score: 83.85 E-value: 9.45e-16
Bacterial Bile acid CoA ligases and similar proteins; Bile acid-Coenzyme A ligase catalyzes ...
618-969
1.02e-15
Bacterial Bile acid CoA ligases and similar proteins; Bile acid-Coenzyme A ligase catalyzes the formation of bile acid-CoA conjugates in a two-step reaction: the formation of a bile acid-AMP molecule as an intermediate, followed by the formation of a bile acid-CoA. This ligase requires a bile acid with a free carboxyl group, ATP, Mg2+, and CoA for synthesis of the final bile acid-CoA conjugate. The bile acid-CoA ligation is believed to be the initial step in the bile acid 7alpha-dehydroxylation pathway in the intestinal bacterium Eubacterium sp.
Pssm-ID: 341252 [Multi-domain] Cd Length: 473 Bit Score: 83.97 E-value: 1.02e-15
Bacterial long-chain fatty acid CoA synthetase (LC-FACS), including Marinobacter ...
493-971
1.21e-15
Bacterial long-chain fatty acid CoA synthetase (LC-FACS), including Marinobacter hydrocarbonoclasticus isoprenoid Coenzyme A synthetase; The members of this family are bacterial long-chain fatty acid CoA synthetase. Marinobacter hydrocarbonoclasticus isoprenoid Coenzyme A synthetase in this family is involved in the synthesis of isoprenoid wax ester storage compounds when grown on phytol as the sole carbon source. LC-FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions.
Pssm-ID: 341255 [Multi-domain] Cd Length: 508 Bit Score: 83.67 E-value: 1.21e-15
beta-Keto acyl carrier protein reductase (BKR), involved in Type II FAS, classical (c) SDRs; ...
3682-3834
1.85e-15
beta-Keto acyl carrier protein reductase (BKR), involved in Type II FAS, classical (c) SDRs; This subgroup includes the Escherichai coli K12 BKR, FabG. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet) NAD(P)(H) binding region and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H) binding pattern: TGxxxGxG in classical SDRs. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P) binding motif and an altered active site motif (YXXXN). Fungal type type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P) binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr-151 and Lys-155, and well as Asn-111 (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187594 [Multi-domain] Cd Length: 240 Bit Score: 79.51 E-value: 1.85e-15
Epimerization domain of nonribosomal peptide synthetases (NRPSs); belongs to the ...
8-215
1.94e-15
Epimerization domain of nonribosomal peptide synthetases (NRPSs); belongs to the Condensation-domain family; Epimerization (E) domains of nonribosomal peptide synthetases (NRPS) flip the chirality of the end amino acid of a peptide being manufactured by the NRPS. E-domains are homologous to the Condensation (C) domains. NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. Specialized tailoring NRPS domains such as E-domains greatly increase the range of possible peptide products created by the NRPS machinery. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the E-domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
Pssm-ID: 380457 [Multi-domain] Cd Length: 428 Bit Score: 82.68 E-value: 1.94e-15
Eukaryotic Medium-chain acyl-CoA synthetase (MACS or ACSM); MACS catalyzes the two-step ...
462-973
2.31e-15
Eukaryotic Medium-chain acyl-CoA synthetase (MACS or ACSM); MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. The acyl-CoA is a key intermediate in many important biosynthetic and catabolic processes. MACS enzymes are localized to mitochondria. Two murine MACS family proteins are found in liver and kidney. In rodents, a MACS member is detected particularly in the olfactory epithelium and is called O-MACS. O-MACS demonstrates substrate preference for the fatty acid lengths of C6-C12.
Pssm-ID: 341251 [Multi-domain] Cd Length: 530 Bit Score: 82.90 E-value: 2.31e-15
Propionyl-CoA synthetase (PrpE); EC 6.2.1.17: propanoate:CoA ligase (AMP-forming) or ...
611-971
2.53e-15
Propionyl-CoA synthetase (PrpE); EC 6.2.1.17: propanoate:CoA ligase (AMP-forming) or propionate#CoA ligase (PrpE) catalyzes the first step of the 2-methylcitric acid cycle for propionate catabolism. It activates propionate to propionyl-CoA in a two-step reaction, which proceeds through a propionyl-AMP intermediate and requires ATP and Mg2+. In Salmonella enterica, the PrpE protein is required for growth of Salmonella enterica on propionate and can substitute for the acetyl-CoA synthetase (Acs) enzyme during growth on acetate. PrpE can also activate acetate, 3HP, and butyrate to their corresponding CoA-thioesters, although with less efficiency.
Pssm-ID: 341271 [Multi-domain] Cd Length: 617 Bit Score: 83.13 E-value: 2.53e-15
classical (c) SDRs; SDRs are a functionally diverse family of oxidoreductases that have a ...
3684-3840
3.89e-15
classical (c) SDRs; SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 212491 [Multi-domain] Cd Length: 234 Bit Score: 78.09 E-value: 3.89e-15
Uncharacterized subfamily of medium-chain acyl-CoA synthetase (MACS); MACS catalyzes the ...
493-973
6.60e-15
Uncharacterized subfamily of medium-chain acyl-CoA synthetase (MACS); MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. MACS enzymes are localized to mitochondria.
Pssm-ID: 341278 [Multi-domain] Cd Length: 432 Bit Score: 81.07 E-value: 6.60e-15
Uncharacterized subfamily of bifunctional fatty acid transporter/very-long-chain acyl-CoA ...
488-974
1.15e-14
Uncharacterized subfamily of bifunctional fatty acid transporter/very-long-chain acyl-CoA synthetase in fungi; Fatty acid transport protein (FATP) transports long-chain or very-long-chain fatty acids across the plasma membrane. FATPs also have fatty acid CoA synthetase activity, thus playing dual roles as fatty acid transporters and its activation enzymes. FATPs are the key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. Members of this family are fungal FATPs, including FAT1 from Cochliobolus heterostrophus.
Pssm-ID: 341260 [Multi-domain] Cd Length: 468 Bit Score: 80.55 E-value: 1.15e-14
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the ...
3944-4026
1.40e-14
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the prosthetic group of acyl carrier proteins (ACP) in some multienzyme complexes where it serves as a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups.
Pssm-ID: 214834 [Multi-domain] Cd Length: 86 Bit Score: 71.90 E-value: 1.40e-14
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the ...
2446-2525
1.60e-14
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the prosthetic group of acyl carrier proteins (ACP) in some multienzyme complexes where it serves as a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups.
Pssm-ID: 214834 [Multi-domain] Cd Length: 86 Bit Score: 71.90 E-value: 1.60e-14
Acetyl-CoA synthetase (also known as acetate-CoA ligase and acetyl-activating enzyme); ...
477-972
2.05e-14
Acetyl-CoA synthetase (also known as acetate-CoA ligase and acetyl-activating enzyme); Acetyl-CoA synthetase (ACS, EC 6.2.1.1, acetate#CoA ligase or acetate:CoA ligase (AMP-forming)) catalyzes the formation of acetyl-CoA from acetate, CoA, and ATP. Synthesis of acetyl-CoA is carried out in a two-step reaction. In the first step, the enzyme catalyzes the synthesis of acetyl-AMP intermediate from acetate and ATP. In the second step, acetyl-AMP reacts with CoA to produce acetyl-CoA. This enzyme is widely present in all living organisms. The activity of this enzyme is crucial for maintaining the required levels of acetyl-CoA, a key intermediate in many important biosynthetic and catabolic processes. Acetyl-CoA is used in the biosynthesis of glucose, fatty acids, and cholesterol. It can also be used in the production of energy in the citric acid cycle. Eukaryotes typically have two isoforms of acetyl-CoA synthetase, a cytosolic form involved in biosynthetic processes and a mitochondrial form primarily involved in energy generation.
Pssm-ID: 341270 [Multi-domain] Cd Length: 608 Bit Score: 80.30 E-value: 2.05e-14
long-chain fatty acid CoA ligase (FadD); This family contains fatty acid CoA ligases, ...
619-965
3.70e-14
long-chain fatty acid CoA ligase (FadD); This family contains fatty acid CoA ligases, including acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II, most of which are yet to be characterized. Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions.
Pssm-ID: 341291 [Multi-domain] Cd Length: 331 Bit Score: 77.34 E-value: 3.70e-14
Condensation domain of nonribosomal peptide synthetases (NRPSs) similar to Nocardia uniformis ...
8-434
3.77e-14
Condensation domain of nonribosomal peptide synthetases (NRPSs) similar to Nocardia uniformis NocB which exhibits an unusual cyclization to form beta-lactam rings in pro-nocardicin G synthesis; Nocardia uniformis NRPS NocB acts centrally in the biosynthesis of the nocardicin monocyclic beta-lactam antibiotics. Along with another NRPS NocA, it mediates an unusual cyclization to form beta-lactam rings in the synthesis of the beta-lactam-containing pentapeptide pro-nocardicin G. This small subfamily is related to DCL-type Condensation (C) domains, which catalyze condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; domains belonging to this subfamily have an HHHxxxD motif at the active site.
Pssm-ID: 380469 [Multi-domain] Cd Length: 422 Bit Score: 78.51 E-value: 3.77e-14
classical (c) SDRs; SDRs are a functionally diverse family of oxidoreductases that have a ...
2183-2298
8.08e-14
classical (c) SDRs; SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 212491 [Multi-domain] Cd Length: 234 Bit Score: 74.24 E-value: 8.08e-14
NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family [Lipid transport and ...
2181-2298
9.25e-14
NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family [Lipid transport and metabolism]; NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family is part of the Pathway/BioSystem: Fatty acid biosynthesis
Pssm-ID: 440651 [Multi-domain] Cd Length: 249 Bit Score: 74.44 E-value: 9.25e-14
ketoreductase (KR), subgroup 1, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
5279-5436
1.20e-13
ketoreductase (KR), subgroup 1, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes KR domains found in many multidomain PKSs, including six of seven Sorangium cellulosum PKSs (encoded by spiDEFGHIJ) which participate in the synthesis of the polyketide scaffold of the cytotoxic spiroketal polyketide spirangien. These seven PKSs have either a single PKS module (SpiF), two PKR modules (SpiD,-E,-I,-J), or three PKS modules (SpiG,-H). This subfamily includes the single KR domain of SpiF, the first KR domains of SpiE,-G,H,-I,and #J, the third KR domain of SpiG, and the second KR domain of SpiH. The second KR domains of SpiE,-G, I, and #J, and the KR domains of SpiD, belong to a different KR_FAS_SDR subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187655 [Multi-domain] Cd Length: 480 Bit Score: 77.21 E-value: 1.20e-13
Phosphopantetheine attachment site; A 4'-phosphopantetheine prosthetic group is attached ...
3957-4016
1.35e-13
Phosphopantetheine attachment site; A 4'-phosphopantetheine prosthetic group is attached through a serine. This prosthetic group acts as a a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. This domain forms a four helix bundle. This family includes members not included in Prosite. The inclusion of these members is supported by sequence analysis and functional evidence. The related domain of Swiss:P19828 has the attachment serine replaced by an alanine.
Pssm-ID: 425746 [Multi-domain] Cd Length: 62 Bit Score: 68.36 E-value: 1.35e-13
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ...
613-974
2.75e-13
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions.
Pssm-ID: 341266 [Multi-domain] Cd Length: 359 Bit Score: 75.21 E-value: 2.75e-13
NADP-dependent 3-hydroxy acid dehydrogenase YdfG [Energy production and conversion]; ...
3675-3840
6.67e-13
NADP-dependent 3-hydroxy acid dehydrogenase YdfG [Energy production and conversion]; NADP-dependent 3-hydroxy acid dehydrogenase YdfG is part of the Pathway/BioSystem: Pyrimidine degradation
Pssm-ID: 443365 [Multi-domain] Cd Length: 240 Bit Score: 71.75 E-value: 6.67e-13
Ketoacyl-synthetase C-terminal extension; KAsynt_C_assoc represents the very C-terminus of a ...
4460-4583
1.12e-12
Ketoacyl-synthetase C-terminal extension; KAsynt_C_assoc represents the very C-terminus of a subset of proteins from the keto-acyl-synthetase 2 family. It is found in proteins ranging from bacteria to human.
Pssm-ID: 465059 [Multi-domain] Cd Length: 111 Bit Score: 67.57 E-value: 1.12e-12
Phosphopantetheine attachment site; A 4'-phosphopantetheine prosthetic group is attached ...
991-1050
1.31e-12
Phosphopantetheine attachment site; A 4'-phosphopantetheine prosthetic group is attached through a serine. This prosthetic group acts as a a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. This domain forms a four helix bundle. This family includes members not included in Prosite. The inclusion of these members is supported by sequence analysis and functional evidence. The related domain of Swiss:P19828 has the attachment serine replaced by an alanine.
Pssm-ID: 425746 [Multi-domain] Cd Length: 62 Bit Score: 65.66 E-value: 1.31e-12
Fatty acid transport proteins (FATP), including FATP4 and FATP1, and similar proteins; Fatty ...
490-971
1.80e-12
Fatty acid transport proteins (FATP), including FATP4 and FATP1, and similar proteins; Fatty acid transport protein (FATP) transports long-chain or very-long-chain fatty acids across the plasma membrane. At least five copies of FATPs are identified in mammalian cells. This family includes FATP4, FATP1, and homologous proteins. Each FATP has unique patterns of tissue distribution. FATP4 is mainly expressed in the brain, testis, colon and kidney. FATPs also have fatty acid CoA synthetase activity, thus playing dual roles as fatty acid transporters and its activation enzymes. FATPs are the key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis.
Pssm-ID: 341262 [Multi-domain] Cd Length: 474 Bit Score: 73.61 E-value: 1.80e-12
Fatty acid transport proteins (FATP) play dual roles as fatty acid transporters and its ...
490-953
1.82e-12
Fatty acid transport proteins (FATP) play dual roles as fatty acid transporters and its activation enzymes; Fatty acid transport protein (FATP) transports long-chain or very-long-chain fatty acids across the plasma membrane. FATPs also have fatty acid CoA synthetase activity, thus playing dual roles as fatty acid transporters and its activation enzymes. At least five copies of FATPs are identified in mammalian cells. This family also includes prokaryotic FATPs. FATPs are the key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis.
Pssm-ID: 341263 [Multi-domain] Cd Length: 449 Bit Score: 73.54 E-value: 1.82e-12
NADP-dependent 3-hydroxy acid dehydrogenase YdfG [Energy production and conversion]; ...
2178-2298
1.96e-12
NADP-dependent 3-hydroxy acid dehydrogenase YdfG [Energy production and conversion]; NADP-dependent 3-hydroxy acid dehydrogenase YdfG is part of the Pathway/BioSystem: Pyrimidine degradation
Pssm-ID: 443365 [Multi-domain] Cd Length: 240 Bit Score: 70.60 E-value: 1.96e-12
acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II; This family contains fatty acid CoA ...
619-966
2.54e-12
acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II; This family contains fatty acid CoA ligases, including acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II, most of which are yet to be characterized, but may be similar to Carnitine-CoA ligase (CaiC) which catalyzes the transfer of CoA to carnitine. Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions.
Pssm-ID: 341292 [Multi-domain] Cd Length: 333 Bit Score: 71.92 E-value: 2.54e-12
Phosphopantetheine attachment site; A 4'-phosphopantetheine prosthetic group is attached ...
2458-2515
4.94e-12
Phosphopantetheine attachment site; A 4'-phosphopantetheine prosthetic group is attached through a serine. This prosthetic group acts as a a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. This domain forms a four helix bundle. This family includes members not included in Prosite. The inclusion of these members is supported by sequence analysis and functional evidence. The related domain of Swiss:P19828 has the attachment serine replaced by an alanine.
Pssm-ID: 425746 [Multi-domain] Cd Length: 62 Bit Score: 63.74 E-value: 4.94e-12
Ketoacyl-synthetase C-terminal extension; KAsynt_C_assoc represents the very C-terminus of a ...
2961-3060
5.96e-12
Ketoacyl-synthetase C-terminal extension; KAsynt_C_assoc represents the very C-terminus of a subset of proteins from the keto-acyl-synthetase 2 family. It is found in proteins ranging from bacteria to human.
Pssm-ID: 465059 [Multi-domain] Cd Length: 111 Bit Score: 65.26 E-value: 5.96e-12
Ketoacyl-synthetase C-terminal extension; KAsynt_C_assoc represents the very C-terminus of a ...
1469-1583
9.06e-12
Ketoacyl-synthetase C-terminal extension; KAsynt_C_assoc represents the very C-terminus of a subset of proteins from the keto-acyl-synthetase 2 family. It is found in proteins ranging from bacteria to human.
Pssm-ID: 465059 [Multi-domain] Cd Length: 111 Bit Score: 64.87 E-value: 9.06e-12
The adenylation domain of nonribosomal peptide synthetases (NRPS) similar to mycosubtilin ...
494-972
1.21e-11
The adenylation domain of nonribosomal peptide synthetases (NRPS) similar to mycosubtilin synthase subunit A (MycA); The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as (amino)-acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. This family includes NRPS similar to mycosubtilin synthase subunit A (MycA). Mycosubtilin, which is characterized by a beta-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Gln-Pro-Ser-Asn, belongs to the iturin family of lipopeptide antibiotics. The mycosubtilin synthase subunit A (MycA) combines functional domains derived from peptide synthetases, amino transferases, and fatty acid synthases. Nonribosomal peptide synthetases are large multifunction enzymes that synthesize many therapeutically useful peptides. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and, in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
Pssm-ID: 341234 [Multi-domain] Cd Length: 499 Bit Score: 70.98 E-value: 1.21e-11
iterative type I PKS product template domain; Sequences found by this model are the so-called ...
4715-4922
9.94e-11
iterative type I PKS product template domain; Sequences found by this model are the so-called product template (PT) domain of various fungal iterative type I polyketide synthases. This domain resembles pfam14765, designated polyketide synthase dehydratase by Pfam, but members of that family are primarily bacterial, where type I PKS are predominantly modular, not iterative. The dehydratase active site residues well-conserved in pfam14765 (His in the first hot dog domain, Asp in the second hot dog domain) seem well conserved in this family also.
Pssm-ID: 275325 Cd Length: 324 Bit Score: 66.88 E-value: 9.94e-11
Short-chain dehydrogenase involved in D-alanine esterification of teichoic acids [Cell wall ...
2183-2287
1.06e-10
Short-chain dehydrogenase involved in D-alanine esterification of teichoic acids [Cell wall/membrane/envelope biogenesis, Lipid transport and metabolism];
Pssm-ID: 443167 [Multi-domain] Cd Length: 246 Bit Score: 65.57 E-value: 1.06e-10
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ...
491-905
1.63e-10
Uncharacterized subfamily of fatty acid CoA ligase (FACL); Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions.
Pssm-ID: 341236 [Multi-domain] Cd Length: 457 Bit Score: 67.10 E-value: 1.63e-10
retinol dehydrogenase (retinol-DH), Light dependent Protochlorophyllide (Pchlide) OxidoReductase (LPOR) and related proteins, classical (c) SDRs; Classical SDR subgroup containing retinol-DHs, LPORs, and related proteins. Retinol is processed by a medium chain alcohol dehydrogenase followed by retinol-DHs. Pchlide reductases act in chlorophyll biosynthesis. There are distinct enzymes that catalyze Pchlide reduction in light or dark conditions. Light-dependent reduction is via an NADP-dependent SDR, LPOR. Proteins in this subfamily share the glycine-rich NAD-binding motif of the classical SDRs, have a partial match to the canonical active site tetrad, but lack the typical active site Ser. This subgroup includes the human proteins: retinol dehydrogenase -12, -13 ,and -14, dehydrogenase/reductase SDR family member (DHRS)-12 , -13 and -X (a DHRS on chromosome X), and WWOX (WW domain-containing oxidoreductase), as well as a Neurospora crassa SDR encoded by the blue light inducible bli-4 gene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 212492 [Multi-domain] Cd Length: 269 Bit Score: 63.78 E-value: 4.91e-10
beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 1, complex (x) SDRs; NADP-dependent KR domain of the multidomain type I FAS, a complex SDR family. This subfamily also includes proteins identified as polyketide synthase (PKS), a protein with related modular protein architecture and similar function. It includes the KR domains of mammalian and chicken FAS, and Dictyostelium discoideum putative polyketide synthases (PKSs). These KR domains contain two subdomains, each of which is related to SDR Rossmann fold domains. However, while the C-terminal subdomain has an active site similar to the other SDRs and a NADP-binding capability, the N-terminal SDR-like subdomain is truncated and lacks these functions, serving a supportive structural role. In some instances, such as porcine FAS, an enoyl reductase (a Rossman fold NAD-binding domain of the medium-chain dehydrogenase/reductase, MDR family) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-ketoacyl reductase (KR), forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-enoyl reductase (ER); this KR and ER are members of the SDR family. This KR subfamily has an active site tetrad with a similar 3D orientation compared to archetypical SDRs, but the active site Lys and Asn residue positions are swapped. The characteristic NADP-binding is typical of the multidomain complex SDRs, with a GGXGXXG NADP binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187657 [Multi-domain] Cd Length: 452 Bit Score: 65.55 E-value: 5.64e-10
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the ...
985-1057
9.96e-10
Phosphopantetheine attachment site; Phosphopantetheine (or pantetheine 4' phosphate) is the prosthetic group of acyl carrier proteins (ACP) in some multienzyme complexes where it serves as a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups.
Pssm-ID: 214834 [Multi-domain] Cd Length: 86 Bit Score: 58.03 E-value: 9.96e-10
beta-Keto acyl carrier protein reductase (BKR), involved in Type II FAS, classical (c) SDRs; ...
2181-2298
1.16e-09
beta-Keto acyl carrier protein reductase (BKR), involved in Type II FAS, classical (c) SDRs; This subgroup includes the Escherichai coli K12 BKR, FabG. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet) NAD(P)(H) binding region and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H) binding pattern: TGxxxGxG in classical SDRs. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P) binding motif and an altered active site motif (YXXXN). Fungal type type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P) binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr-151 and Lys-155, and well as Asn-111 (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187594 [Multi-domain] Cd Length: 240 Bit Score: 62.18 E-value: 1.16e-09
mannitol dehydrogenase (MDH)-like, classical (c) SDRs; NADP-mannitol dehydrogenase catalyzes the conversion of fructose to mannitol, an acyclic 6-carbon sugar. MDH is a tetrameric member of the SDR family. This subgroup also includes various other tetrameric SDRs, including Pichia stipitis D-arabinitol dehydrogenase (aka polyol dehydrogenase), Candida albicans Sou1p, a sorbose reductase, and Candida parapsilosis (S)-specific carbonyl reductase (SCR, aka S-specific alcohol dehydrogenase) which catalyzes the enantioselective reduction of 2-hydroxyacetophenone into (S)-1-phenyl-1,2-ethanediol. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser).
Pssm-ID: 187610 [Multi-domain] Cd Length: 252 Bit Score: 61.58 E-value: 2.05e-09
3-ketodihydrosphingosine reductase (KDSR) and related proteins, classical (c) SDR; These ...
2183-2298
3.39e-09
3-ketodihydrosphingosine reductase (KDSR) and related proteins, classical (c) SDR; These proteins include members identified as KDSR, ribitol type dehydrogenase, and others. The group shows strong conservation of the active site tetrad and glycine rich NAD-binding motif of the classical SDRs. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187643 [Multi-domain] Cd Length: 239 Bit Score: 60.73 E-value: 3.39e-09
bacterial long-chain fatty acid CoA synthetase; The members of this family are bacterial ...
609-972
3.82e-09
bacterial long-chain fatty acid CoA synthetase; The members of this family are bacterial long-chain fatty acid CoA synthetase, most of which are as yet uncharacterized. LC-FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions.
Pssm-ID: 341296 [Multi-domain] Cd Length: 569 Bit Score: 63.21 E-value: 3.82e-09
classical (c) SDR, subgroup 2; Short-chain dehydrogenases/reductases (SDRs, aka Tyrosine-dependent oxidoreductases) are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187628 [Multi-domain] Cd Length: 228 Bit Score: 60.01 E-value: 6.19e-09
classical (c) SDR, subgroup 2; Short-chain dehydrogenases/reductases (SDRs, aka Tyrosine-dependent oxidoreductases) are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187628 [Multi-domain] Cd Length: 228 Bit Score: 59.24 E-value: 1.11e-08
mannitol dehydrogenase (MDH)-like, classical (c) SDRs; NADP-mannitol dehydrogenase catalyzes the conversion of fructose to mannitol, an acyclic 6-carbon sugar. MDH is a tetrameric member of the SDR family. This subgroup also includes various other tetrameric SDRs, including Pichia stipitis D-arabinitol dehydrogenase (aka polyol dehydrogenase), Candida albicans Sou1p, a sorbose reductase, and Candida parapsilosis (S)-specific carbonyl reductase (SCR, aka S-specific alcohol dehydrogenase) which catalyzes the enantioselective reduction of 2-hydroxyacetophenone into (S)-1-phenyl-1,2-ethanediol. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser).
Pssm-ID: 187610 [Multi-domain] Cd Length: 252 Bit Score: 59.27 E-value: 1.26e-08
Bubblegum-like very long-chain fatty acid CoA synthetase (VL-FACS); This family of very ...
493-639
1.47e-08
Bubblegum-like very long-chain fatty acid CoA synthetase (VL-FACS); This family of very long-chain fatty acid CoA synthetase is named bubblegum because Drosophila melanogaster mutant bubblegum (BGM) has elevated levels of very-long-chain fatty acids (VLCFA) caused by a defective gene of this family. The human homolog (hsBG) has been characterized as a very long chain fatty acid CoA synthetase that functions specifically in the brain; hsBG may play a central role in brain VLCFA metabolism and myelinogenesis. VL-FACS is involved in the first reaction step of very long chain fatty acid degradation. It catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions.
Pssm-ID: 341256 [Multi-domain] Cd Length: 596 Bit Score: 61.22 E-value: 1.47e-08
gluconate 5-dehydrogenase (Ga5DH)-like, classical (c) SDRs; Ga5DH catalyzes the NADP-dependent conversion of carbon source D-gluconate and 5-keto-D-gluconate. This SDR subgroup has a classical Gly-rich NAD(P)-binding motif and a conserved active site tetrad pattern. However, it has been proposed that Arg104 (Streptococcus suis Ga5DH numbering), as well as an active site Ca2+, play a critical role in catalysis. In addition to Ga5DHs this subgroup contains Erwinia chrysanthemi KduD which is involved in pectin degradation, and is a putative 2,5-diketo-3-deoxygluconate dehydrogenase. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107,15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187605 [Multi-domain] Cd Length: 248 Bit Score: 58.91 E-value: 1.96e-08
Cyc (heterocyclization) domain of nonribosomal peptide synthetases (NRPSs); belongs to the ...
108-336
2.16e-08
Cyc (heterocyclization) domain of nonribosomal peptide synthetases (NRPSs); belongs to the Condensation-domain family; Cyc (heterocyclization) domains catalyze two separate reactions in the creation of heterocyclized peptide products in nonribosomal peptide synthesis: amide bond formation followed by intramolecular cyclodehydration between a Cys, Ser, or Thr side chain and a carbonyl carbon on the peptide backbone to form a thiazoline, oxazoline, or methyloxazoline ring. Cyc-domains are homologous to standard NRPS Condensation (C) domains. C-domains typically have a conserved HHxxxD motif at the active site; Cyc-domains have an alternative, conserved DxxxxD active site motif, mutation of the aspartate residues in this motif can abolish or diminish condensation activity. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and Cyc-domains. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain.
Pssm-ID: 380458 [Multi-domain] Cd Length: 423 Bit Score: 60.19 E-value: 2.16e-08
Porcine testicular carbonyl reductase (PTCR)-like, classical (c) SDRs; PTCR is a classical SDR ...
2181-2275
3.06e-08
Porcine testicular carbonyl reductase (PTCR)-like, classical (c) SDRs; PTCR is a classical SDR which catalyzes the NADPH-dependent reduction of ketones on steroids and prostaglandins. Unlike most SDRs, PTCR functions as a monomer. This subgroup also includes human carbonyl reductase 1 (CBR1) and CBR3. CBR1 is an NADPH-dependent SDR with broad substrate specificity and may be responsible for the in vivo reduction of quinones, prostaglandins, and other carbonyl-containing compounds. In addition it includes poppy NADPH-dependent salutaridine reductase which catalyzes the stereospecific reduction of salutaridine to 7(S)-salutaridinol in the biosynthesis of morphine, and Arabidopsis SDR1,a menthone reductase, which catalyzes the reduction of menthone to neomenthol, a compound with antimicrobial activity; SDR1 can also carry out neomenthol oxidation. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187585 [Multi-domain] Cd Length: 225 Bit Score: 57.63 E-value: 3.06e-08
Chain-length factor (CLF) is a factor required for polyketide chain initiation of aromatic ...
1092-1472
3.34e-08
Chain-length factor (CLF) is a factor required for polyketide chain initiation of aromatic antibiotic-producing polyketide synthases (PKSs) of filamentous bacteria. CLFs have been shown to have decarboxylase activity towards malonyl-acyl carrier protein (ACP). CLFs are similar to other elongation ketosynthase domains, but their active site cysteine is replaced by a conserved glutamine.
Pssm-ID: 238428 [Multi-domain] Cd Length: 399 Bit Score: 59.68 E-value: 3.34e-08
17hydroxysteroid dehydrogenase type 10 (HSD10)-like, classical (c) SDRs; HSD10, also known as ...
2179-2286
3.44e-08
17hydroxysteroid dehydrogenase type 10 (HSD10)-like, classical (c) SDRs; HSD10, also known as amyloid-peptide-binding alcohol dehydrogenase (ABAD), was previously identified as a L-3-hydroxyacyl-CoA dehydrogenase, HADH2. In fatty acid metabolism, HADH2 catalyzes the third step of beta-oxidation, the conversion of a hydroxyl to a keto group in the NAD-dependent oxidation of L-3-hydroxyacyl CoA. In addition to alcohol dehydrogenase and HADH2 activites, HSD10 has steroid dehydrogenase activity. Although the mechanism is unclear, HSD10 is implicated in the formation of amyloid beta-petide in the brain (which is linked to the development of Alzheimer's disease). Although HSD10 is normally concentrated in the mitochondria, in the presence of amyloid beta-peptide it translocates into the plasma membrane, where it's action may generate cytotoxic aldehydes and may lower estrogen levels through its use of 17-beta-estradiol as a substrate. HSD10 is a member of the SRD family, but differs from other SDRs by the presence of two insertions of unknown function. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187629 [Multi-domain] Cd Length: 252 Bit Score: 58.07 E-value: 3.44e-08
classical (c) SDR, subgroup 8; This subgroup has a fairly well conserved active site tetrad ...
2181-2270
4.20e-08
classical (c) SDR, subgroup 8; This subgroup has a fairly well conserved active site tetrad and domain size of the classical SDRs, but has an atypical NAD-binding motif ([ST]G[GA]XGXXG). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187635 [Multi-domain] Cd Length: 250 Bit Score: 57.73 E-value: 4.20e-08
insect type alcohol dehydrogenase (ADH)-like, classical (c) SDRs; This subgroup contains ...
2181-2297
9.07e-08
insect type alcohol dehydrogenase (ADH)-like, classical (c) SDRs; This subgroup contains insect type ADH, and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) type I; these proteins are classical SDRs. ADH catalyzes the NAD+-dependent oxidation of alcohols to aldehydes/ketones. This subgroup is distinct from the zinc-dependent alcohol dehydrogenases of the medium chain dehydrogenase/reductase family, and evolved in fruit flies to allow the digestion of fermenting fruit. 15-PGDH catalyzes the NAD-dependent interconversion of (5Z,13E)-(15S)-11alpha,15-dihydroxy-9-oxoprost-13-enoate and (5Z,13E)-11alpha-hydroxy-9,15-dioxoprost-13-enoate, and has a typical SDR glycine-rich NAD-binding motif, which is not fully present in ADH. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187584 [Multi-domain] Cd Length: 244 Bit Score: 56.54 E-value: 9.07e-08
3beta17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs; This subgroup includes ...
3682-3829
9.23e-08
3beta17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs; This subgroup includes members identified as 3beta17beta hydroxysteroid dehydrogenase, 20beta hydroxysteroid dehydrogenase, and R-alcohol dehydrogenase. These proteins exhibit the canonical active site tetrad and glycine rich NAD(P)-binding motif of the classical SDRs. 17beta-dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens, and include members of the SDR family. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187600 [Multi-domain] Cd Length: 247 Bit Score: 56.62 E-value: 9.23e-08
putative beta-ketoacyl acyl carrier protein [ACP] reductase (BKR), subgroup 1, classical (c) SDR; This subgroup includes Escherichia coli CFT073 FabG. The Escherichai coli K12 BKR, FabG, belongs to a different subgroup. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet) NAD(P)(H) binding region and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H) binding pattern: TGxxxGxG in classical SDRs. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P) binding motif and an altered active site motif (YXXXN). Fungal type type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P) binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr-151 and Lys-155, and well as Asn-111 (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187596 [Multi-domain] Cd Length: 255 Bit Score: 56.70 E-value: 9.69e-08
human 17-beta-hydroxysteroid dehydrogenase XI-like, classical (c) SDRs; 17-beta-hydroxysteroid ...
2183-2271
9.86e-08
human 17-beta-hydroxysteroid dehydrogenase XI-like, classical (c) SDRs; 17-beta-hydroxysteroid dehydrogenases (17betaHSD) are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. 17betaHSD type XI, a classical SDR, preferentially converts 3alpha-Adiol to androsterone but not numerous other tested steroids. This subgroup of classical SDRs also includes members identified as retinol dehydrogenases, which convert retinol to retinal, a property that overlaps with 17betaHSD activity. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187598 [Multi-domain] Cd Length: 243 Bit Score: 56.48 E-value: 9.86e-08
3beta17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs; This subgroup includes ...
2178-2270
1.66e-07
3beta17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs; This subgroup includes members identified as 3beta17beta hydroxysteroid dehydrogenase, 20beta hydroxysteroid dehydrogenase, and R-alcohol dehydrogenase. These proteins exhibit the canonical active site tetrad and glycine rich NAD(P)-binding motif of the classical SDRs. 17beta-dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens, and include members of the SDR family. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187600 [Multi-domain] Cd Length: 247 Bit Score: 55.85 E-value: 1.66e-07
classical (c) SDR, subgroup 5; These proteins are members of the classical SDR family, with a ...
3684-3839
2.72e-07
classical (c) SDR, subgroup 5; These proteins are members of the classical SDR family, with a canonical active site tetrad and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187604 [Multi-domain] Cd Length: 249 Bit Score: 55.36 E-value: 2.72e-07
3-ketodihydrosphingosine reductase (KDSR) and related proteins, classical (c) SDR; These ...
3684-3830
3.65e-07
3-ketodihydrosphingosine reductase (KDSR) and related proteins, classical (c) SDR; These proteins include members identified as KDSR, ribitol type dehydrogenase, and others. The group shows strong conservation of the active site tetrad and glycine rich NAD-binding motif of the classical SDRs. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187643 [Multi-domain] Cd Length: 239 Bit Score: 54.57 E-value: 3.65e-07
Escherichia coli K-12 YCIK-like, classical (c) SDRs; Escherichia coli K-12 YCIK and related ...
2179-2273
4.54e-07
Escherichia coli K-12 YCIK-like, classical (c) SDRs; Escherichia coli K-12 YCIK and related proteins have a canonical classical SDR nucleotide-binding motif and active site tetrad. They are predicted oxoacyl-(acyl carrier protein/ACP) reductases. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187599 [Multi-domain] Cd Length: 236 Bit Score: 54.50 E-value: 4.54e-07
17hydroxysteroid dehydrogenase type 10 (HSD10)-like, classical (c) SDRs; HSD10, also known as ...
3682-3830
5.26e-07
17hydroxysteroid dehydrogenase type 10 (HSD10)-like, classical (c) SDRs; HSD10, also known as amyloid-peptide-binding alcohol dehydrogenase (ABAD), was previously identified as a L-3-hydroxyacyl-CoA dehydrogenase, HADH2. In fatty acid metabolism, HADH2 catalyzes the third step of beta-oxidation, the conversion of a hydroxyl to a keto group in the NAD-dependent oxidation of L-3-hydroxyacyl CoA. In addition to alcohol dehydrogenase and HADH2 activites, HSD10 has steroid dehydrogenase activity. Although the mechanism is unclear, HSD10 is implicated in the formation of amyloid beta-petide in the brain (which is linked to the development of Alzheimer's disease). Although HSD10 is normally concentrated in the mitochondria, in the presence of amyloid beta-peptide it translocates into the plasma membrane, where it's action may generate cytotoxic aldehydes and may lower estrogen levels through its use of 17-beta-estradiol as a substrate. HSD10 is a member of the SRD family, but differs from other SDRs by the presence of two insertions of unknown function. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187629 [Multi-domain] Cd Length: 252 Bit Score: 54.60 E-value: 5.26e-07
human 17-beta-hydroxysteroid dehydrogenase XI-like, classical (c) SDRs; 17-beta-hydroxysteroid ...
3684-3841
6.64e-07
human 17-beta-hydroxysteroid dehydrogenase XI-like, classical (c) SDRs; 17-beta-hydroxysteroid dehydrogenases (17betaHSD) are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. 17betaHSD type XI, a classical SDR, preferentially converts 3alpha-Adiol to androsterone but not numerous other tested steroids. This subgroup of classical SDRs also includes members identified as retinol dehydrogenases, which convert retinol to retinal, a property that overlaps with 17betaHSD activity. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187598 [Multi-domain] Cd Length: 243 Bit Score: 54.17 E-value: 6.64e-07
classical (c) SDR, subgroup 6; These proteins are members of the classical SDR family, with a ...
3684-3840
1.02e-06
classical (c) SDR, subgroup 6; These proteins are members of the classical SDR family, with a canonical active site tetrad and a fairly well conserved typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187608 [Multi-domain] Cd Length: 239 Bit Score: 53.49 E-value: 1.02e-06
AMP-binding enzyme C-terminal domain; This is a small domain that is found C terminal to ...
889-963
1.37e-06
AMP-binding enzyme C-terminal domain; This is a small domain that is found C terminal to pfam00501. It has a central beta sheet core that is flanked by alpha helices.
Pssm-ID: 463804 [Multi-domain] Cd Length: 76 Bit Score: 49.08 E-value: 1.37e-06
Porcine testicular carbonyl reductase (PTCR)-like, classical (c) SDRs; PTCR is a classical SDR ...
3682-3839
1.39e-06
Porcine testicular carbonyl reductase (PTCR)-like, classical (c) SDRs; PTCR is a classical SDR which catalyzes the NADPH-dependent reduction of ketones on steroids and prostaglandins. Unlike most SDRs, PTCR functions as a monomer. This subgroup also includes human carbonyl reductase 1 (CBR1) and CBR3. CBR1 is an NADPH-dependent SDR with broad substrate specificity and may be responsible for the in vivo reduction of quinones, prostaglandins, and other carbonyl-containing compounds. In addition it includes poppy NADPH-dependent salutaridine reductase which catalyzes the stereospecific reduction of salutaridine to 7(S)-salutaridinol in the biosynthesis of morphine, and Arabidopsis SDR1,a menthone reductase, which catalyzes the reduction of menthone to neomenthol, a compound with antimicrobial activity; SDR1 can also carry out neomenthol oxidation. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187585 [Multi-domain] Cd Length: 225 Bit Score: 52.62 E-value: 1.39e-06
gluconate 5-dehydrogenase (Ga5DH)-like, classical (c) SDRs; Ga5DH catalyzes the NADP-dependent conversion of carbon source D-gluconate and 5-keto-D-gluconate. This SDR subgroup has a classical Gly-rich NAD(P)-binding motif and a conserved active site tetrad pattern. However, it has been proposed that Arg104 (Streptococcus suis Ga5DH numbering), as well as an active site Ca2+, play a critical role in catalysis. In addition to Ga5DHs this subgroup contains Erwinia chrysanthemi KduD which is involved in pectin degradation, and is a putative 2,5-diketo-3-deoxygluconate dehydrogenase. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107,15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187605 [Multi-domain] Cd Length: 248 Bit Score: 53.13 E-value: 1.62e-06
HetN oxidoreductase-like, classical (c) SDR; This subgroup includes Anabaena sp. strain PCC ...
3682-3795
2.13e-06
HetN oxidoreductase-like, classical (c) SDR; This subgroup includes Anabaena sp. strain PCC 7120 HetN, a putative oxidoreductase involved in heterocyst differentiation, and related proteins. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 212493 [Multi-domain] Cd Length: 223 Bit Score: 52.37 E-value: 2.13e-06
d-3-hydroxybutyrate dehydrogenase (HBDH), classical (c) SDRs; DHBDH, an NAD+ -dependent enzyme, catalyzes the interconversion of D-3-hydroxybutyrate and acetoacetate. It is a classical SDR, with the canonical NAD-binding motif and active site tetrad. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187644 [Multi-domain] Cd Length: 258 Bit Score: 52.45 E-value: 2.64e-06
sepiapterin reductase (SPR)-like, classical (c) SDRs; Human SPR, a member of the SDR family, ...
3682-3840
2.74e-06
sepiapterin reductase (SPR)-like, classical (c) SDRs; Human SPR, a member of the SDR family, catalyzes the NADP-dependent reduction of sepiaptern to 7,8-dihydrobiopterin (BH2). In addition to SPRs, this subgroup also contains Bacillus cereus yueD, a benzil reductase, which catalyzes the stereospecific reduction of benzil to (S)-benzoin. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187625 [Multi-domain] Cd Length: 241 Bit Score: 52.29 E-value: 2.74e-06
carbonyl reductase sniffer-like, classical (c) SDRs; Sniffer is an NADPH-dependent carbonyl ...
3683-3841
3.12e-06
carbonyl reductase sniffer-like, classical (c) SDRs; Sniffer is an NADPH-dependent carbonyl reductase of the classical SDR family. Studies in Drosophila melanogaster implicate Sniffer in the prevention of neurodegeneration due to aging and oxidative-stress. This subgroup also includes Rhodococcus sp. AD45 IsoH, which is an NAD-dependent 1-hydroxy-2-glutathionyl-2-methyl-3-butene dehydrogenase involved in isoprene metabolism, Aspergillus nidulans StcE encoded by a gene which is part of a proposed sterigmatocystin biosynthesis gene cluster, Bacillus circulans SANK 72073 BtrF encoded by a gene found in the butirosin biosynthesis gene cluster, and Aspergillus parasiticus nor-1 involved in the biosynthesis of aflatoxins. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187586 [Multi-domain] Cd Length: 233 Bit Score: 51.91 E-value: 3.12e-06
HetN oxidoreductase-like, classical (c) SDR; This subgroup includes Anabaena sp. strain PCC ...
2181-2294
4.35e-06
HetN oxidoreductase-like, classical (c) SDR; This subgroup includes Anabaena sp. strain PCC 7120 HetN, a putative oxidoreductase involved in heterocyst differentiation, and related proteins. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 212493 [Multi-domain] Cd Length: 223 Bit Score: 51.21 E-value: 4.35e-06
iterative type I PKS product template domain; Sequences found by this model are the so-called ...
1709-1907
6.17e-06
iterative type I PKS product template domain; Sequences found by this model are the so-called product template (PT) domain of various fungal iterative type I polyketide synthases. This domain resembles pfam14765, designated polyketide synthase dehydratase by Pfam, but members of that family are primarily bacterial, where type I PKS are predominantly modular, not iterative. The dehydratase active site residues well-conserved in pfam14765 (His in the first hot dog domain, Asp in the second hot dog domain) seem well conserved in this family also.
Pssm-ID: 275325 Cd Length: 324 Bit Score: 51.85 E-value: 6.17e-06
meso-2,3-butanediol dehydrogenase-like, classical (c) SDRs; 2,3-butanediol dehydrogenases (BDHs) catalyze the NAD+ dependent conversion of 2,3-butanediol to acetonin; BDHs are classified into types according to their stereospecificity as to substrates and products. Included in this subgroup are Klebsiella pneumonia meso-BDH which catalyzes meso-2,3-butanediol to D(-)-acetonin, and Corynebacterium glutamicum L-BDH which catalyzes lX+)-2,3-butanediol to L(+)-acetonin. This subgroup is comprised of classical SDRs with the characteristic catalytic triad and NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187624 [Multi-domain] Cd Length: 257 Bit Score: 50.84 E-value: 8.40e-06
sepiapterin reductase (SPR)-like, classical (c) SDRs; Human SPR, a member of the SDR family, ...
2181-2273
8.76e-06
sepiapterin reductase (SPR)-like, classical (c) SDRs; Human SPR, a member of the SDR family, catalyzes the NADP-dependent reduction of sepiaptern to 7,8-dihydrobiopterin (BH2). In addition to SPRs, this subgroup also contains Bacillus cereus yueD, a benzil reductase, which catalyzes the stereospecific reduction of benzil to (S)-benzoin. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187625 [Multi-domain] Cd Length: 241 Bit Score: 50.75 E-value: 8.76e-06
17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs; 17beta-hydroxysteroid dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187632 [Multi-domain] Cd Length: 248 Bit Score: 50.69 E-value: 9.01e-06
classical (c) SDR, subgroup 5; These proteins are members of the classical SDR family, with a ...
2183-2298
1.05e-05
classical (c) SDR, subgroup 5; These proteins are members of the classical SDR family, with a canonical active site tetrad and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187604 [Multi-domain] Cd Length: 249 Bit Score: 50.36 E-value: 1.05e-05
classical (c) SDR, subgroup 8; This subgroup has a fairly well conserved active site tetrad ...
3682-3770
2.50e-05
classical (c) SDR, subgroup 8; This subgroup has a fairly well conserved active site tetrad and domain size of the classical SDRs, but has an atypical NAD-binding motif ([ST]G[GA]XGXXG). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187635 [Multi-domain] Cd Length: 250 Bit Score: 49.25 E-value: 2.50e-05
Short-chain dehydrogenases/reductases (SDR); SDRs are a functionally diverse family of ...
3684-3908
2.57e-05
Short-chain dehydrogenases/reductases (SDR); SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase (KR) domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187535 [Multi-domain] Cd Length: 186 Bit Score: 48.28 E-value: 2.57e-05
17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs; 17beta-hydroxysteroid dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187632 [Multi-domain] Cd Length: 248 Bit Score: 49.15 E-value: 2.69e-05
classical (c) SDR, subgroup 2; Short-chain dehydrogenases/reductases (SDRs, aka Tyrosine-dependent oxidoreductases) are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187628 [Multi-domain] Cd Length: 228 Bit Score: 48.46 E-value: 3.91e-05
meso-2,3-butanediol dehydrogenase-like, classical (c) SDRs; 2,3-butanediol dehydrogenases (BDHs) catalyze the NAD+ dependent conversion of 2,3-butanediol to acetonin; BDHs are classified into types according to their stereospecificity as to substrates and products. Included in this subgroup are Klebsiella pneumonia meso-BDH which catalyzes meso-2,3-butanediol to D(-)-acetonin, and Corynebacterium glutamicum L-BDH which catalyzes lX+)-2,3-butanediol to L(+)-acetonin. This subgroup is comprised of classical SDRs with the characteristic catalytic triad and NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187624 [Multi-domain] Cd Length: 257 Bit Score: 48.91 E-value: 4.14e-05
carbonyl reductase sniffer-like, classical (c) SDRs; Sniffer is an NADPH-dependent carbonyl ...
2182-2270
4.60e-05
carbonyl reductase sniffer-like, classical (c) SDRs; Sniffer is an NADPH-dependent carbonyl reductase of the classical SDR family. Studies in Drosophila melanogaster implicate Sniffer in the prevention of neurodegeneration due to aging and oxidative-stress. This subgroup also includes Rhodococcus sp. AD45 IsoH, which is an NAD-dependent 1-hydroxy-2-glutathionyl-2-methyl-3-butene dehydrogenase involved in isoprene metabolism, Aspergillus nidulans StcE encoded by a gene which is part of a proposed sterigmatocystin biosynthesis gene cluster, Bacillus circulans SANK 72073 BtrF encoded by a gene found in the butirosin biosynthesis gene cluster, and Aspergillus parasiticus nor-1 involved in the biosynthesis of aflatoxins. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187586 [Multi-domain] Cd Length: 233 Bit Score: 48.45 E-value: 4.60e-05
cyclohexanol reductases, including levodione reductase, classical (c) SDRs; Cyloclohexanol ...
2181-2297
9.75e-05
cyclohexanol reductases, including levodione reductase, classical (c) SDRs; Cyloclohexanol reductases,including (6R)-2,2,6-trimethyl-1,4-cyclohexanedione (levodione) reductase of Corynebacterium aquaticum, catalyze the reversible oxidoreduction of hydroxycyclohexanone derivatives. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187591 [Multi-domain] Cd Length: 257 Bit Score: 47.52 E-value: 9.75e-05
secoisolariciresinol dehydrogenase (secoisolariciresinol-DH)-like, classical (c) SDRs; Podophyllum secoisolariciresinol-DH is a homo tetrameric, classical SDR that catalyzes the NAD-dependent conversion of (-)-secoisolariciresinol to (-)-matairesinol via a (-)-lactol intermediate. (-)-Matairesinol is an intermediate to various 8'-lignans, including the cancer-preventive mammalian lignan, and those involved in vascular plant defense. This subgroup also includes rice momilactone A synthase which catalyzes the conversion of 3beta-hydroxy-9betaH-pimara-7,15-dien-19,6beta-olide into momilactone A, Arabidopsis ABA2 which during abscisic acid (ABA) biosynthesis, catalyzes the conversion of xanthoxin to abscisic aldehyde and, maize Tasselseed2 which participate in the maize sex determination pathway. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187587 [Multi-domain] Cd Length: 249 Bit Score: 46.68 E-value: 1.69e-04
insect type alcohol dehydrogenase (ADH)-like, classical (c) SDRs; This subgroup contains ...
3682-3844
1.89e-04
insect type alcohol dehydrogenase (ADH)-like, classical (c) SDRs; This subgroup contains insect type ADH, and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) type I; these proteins are classical SDRs. ADH catalyzes the NAD+-dependent oxidation of alcohols to aldehydes/ketones. This subgroup is distinct from the zinc-dependent alcohol dehydrogenases of the medium chain dehydrogenase/reductase family, and evolved in fruit flies to allow the digestion of fermenting fruit. 15-PGDH catalyzes the NAD-dependent interconversion of (5Z,13E)-(15S)-11alpha,15-dihydroxy-9-oxoprost-13-enoate and (5Z,13E)-11alpha-hydroxy-9,15-dioxoprost-13-enoate, and has a typical SDR glycine-rich NAD-binding motif, which is not fully present in ADH. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187584 [Multi-domain] Cd Length: 244 Bit Score: 46.53 E-value: 1.89e-04
3-keto steroid reductase, classical (c) SDRs; 3-keto steroid reductase (in concert with other ...
2181-2270
2.01e-04
3-keto steroid reductase, classical (c) SDRs; 3-keto steroid reductase (in concert with other enzymes) catalyzes NADP-dependent sterol C-4 demethylation, as part of steroid biosynthesis. 3-keto reductase is a classical SDR, with a well conserved canonical active site tetrad and fairly well conserved characteristic NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187645 [Multi-domain] Cd Length: 290 Bit Score: 47.00 E-value: 2.01e-04
11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-like, classical (c) SDRs; Human ...
2179-2270
2.17e-04
11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-like, classical (c) SDRs; Human 11beta_HSD1 catalyzes the NADP(H)-dependent interconversion of cortisone and cortisol. This subgroup also includes human dehydrogenase/reductase SDR family member 7C (DHRS7C) and DHRS7B. These proteins have the GxxxGxG nucleotide binding motif and S-Y-K catalytic triad characteristic of the SDRs, but have an atypical C-terminal domain that contributes to homodimerization contacts. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187593 [Multi-domain] Cd Length: 257 Bit Score: 46.43 E-value: 2.17e-04
tetrahydroxynaphthalene/trihydroxynaphthalene reductase-like, classical (c) SDRs; 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR) of Magnaporthe grisea and the related 1,3,8-trihydroxynaphthalene reductase (3HNR) are typical members of the SDR family containing the canonical glycine rich NAD(P)-binding site and active site tetrad, and function in fungal melanin biosynthesis. This subgroup also includes an SDR from Norway spruce that may function to protect against both biotic and abitoic stress. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187620 [Multi-domain] Cd Length: 243 Bit Score: 46.50 E-value: 2.24e-04
Disco-interacting protein 2 (Dip2); Dip2 proteins show sequence similarity to other members of ...
489-641
2.46e-04
Disco-interacting protein 2 (Dip2); Dip2 proteins show sequence similarity to other members of the adenylate forming enzyme family, including insect luciferase, acetyl CoA ligases and the adenylation domain of nonribosomal peptide synthetases (NRPS). However, its function may have diverged from other members of the superfamily. In mouse embryo, Dip2 homolog A plays an important role in the development of both vertebrate and invertebrate nervous systems. Dip2A appears to regulate cell growth and the arrangement of cells in organs. Biochemically, Dip2A functions as a receptor of FSTL1, an extracellular glycoprotein, and may play a role as a cardiovascular protective agent.
Pssm-ID: 341231 [Multi-domain] Cd Length: 571 Bit Score: 47.73 E-value: 2.46e-04
(3R)-hydroxyacyl-CoA dehydrogenase-like, classical(c)-like SDRs; Beta oxidation of fatty acids ...
3682-3834
3.16e-04
(3R)-hydroxyacyl-CoA dehydrogenase-like, classical(c)-like SDRs; Beta oxidation of fatty acids in eukaryotes occurs by a four-reaction cycle, that may take place in mitochondria or in peroxisomes. (3R)-hydroxyacyl-CoA dehydrogenase is part of rat peroxisomal multifunctional MFE-2, it is a member of the NAD-dependent SDRs, but contains an additional small C-terminal domain that completes the active site pocket and participates in dimerization. The atypical, additional C-terminal extension allows for more extensive dimerization contact than other SDRs. MFE-2 catalyzes the second and third reactions of the peroxisomal beta oxidation cycle. Proteins in this subgroup have a typical catalytic triad, but have a His in place of the usual upstream Asn. This subgroup also contains members identified as 17-beta-hydroxysteroid dehydrogenases, including human peroxisomal 17-beta-hydroxysteroid dehydrogenase type 4 (17beta-HSD type 4, aka MFE-2, encoded by HSD17B4 gene) which is involved in fatty acid beta-oxidation and steroid metabolism. This subgroup also includes two SDR domains of the Neurospora crassa and Saccharomyces cerevisiae multifunctional beta-oxidation protein (MFP, aka Fox2). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187611 [Multi-domain] Cd Length: 250 Bit Score: 46.16 E-value: 3.16e-04
1-cyclohexenylcarbonyl_coenzyme A_reductase (ChcA)_like, classical (c) SDRs; This subgroup ...
2183-2306
3.29e-04
1-cyclohexenylcarbonyl_coenzyme A_reductase (ChcA)_like, classical (c) SDRs; This subgroup contains classical SDR proteins, including members identified as 1-cyclohexenylcarbonyl coenzyme A reductase. ChcA of Streptomyces collinus is implicated in the final reduction step of shikimic acid to ansatrienin. ChcA shows sequence similarity to the SDR family of NAD-binding proteins, but it lacks the conserved Tyr of the characteristic catalytic site. This subgroup also contains the NADH-dependent enoyl-[acyl-carrier-protein(ACP)] reductase FabL from Bacillus subtilis. This enzyme participates in bacterial fatty acid synthesis, in type II fatty-acid synthases and catalyzes the last step in each elongation cycle. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187617 [Multi-domain] Cd Length: 242 Bit Score: 45.81 E-value: 3.29e-04
Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family ...
3683-3822
3.79e-04
Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family domains have the characteristic active site tetrad and a well-conserved NAD(P)-binding motif. This subgroup is not well characterized, its members are annotated as having a variety of putative functions. One characterized member is Pseudomonas fluorescens MupV a protein involved in the biosynthesis of Mupirocin, a polyketide-derived antibiotic. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.
Pssm-ID: 187573 [Multi-domain] Cd Length: 293 Bit Score: 46.21 E-value: 3.79e-04
putative D-mannonate oxidoreductase, classical (c) SDR; D-mannonate oxidoreductase catalyzes the NAD-dependent interconversion of D-mannonate and D-fructuronate. This subgroup includes Bacillus subtitils UxuB/YjmF, a putative D-mannonate oxidoreductase; the B. subtilis UxuB gene is part of a putative ten-gene operon (the Yjm operon) involved in hexuronate catabolism. Escherichia coli UxuB does not belong to this subgroup. This subgroup has a canonical active site tetrad and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187640 [Multi-domain] Cd Length: 271 Bit Score: 45.53 E-value: 4.64e-04
glucose 1 dehydrogenase (GlcDH), classical (c) SDRs; GlcDH, is a tetrameric member of the SDR ...
2181-2288
4.99e-04
glucose 1 dehydrogenase (GlcDH), classical (c) SDRs; GlcDH, is a tetrameric member of the SDR family, it catalyzes the NAD(P)-dependent oxidation of beta-D-glucose to D-glucono-delta-lactone. GlcDH has a typical NAD-binding site glycine-rich pattern as well as the canonical active site tetrad (YXXXK motif plus upstream Ser and Asn). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187616 [Multi-domain] Cd Length: 253 Bit Score: 45.45 E-value: 4.99e-04
tropinone reductase-I and II (TR-1, and TR-II)-like, classical (c) SDRs; This subgroup ...
2183-2283
6.32e-04
tropinone reductase-I and II (TR-1, and TR-II)-like, classical (c) SDRs; This subgroup includes TR-I and TR-II; these proteins are members of the SDR family. TRs catalyze the NADPH-dependent reductions of the 3-carbonyl group of tropinone, to a beta-hydroxyl group. TR-I and TR-II produce different stereoisomers from tropinone, TR-I produces tropine (3alpha-hydroxytropane), and TR-II, produces pseudotropine (sigma-tropine, 3beta-hydroxytropane). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187590 [Multi-domain] Cd Length: 251 Bit Score: 45.13 E-value: 6.32e-04
putative beta-ketoacyl acyl carrier protein [ACP]reductase (BKR), subgroup 2, classical (c) SDR; This subgroup includes Rhizobium sp. NGR234 FabG1. The Escherichai coli K12 BKR, FabG, belongs to a different subgroup. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187607 [Multi-domain] Cd Length: 246 Bit Score: 44.76 E-value: 8.30e-04
adenylation domain of carboxylic acid reductase (CAR); This family contains the adenylation ...
492-637
9.24e-04
adenylation domain of carboxylic acid reductase (CAR); This family contains the adenylation domain of carboxylic acid reductase enzymes (CARs), and performs an equivalent function to that of the ANL superfamily of adenylating enzymes. It takes a carboxylic acid substrate and ATP, and produces an AMP-acyl phosphoester intermediate, releasing pyrophosphate. Kinetic analysis using various substrates shows that this enzyme has a broad but similar substrate specificity, preferring electron-rich acids. This suggests that attack by the carboxylate on the alpha-phosphate of adenosine triphosphate (ATP) is the step that determines the substrate specificity and reaction kinetics. CAR is an important enzyme for use as a biocatalyst providing regiospecific route to aldehydes from their respective carboxylic acids.
Pssm-ID: 341287 [Multi-domain] Cd Length: 588 Bit Score: 45.52 E-value: 9.24e-04
Trans-2-enoyl-CoA reductase (TER) and 2,4-dienoyl-CoA reductase (DECR), atypical (a) SDR; TTER is a peroxisomal protein with a proposed role in fatty acid elongation. Fatty acid synthesis is known to occur in the both endoplasmic reticulum and mitochondria; peroxisomal TER has been proposed as an additional fatty acid elongation system, it reduces the double bond at C-2 as the last step of elongation. This system resembles the mitochondrial system in that acetyl-CoA is used as a carbon donor. TER may also function in phytol metabolism, reducting phytenoyl-CoA to phytanoyl-CoA in peroxisomes. DECR processes double bonds in fatty acids to increase their utility in fatty acid metabolism; it reduces 2,4-dienoyl-CoA to an enoyl-CoA. DECR is active in mitochondria and peroxisomes. This subgroup has the Gly-rich NAD-binding motif of the classical SDR family, but does not display strong identity to the canonical active site tetrad, and lacks the characteristic Tyr at the usual position. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187627 [Multi-domain] Cd Length: 249 Bit Score: 44.11 E-value: 1.14e-03
Trans-2-enoyl-CoA reductase (TER) and 2,4-dienoyl-CoA reductase (DECR), atypical (a) SDR; TTER is a peroxisomal protein with a proposed role in fatty acid elongation. Fatty acid synthesis is known to occur in the both endoplasmic reticulum and mitochondria; peroxisomal TER has been proposed as an additional fatty acid elongation system, it reduces the double bond at C-2 as the last step of elongation. This system resembles the mitochondrial system in that acetyl-CoA is used as a carbon donor. TER may also function in phytol metabolism, reducting phytenoyl-CoA to phytanoyl-CoA in peroxisomes. DECR processes double bonds in fatty acids to increase their utility in fatty acid metabolism; it reduces 2,4-dienoyl-CoA to an enoyl-CoA. DECR is active in mitochondria and peroxisomes. This subgroup has the Gly-rich NAD-binding motif of the classical SDR family, but does not display strong identity to the canonical active site tetrad, and lacks the characteristic Tyr at the usual position. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187627 [Multi-domain] Cd Length: 249 Bit Score: 44.11 E-value: 1.18e-03
tetrahydroxynaphthalene/trihydroxynaphthalene reductase-like, classical (c) SDRs; 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR) of Magnaporthe grisea and the related 1,3,8-trihydroxynaphthalene reductase (3HNR) are typical members of the SDR family containing the canonical glycine rich NAD(P)-binding site and active site tetrad, and function in fungal melanin biosynthesis. This subgroup also includes an SDR from Norway spruce that may function to protect against both biotic and abitoic stress. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187620 [Multi-domain] Cd Length: 243 Bit Score: 44.19 E-value: 1.18e-03
Thiolase domain associated with sterol carrier protein (SCP)-x isoform and related proteins; ...
2673-2797
1.32e-03
Thiolase domain associated with sterol carrier protein (SCP)-x isoform and related proteins; SCP-2 has multiple roles in intracellular lipid circulation and metabolism. The N-terminal presequence in the SCP-x isoform represents a peroxisomal 3-ketacyl-Coa thiolase specific for branched-chain acyl CoAs, which is proteolytically cleaved from the sterol carrier protein.
Pssm-ID: 238425 [Multi-domain] Cd Length: 375 Bit Score: 44.95 E-value: 1.32e-03
putative beta-ketoacyl acyl carrier protein [ACP] reductase (BKR), subgroup 1, classical (c) SDR; This subgroup includes Escherichia coli CFT073 FabG. The Escherichai coli K12 BKR, FabG, belongs to a different subgroup. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet) NAD(P)(H) binding region and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H) binding pattern: TGxxxGxG in classical SDRs. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P) binding motif and an altered active site motif (YXXXN). Fungal type type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P) binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr-151 and Lys-155, and well as Asn-111 (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187596 [Multi-domain] Cd Length: 255 Bit Score: 43.99 E-value: 1.36e-03
retinol dehydrogenase (retinol-DH), Light dependent Protochlorophyllide (Pchlide) OxidoReductase (LPOR) and related proteins, classical (c) SDRs; Classical SDR subgroup containing retinol-DHs, LPORs, and related proteins. Retinol is processed by a medium chain alcohol dehydrogenase followed by retinol-DHs. Pchlide reductases act in chlorophyll biosynthesis. There are distinct enzymes that catalyze Pchlide reduction in light or dark conditions. Light-dependent reduction is via an NADP-dependent SDR, LPOR. Proteins in this subfamily share the glycine-rich NAD-binding motif of the classical SDRs, have a partial match to the canonical active site tetrad, but lack the typical active site Ser. This subgroup includes the human proteins: retinol dehydrogenase -12, -13 ,and -14, dehydrogenase/reductase SDR family member (DHRS)-12 , -13 and -X (a DHRS on chromosome X), and WWOX (WW domain-containing oxidoreductase), as well as a Neurospora crassa SDR encoded by the blue light inducible bli-4 gene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 212492 [Multi-domain] Cd Length: 269 Bit Score: 44.14 E-value: 1.50e-03
Polyketide ketoreductase, classical (c) SDR; Polyketide ketoreductase (KR) is a classical SDR ...
2178-2269
1.77e-03
Polyketide ketoreductase, classical (c) SDR; Polyketide ketoreductase (KR) is a classical SDR with a characteristic NAD-binding pattern and active site tetrad. Aromatic polyketides include various aromatic compounds of pharmaceutical interest. Polyketide KR, part of the type II polyketide synthase (PKS) complex, is comprised of stand-alone domains that resemble the domains found in fatty acid synthase and multidomain type I PKS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187649 [Multi-domain] Cd Length: 258 Bit Score: 43.68 E-value: 1.77e-03
(3R)-hydroxyacyl-CoA dehydrogenase-like, classical(c)-like SDRs; Beta oxidation of fatty acids ...
2178-2331
1.98e-03
(3R)-hydroxyacyl-CoA dehydrogenase-like, classical(c)-like SDRs; Beta oxidation of fatty acids in eukaryotes occurs by a four-reaction cycle, that may take place in mitochondria or in peroxisomes. (3R)-hydroxyacyl-CoA dehydrogenase is part of rat peroxisomal multifunctional MFE-2, it is a member of the NAD-dependent SDRs, but contains an additional small C-terminal domain that completes the active site pocket and participates in dimerization. The atypical, additional C-terminal extension allows for more extensive dimerization contact than other SDRs. MFE-2 catalyzes the second and third reactions of the peroxisomal beta oxidation cycle. Proteins in this subgroup have a typical catalytic triad, but have a His in place of the usual upstream Asn. This subgroup also contains members identified as 17-beta-hydroxysteroid dehydrogenases, including human peroxisomal 17-beta-hydroxysteroid dehydrogenase type 4 (17beta-HSD type 4, aka MFE-2, encoded by HSD17B4 gene) which is involved in fatty acid beta-oxidation and steroid metabolism. This subgroup also includes two SDR domains of the Neurospora crassa and Saccharomyces cerevisiae multifunctional beta-oxidation protein (MFP, aka Fox2). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187611 [Multi-domain] Cd Length: 250 Bit Score: 43.46 E-value: 1.98e-03
clavulanic acid dehydrogenase (CAD), classical (c) SDR; CAD catalyzes the NADP-dependent reduction of clavulanate-9-aldehyde to clavulanic acid, a beta-lactamase inhibitor. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187639 [Multi-domain] Cd Length: 243 Bit Score: 43.30 E-value: 2.09e-03
Thiolase domain associated with sterol carrier protein (SCP)-x isoform and related proteins; ...
1229-1289
2.69e-03
Thiolase domain associated with sterol carrier protein (SCP)-x isoform and related proteins; SCP-2 has multiple roles in intracellular lipid circulation and metabolism. The N-terminal presequence in the SCP-x isoform represents a peroxisomal 3-ketacyl-Coa thiolase specific for branched-chain acyl CoAs, which is proteolytically cleaved from the sterol carrier protein.
Pssm-ID: 238425 [Multi-domain] Cd Length: 375 Bit Score: 43.79 E-value: 2.69e-03
Thiolase domain associated with sterol carrier protein (SCP)-x isoform and related proteins; ...
4214-4275
2.88e-03
Thiolase domain associated with sterol carrier protein (SCP)-x isoform and related proteins; SCP-2 has multiple roles in intracellular lipid circulation and metabolism. The N-terminal presequence in the SCP-x isoform represents a peroxisomal 3-ketacyl-Coa thiolase specific for branched-chain acyl CoAs, which is proteolytically cleaved from the sterol carrier protein.
Pssm-ID: 238425 [Multi-domain] Cd Length: 375 Bit Score: 43.79 E-value: 2.88e-03
rhamnulose-1-phosphate aldolase/alcohol dehydrogenase, classical (c) SDRs; This family has ...
2181-2289
3.44e-03
rhamnulose-1-phosphate aldolase/alcohol dehydrogenase, classical (c) SDRs; This family has bifunctional proteins with an N-terminal aldolase and a C-terminal classical SDR domain. One member is identified as a rhamnulose-1-phosphate aldolase/alcohol dehydrogenase. The SDR domain has a canonical SDR glycine-rich NAD(P) binding motif and a match to the characteristic active site triad. However, it lacks an upstream active site Asn typical of SDRs. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187647 [Multi-domain] Cd Length: 250 Bit Score: 42.76 E-value: 3.44e-03
tropinone reductase-I and II (TR-1, and TR-II)-like, classical (c) SDRs; This subgroup ...
3677-3837
3.85e-03
tropinone reductase-I and II (TR-1, and TR-II)-like, classical (c) SDRs; This subgroup includes TR-I and TR-II; these proteins are members of the SDR family. TRs catalyze the NADPH-dependent reductions of the 3-carbonyl group of tropinone, to a beta-hydroxyl group. TR-I and TR-II produce different stereoisomers from tropinone, TR-I produces tropine (3alpha-hydroxytropane), and TR-II, produces pseudotropine (sigma-tropine, 3beta-hydroxytropane). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187590 [Multi-domain] Cd Length: 251 Bit Score: 42.82 E-value: 3.85e-03
d-3-hydroxybutyrate dehydrogenase (HBDH), classical (c) SDRs; DHBDH, an NAD+ -dependent enzyme, catalyzes the interconversion of D-3-hydroxybutyrate and acetoacetate. It is a classical SDR, with the canonical NAD-binding motif and active site tetrad. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187644 [Multi-domain] Cd Length: 258 Bit Score: 42.82 E-value: 4.02e-03
classical (c) SDR, subgroup 3; These proteins are members of the classical SDR family, with a ...
2180-2270
4.28e-03
classical (c) SDR, subgroup 3; These proteins are members of the classical SDR family, with a canonical active site triad (and also active site Asn) and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187618 [Multi-domain] Cd Length: 233 Bit Score: 42.37 E-value: 4.28e-03
putative beta-ketoacyl acyl carrier protein [ACP] reductase (BKR)-like, SDR; This subgroup ...
3682-3835
4.64e-03
putative beta-ketoacyl acyl carrier protein [ACP] reductase (BKR)-like, SDR; This subgroup resembles the SDR family, but does not have a perfect match to the NAD-binding motif or the catalytic tetrad characteristic of the SDRs. It includes the SDRs, Q9HYA2 from Pseudomonas aeruginosa PAO1 and APE0912 from Aeropyrum pernix K1. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
Pssm-ID: 187602 [Multi-domain] Cd Length: 253 Bit Score: 42.26 E-value: 4.64e-03
classical (c) SDR, subgroup 11; SDRs are a functionally diverse family of oxidoreductases that ...
2179-2303
4.66e-03
classical (c) SDR, subgroup 11; SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187622 [Multi-domain] Cd Length: 253 Bit Score: 42.40 E-value: 4.66e-03
Enoyl acyl carrier protein (ACP) reductase (ENR), divergent SDR; This bacterial subgroup of ...
2182-2287
5.64e-03
Enoyl acyl carrier protein (ACP) reductase (ENR), divergent SDR; This bacterial subgroup of ENRs includes Escherichia coli ENR. ENR catalyzes the NAD(P)H-dependent reduction of enoyl-ACP in the last step of fatty acid biosynthesis. De novo fatty acid biosynthesis is catalyzed by the fatty acid synthetase complex, through the serial addition of 2-carbon subunits. In bacteria and plants,ENR catalyzes one of six synthetic steps in this process. Oilseed rape ENR, and also apparently the NADH-specific form of Escherichia coli ENR, is tetrameric. Although similar to the classical SDRs, this group does not have the canonical catalytic tetrad, nor does it have the typical Gly-rich NAD-binding pattern. Such so-called divergent SDRs have a GXXXXXSXA NAD-binding motif and a YXXMXXXK (or YXXXMXXXK) active site motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187630 [Multi-domain] Cd Length: 250 Bit Score: 42.18 E-value: 5.64e-03
human Mgc4172-like, classical (c) SDRs; Human Mgc4172-like proteins, putative SDRs. These ...
3677-3807
6.97e-03
human Mgc4172-like, classical (c) SDRs; Human Mgc4172-like proteins, putative SDRs. These proteins are members of the SDR family, with a canonical active site tetrad and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187601 [Multi-domain] Cd Length: 250 Bit Score: 41.73 E-value: 6.97e-03
human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, ...
3682-3822
7.46e-03
human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, extended (e) SDRs; This extended-SDR subgroup includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7], and related proteins. These proteins have the characteristic active site tetrad and NAD(P)-binding motif of extended SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. C(27) 3beta-HSD is a membrane-bound enzyme of the endoplasmic reticulum, it catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.
Pssm-ID: 187671 [Multi-domain] Cd Length: 354 Bit Score: 42.49 E-value: 7.46e-03
rhamnulose-1-phosphate aldolase/alcohol dehydrogenase, classical (c) SDRs; This family has ...
3682-3785
7.78e-03
rhamnulose-1-phosphate aldolase/alcohol dehydrogenase, classical (c) SDRs; This family has bifunctional proteins with an N-terminal aldolase and a C-terminal classical SDR domain. One member is identified as a rhamnulose-1-phosphate aldolase/alcohol dehydrogenase. The SDR domain has a canonical SDR glycine-rich NAD(P) binding motif and a match to the characteristic active site triad. However, it lacks an upstream active site Asn typical of SDRs. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
Pssm-ID: 187647 [Multi-domain] Cd Length: 250 Bit Score: 41.61 E-value: 7.78e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options