semaphorin, containing Sema, PSI, and Ig domains, is a regulatory molecule that functions in the development of the nervous system and in axonal guidance; similar to Caenorhabditis briggsae semaphorin-2A
The Sema domain, a protein interacting module, of semaphorins and plexins; Both semaphorins ...
1-396
0e+00
The Sema domain, a protein interacting module, of semaphorins and plexins; Both semaphorins and plexins have a Sema domain on their N-termini. Plexins function as receptors for the semaphorins. Evolutionarily, plexins may be the ancestor of semaphorins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems, and cancer. Semaphorins can be divided into 7 classes. Vertebrates have members in classes 3-7, whereas classes 1 and 2 are known only in invertebrates. Class 2 and 3 semaphorins are secreted; classes 1 and 4 through 6 are transmembrane proteins; and class 7 is membrane associated via glycosylphosphatidylinositol (GPI) linkage. Plexins are a large family of transmembrane proteins, which are divided into four types (A-D) according to sequence similarity. In vertebrates, type A plexins serve as co-receptors for neuropilins to mediate the signalling of class 3 semaphorins. Plexins serve as direct receptors for several other members of the semaphorin family: class 6 semaphorins signal through type A plexins and class 4 semaphorins through type B plexins. This family also includes the MET and RON receptor tyrosine kinases. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves to recognize and bind receptors.
The actual alignment was detected with superfamily member cd11256:
Pssm-ID: 472829 [Multi-domain] Cd Length: 447 Bit Score: 773.70 E-value: 0e+00
Plexin repeat; A cysteine rich repeat found in several different extracellular receptors. The ...
397-441
7.83e-10
Plexin repeat; A cysteine rich repeat found in several different extracellular receptors. The function of the repeat is unknown. Three copies of the repeat are found Plexin. Two copies of the repeat are found in mahogany protein. A related C. elegans protein contains four copies of the repeat. The Met receptor contains a single copy of the repeat. The Pfam alignment shows 6 conserved cysteine residues that may form three conserved disulphide bridges, whereas some members show 8 conserved cysteines. The pattern of conservation suggests that cysteines 5 and 7 (that are not absolutely conserved) form a disulphide bridge (Personal observation. A Bateman).
:
Pssm-ID: 396154 [Multi-domain] Cd Length: 52 Bit Score: 54.64 E-value: 7.83e-10
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ...
467-539
5.51e-08
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand.
The actual alignment was detected with superfamily member cd05872:
Pssm-ID: 472250 Cd Length: 86 Bit Score: 50.52 E-value: 5.51e-08
The Sema domain, a protein interacting module, of semaphorin 4A (Sema4A); Sema4A is expressed ...
1-396
0e+00
The Sema domain, a protein interacting module, of semaphorin 4A (Sema4A); Sema4A is expressed in immune cells and is thus termed an "immune semaphorin". It plays critical roles in T cell-DC interactions in the immune response. It has been reported to enhance activation and differentiation of T cells in vitro and generation of antigen-specific T cells in vivo. The function of Sema4A in the immune response implicates its role in infectious and noninfectious diseases. Sema4A exerts its function through three receptors, namely Plexin B, Plexin D1, and Tim-2. Sema4A belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. TThe Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200517 [Multi-domain] Cd Length: 447 Bit Score: 773.70 E-value: 0e+00
Sema domain; The Sema domain occurs in semaphorins, which are a large family of secreted and ...
205-375
9.71e-67
Sema domain; The Sema domain occurs in semaphorins, which are a large family of secreted and transmembrane proteins, some of which function as repellent signals during axon guidance. Sema domains also occur in the hepatocyte growth factor receptor and Swiss:P51805
Pssm-ID: 460197 [Multi-domain] Cd Length: 180 Bit Score: 216.75 E-value: 9.71e-67
Plexin repeat; A cysteine rich repeat found in several different extracellular receptors. The ...
397-441
7.83e-10
Plexin repeat; A cysteine rich repeat found in several different extracellular receptors. The function of the repeat is unknown. Three copies of the repeat are found Plexin. Two copies of the repeat are found in mahogany protein. A related C. elegans protein contains four copies of the repeat. The Met receptor contains a single copy of the repeat. The Pfam alignment shows 6 conserved cysteine residues that may form three conserved disulphide bridges, whereas some members show 8 conserved cysteines. The pattern of conservation suggests that cysteines 5 and 7 (that are not absolutely conserved) form a disulphide bridge (Personal observation. A Bateman).
Pssm-ID: 396154 [Multi-domain] Cd Length: 52 Bit Score: 54.64 E-value: 7.83e-10
Immunoglobulin (Ig)-like domain of the class IV semaphorin Sema4B; The members here are ...
467-539
5.51e-08
Immunoglobulin (Ig)-like domain of the class IV semaphorin Sema4B; The members here are composed of the immunoglobulin (Ig)-like domain of Sema4B and similar proteins. Sema4B is a Class IV semaphorin. Semaphorins are classified based on structural features additional to the Sema domain. Sema4B has extracellular Sema and Ig domains, a transmembrane domain, and a short cytoplasmic domain. Sema4B has been shown to preferentially regulate the development of the postsynaptic specialization at the glutamatergic synapses. This cytoplasmic domain includes a PDZ-binding motif upon which the synaptic localization of Sem4B is dependent. Sema4B is a ligand of CLCP1. CLCP1 was identified in an expression profiling analysis, which compared a highly metastic lung cancer subline with its low metastic parental line. Sema4B was shown to promote CLCP1 endocytosis and their interaction is a potential target for therapeutic intervention of metastasis.
Pssm-ID: 409456 Cd Length: 86 Bit Score: 50.52 E-value: 5.51e-08
The Sema domain, a protein interacting module, of semaphorin 4A (Sema4A); Sema4A is expressed ...
1-396
0e+00
The Sema domain, a protein interacting module, of semaphorin 4A (Sema4A); Sema4A is expressed in immune cells and is thus termed an "immune semaphorin". It plays critical roles in T cell-DC interactions in the immune response. It has been reported to enhance activation and differentiation of T cells in vitro and generation of antigen-specific T cells in vivo. The function of Sema4A in the immune response implicates its role in infectious and noninfectious diseases. Sema4A exerts its function through three receptors, namely Plexin B, Plexin D1, and Tim-2. Sema4A belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. TThe Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200517 [Multi-domain] Cd Length: 447 Bit Score: 773.70 E-value: 0e+00
The Sema domain, a protein interacting module, of class 4 semaphorins (Sema4); Class 4 ...
1-396
0e+00
The Sema domain, a protein interacting module, of class 4 semaphorins (Sema4); Class 4 semaphorins (Sema4s) are transmembrane regulator molecules involved in the development of the nervous system, immune response, cytoskeletal organization, angiogenesis, and cell-cell interactions. There are 7 distinct subfamilies in class 4 semaphorins, named 4A to 4G. Several class 4 subfamilies play important roles in the immune system and are called "immune semaphorins". Sema4A plays critical roles in T cell-DC interactions in the immune response. Sema4D/CD100, expressed by lymphocytes, promotes the aggregation and survival of B lymphocytes and inhibits cytokine-induced migration of immune cells in vitro. It is required for normal activation of B and T lymphocytes. Sema4B negatively regulates basophil functions through T cell-basophil contacts and significantly inhibits IL-4 and IL-6 production from basophils in response to various stimuli, including IL-3 and papain. Sema4s not only influence the activation state of cells but also modulate their migration and survival. The effects of Sema4s on nonlymphoid cells are mediated by plexin D1 and plexin Bs. The Sema4G and Sema4C genes are expressed in the developing cerebellar cortex and are involved in neural tube closure and development of cerebellar granules cells through receptor plexin B2. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200501 [Multi-domain] Cd Length: 456 Bit Score: 667.19 E-value: 0e+00
The Sema domain, a protein interacting module, of semaphorin 4B (Sema4B); Sema4B, expressed in ...
2-396
4.37e-142
The Sema domain, a protein interacting module, of semaphorin 4B (Sema4B); Sema4B, expressed in T and B cells, is an immune semaphorin. It functions as a negative regulatory of basophils through T cell-basophil contacts and it significantly inhibits IL-4 and IL-6 production from basophils in response to various stimuli, including IL-3 and papain. In addition, T cell-derived Sema4B suppresses basophil-mediated Th2 skewing and humoral memory responses. Sema4B may be also involved in lung cancer cell mobility by inducing the degradation of CLCP1 (CUB, LCCL-homology, coagulation factor V/VIII homology domains protein). Sema4B is characterized by a PDZ-binding motif at the carboxy-terminus, which mediates interaction with the post-synaptic density protein PSD-95/SAP90, which is thought to play a central role during synaptogenesis and in the structure and function of post-synaptic specializations of excitatory synapses. Sema4B belongs to class 4 transmembrane semaphorin family proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200518 [Multi-domain] Cd Length: 464 Bit Score: 422.35 E-value: 4.37e-142
The Sema domain, a protein interacting module, of semaphorins; Semaphorins are regulator ...
4-394
7.65e-124
The Sema domain, a protein interacting module, of semaphorins; Semaphorins are regulator molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. They can be divided into 7 classes. Vertebrates have members in classes 3-7, whereas classes 1 and 2 are known only in invertebrates. Class 2 and 3 semaphorins are secreted proteins; classes 1 and 4 through 6 are transmembrane proteins; and class 7 is membrane associated via glycosylphosphatidylinositol (GPI) linkage. The semaphorins exert their function through their receptors, the neuropilin and plexin families. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200496 [Multi-domain] Cd Length: 437 Bit Score: 374.44 E-value: 7.65e-124
The Sema domain, a protein interacting module, of semaphorin 4D (Sema4D, also known as CD100); ...
4-396
8.02e-118
The Sema domain, a protein interacting module, of semaphorin 4D (Sema4D, also known as CD100); Sema4D/CD100 is expressed in immune cells and plays critical roles in immune response; it is thus termed an "immune semaphorin". It is expressed by lymphocytes and promotes the aggregation and survival of B lymphocytes and inhibits cytokine-induced migration of immune cells in vitro. Sema4D/CD100 knock-out mice demonstrate that Sema4D is required for normal activation of B and T lymphocytes. Sema4D increases B-cell and DC function using either Plexin B1 or CD72 as receptors. The function of Sema4D in immune response implicates its role in infectious and noninfectious diseases. Sema4D belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200520 [Multi-domain] Cd Length: 471 Bit Score: 360.33 E-value: 8.02e-118
The Sema domain, a protein interacting module, of semaphorin 4C (Sema4C); Sema4C acts as a ...
1-385
4.91e-115
The Sema domain, a protein interacting module, of semaphorin 4C (Sema4C); Sema4C acts as a Plexin B2 ligand to regulate the development of cerebellar granule cells and to modulate ureteric branching in the developing kidney. The binding of Sema4C to Plexin B2 results the phosphorylation of downstream regulator ErbB-2 and the plexin protein itself. The cytoplasmic region of Sema4C binds a neurite-outgrowth-related protein SFAP75, suggesting that Sema4C may also play a role in neural function. Sema4C belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200519 [Multi-domain] Cd Length: 458 Bit Score: 352.57 E-value: 4.91e-115
The Sema domain, a protein interacting module, of semaphorin 4G (Sema4G); The Sema4G and ...
2-394
8.96e-114
The Sema domain, a protein interacting module, of semaphorin 4G (Sema4G); The Sema4G and Sema4C genes are expressed in the developing cerebellar cortex. Sema4G and Sema4C proteins specifically bind to Plexin B2 expressed in the cerebellar granule cells. Sema4G and Sema4C are involved in neural tube closure and cerebellar granule cell development through Plexin B2.Sema4G belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200523 [Multi-domain] Cd Length: 457 Bit Score: 349.06 E-value: 8.96e-114
The Sema domain, a protein interacting module, of semaphorin 4E (Sema4E); Sema4E is expressed ...
1-394
6.98e-107
The Sema domain, a protein interacting module, of semaphorin 4E (Sema4E); Sema4E is expressed in the epithelial cells that line the pharyngeal arches in zebrafish. It may act as a guidance molecule to restrict the branchiomotor axons to the mesenchymal cells. Gain-of-function and loss-of-function studies demonstrate that Sema4E is essential for the guidance of facial axons from the hindbrain into their pharyngeal arch targets and is sufficient for guidance of gill motor axons. Sema4E guides facial motor axons by a repulsive action. Sema4E belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200521 [Multi-domain] Cd Length: 456 Bit Score: 331.49 E-value: 6.98e-107
The Sema domain, a protein interacting module, of semaphorin 4F (Sema4F); Sema4F plays role in ...
2-394
1.12e-105
The Sema domain, a protein interacting module, of semaphorin 4F (Sema4F); Sema4F plays role in heterotypic cell-cell contacts and controls cell proliferation and suppresses tumorigenesis. In neurofibromatosis type 1 (NF1) patients, reduced Sema4F level disrupts Schwann cell/axonal interactions. Experiments using a yeast two-hybrid system show that the extreme C-terminus of Sema4F interacts with the PDZ domains of post-synaptic density protein SAP90/PSD-95, indicating possible functional involvement of Semas4F at glutamatergic synapses. Recent work also suggests a role for Sema4F in the injury response of intramedullary axotomized motoneuron. Sema4F belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulator molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200522 [Multi-domain] Cd Length: 460 Bit Score: 328.38 E-value: 1.12e-105
The Sema domain, a protein interacting module, of class 3 semaphorins; Class 3 semaphorins ...
2-398
1.12e-102
The Sema domain, a protein interacting module, of class 3 semaphorins; Class 3 semaphorins (Sema3s) are secreted regulator molecules involved in the development of the nervous system, vasculogenesis, angiogenesis,and tumorigenesis. There are 7 distinct subfamilies named Sema3A to 3G. Sema3s function as repellent signals during axon guidance by repelling neurons away from the source of Sema3s. However, Sema3s that are secreted by tumor cells play an inhibitory role in tumor growth and angiogenesis (specifically Sema3B and Sema3F). Sema3s functions by forming complexes with neuropilins and A-type plexins, where neuropilins serve as the ligand binding moiety and the plexins function as signal transduction component. Sema3s primarily inhibit the cell motility and migration of tumor and endothelial cells by inducing collapse of the actin cytoskeleton via neuropilins and plexins. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200500 [Multi-domain] Cd Length: 471 Bit Score: 320.85 E-value: 1.12e-102
The Sema domain, a protein interacting module, of semaphorin 1A (Sema1A); Sema1A is a ...
2-398
3.41e-92
The Sema domain, a protein interacting module, of semaphorin 1A (Sema1A); Sema1A is a transmembrane protein. It has been shown to mediate the defasciculation of motor axon bundles at specific choice points. Sema1A binds to its receptor plexin A (PlexA), which in turn triggers downstream signaling events involving the receptor tyrosine kinase Otk, the evolutionarily conserved flavoprotein monooxygenase molecule interacting with CasL (MICAL), and the A kinase anchoring protein Nervy, leading to repulsive growth-cone response. Sema1A has also been shown to be involved in synaptic formation. It is a member of the semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200498 [Multi-domain] Cd Length: 446 Bit Score: 292.70 E-value: 3.41e-92
The Sema domain, a protein interacting module, of semaphorin 3F (Sema3F); Sema3F is ...
1-398
1.89e-89
The Sema domain, a protein interacting module, of semaphorin 3F (Sema3F); Sema3F is coexpressed with semaphorin3B. Both Sema3B and Sema3F proteins are candidate tumor suppressors that are down-regulated in highly metastatic tumors. Two receptor families, the neuropilins and plexins, have been implicated in mediating the actions of semaphorins 3B and 3F. Sema3F is a member of the class 3 semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200515 [Multi-domain] Cd Length: 470 Bit Score: 286.33 E-value: 1.89e-89
The Sema domain, a protein interacting module, of semaphorin 3B (Sema3B); Sema3B is ...
2-398
2.49e-89
The Sema domain, a protein interacting module, of semaphorin 3B (Sema3B); Sema3B is coexpressed with semaphorin 3F and both proteins are candidate tumor suppressors. Both Sema3B and Sema3F show high levels of expression in normal tissues and low-grade tumors but are down-regulated in highly metastatic tumors in the lung, melanoma cells, bladder carcinoma cells and prostate carcinoma. They are upregulated by estrogen and inhibit cell motility and invasiveness through decreased FAK phosphorylation and inhibition of MMP-2 and MMP-9 expression. Two receptor families, the neuropilins (NP) and plexins, have been implicated in mediating the actions of semaphorins 3B and 3F. Sema3B is a member of the class 3 semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200511 [Multi-domain] Cd Length: 471 Bit Score: 286.42 E-value: 2.49e-89
The Sema domain, a protein interacting module, of semaphorin 3D (Sema3D); Sema3D is a secreted ...
2-398
3.42e-87
The Sema domain, a protein interacting module, of semaphorin 3D (Sema3D); Sema3D is a secreted semaphorin expressed during the development of the nervous system. In zebrafish, Sema3D is expressed in the ventral tectum. It guides retinal axons along the dorsoventral axis of the tectum and guides the laterality of retinal ganglion cell (RGC) projections. Both Sema3D knockdown or its ubiquitous overexpression induced aberrant ipsilateral projections. Proper balance of Sema3D is needed at the midline for the progression of RGC axons from the chiasm midline into the contralateral optic tract. Sema3D is a member of the class 3 semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200513 [Multi-domain] Cd Length: 474 Bit Score: 280.64 E-value: 3.42e-87
The Sema domain, a protein interacting module, of class 6 semaphorins (Sema6); Class 6 ...
4-394
3.34e-86
The Sema domain, a protein interacting module, of class 6 semaphorins (Sema6); Class 6 semaphorins (Sema6s) are membrane associated semaphorins. There are 6 subfamilies named 6A to 6D. Sema6s bind to plexin As in a neuropilin independent fashion. Sema6-plexin A signaling plays important roles in lamina-specific axon projections. Interactions between plexin A2, plexin A4, and Sema6A control lamina-restricted projection of hippocampal mossy fibers. Interactions between Sema6C, Sema6D and plexin A1 shape the stereotypic trajectories of sensory axons in the spinal cord. In addition to axon targeting, Sema6D-plexin A1 interactions influence a wide range of other biological processes. During cardiac development, Sema6D attracts or repels endothelial cells in the cardiac tube depending on the expression patterns of specific coreceptors in addition to plexin A1. Furthermore, Sema6D binds a receptor complex comprising of plexin A1, Trem2 (triggering receptor expressed on myeloid cells 2), and DAP12 on dendritic cells and osteoclasts to mediate T-cell-DC interactions and to control bone development, respectively. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200503 [Multi-domain] Cd Length: 465 Bit Score: 277.86 E-value: 3.34e-86
The Sema domain, a protein interacting module, of semaphorin 3A (Sema3A); Sema3A has been ...
2-398
1.79e-85
The Sema domain, a protein interacting module, of semaphorin 3A (Sema3A); Sema3A has been reported to inhibit the growth of certain experimental tumors and to regulate endothelial cell migration and apoptosis in vitro, as well as arteriogenesis in the muscle, skin vessel permeability, and tumor angiogenesis in vivo. The function of Sema3A is mediated through receptors neuropilin-1 (NP1) and plexins, although little is known about the requirement of specific plexins in its receptor complex. It is known however that Plexin-A4 is the receptor for Sema3A in the Toll-like receptor- and sepsis-induced cytokine storm during immune response. Sema3A is a member of the Class 3 semaphorin family of secreted proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200510 [Multi-domain] Cd Length: 493 Bit Score: 276.88 E-value: 1.79e-85
The Sema domain, a protein interacting module, of semaphorin 5 (Sema5); Class 5 semaphorins ...
2-394
1.21e-81
The Sema domain, a protein interacting module, of semaphorin 5 (Sema5); Class 5 semaphorins are transmembrane glycoproteins characterized by unique thrombospondin specific repeats in the extracellular region of the protein. There are three subfamilies in class 5 semaphorins, namely 5A, 5B and 5C. Sema5A and Sema5B function as guidance cues for optic and corticofugal nerve development, respectively. Sema5A-induced cell migration requires Met signaling. Sema5C is an early development gene and may play a role in odor-guided behavior. Sema5A is also implicated in cancer. In a screening model for metastasis, the Drosophila Sema5A ortholog, Dsema-5C, has been found to be required in tumorigenicity and metastasis. Sema5A is highly expressed in human pancreatic cancer cells and is associated with tumor growth, invasion and metastasis. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200502 [Multi-domain] Cd Length: 438 Bit Score: 265.19 E-value: 1.21e-81
The Sema domain, a protein interacting module, of semaphorin 3G (Sema3G); Semaphorin 3G is ...
2-398
7.07e-78
The Sema domain, a protein interacting module, of semaphorin 3G (Sema3G); Semaphorin 3G is identified as a primarily endothelial cell- expressed class 3 semaphorin that controls endothelial and smooth muscle cell functions in autocrine and paracrine manners, respectively. It is mainly expressed in the lung and kidney, and a little in the brain. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200516 [Multi-domain] Cd Length: 474 Bit Score: 256.38 E-value: 7.07e-78
The Sema domain, a protein interacting module, of semaphorin 5B (Sema5B); Sema5B is expressed ...
4-394
1.54e-77
The Sema domain, a protein interacting module, of semaphorin 5B (Sema5B); Sema5B is expressed in regions of the basal telencephalon in rat. Sema5B is an inhibitory cue for corticofugal axons and acts as a source of repulsion for the appropriate guidance of cortical axons away from structures such as the ventricular zone as they navigate toward and within subcortical regions. In addition to its role as a guidance cue, Sema5B regulates the development and maintenance of synapse size and number in hippocampal neurons. In addition, the sema domain of Sema5B can be cleaved of the whole protein and exerts its function in regulation of synapse morphology. Sema5B belongs to the class 5 semaphorin family of proteins, which are transmembrane glycoproteins characterized by unique thrombospondin specific repeats in the extracellular region of the protein. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200525 [Multi-domain] Cd Length: 437 Bit Score: 254.14 E-value: 1.54e-77
The Sema domain, a protein interacting module, of semaphorin 5A (Sema5A); Originally, mouse ...
2-394
2.93e-74
The Sema domain, a protein interacting module, of semaphorin 5A (Sema5A); Originally, mouse Sema5A was identified as a protein that induces inhibitory responses during optic nerve development. Recent studies show that Sema5A controls innate immunity in mice. It also has been identified as a candidate gene for causing idiopathic autism in humans. Plexin B3 functions as a binding partner and receptor for Sema5A. Furthermore, Sema5A is also implicated in cancer. The role of the Drosophila Sema5A ortholog, Dsema-5C, in tumorigenicity and metastasis has been reported. Sema5A is highly expressed in human pancreatic cancer cells and is associated with tumor growth, invasion and metastasis. Sema5A belongs to class 5 semaphorin family of proteins, which are transmembrane glycoproteins characterized by unique thrombospondin specific repeats in the extracellular region of the protein. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200524 [Multi-domain] Cd Length: 436 Bit Score: 245.32 E-value: 2.93e-74
The Sema domain, a protein interacting module, of semaphorin 6B (Sema6B); Sema6B functions as ...
4-396
1.38e-72
The Sema domain, a protein interacting module, of semaphorin 6B (Sema6B); Sema6B functions as repellents for axon growth; this repulsive activity is mediated by its receptor Plexin A4. Sema6B is expressed in CA3, and repels mossy fibers in a Plexin A4 dependent manner. In human, it was shown that peroxisome proliferator-activated receptors (PPARs) and 9-cis-retinoic acid receptor (RXR) regulate human semaphorin 6B (Sema6B) gene expression. Sema6B is a member of the class 6 semaphorin family of proteins, which are membrane associated semaphorins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200528 [Multi-domain] Cd Length: 466 Bit Score: 242.05 E-value: 1.38e-72
The Sema domain, a protein interacting module, of semaphorin 3C (Sema3C); Sema3C is a secreted ...
4-398
4.41e-72
The Sema domain, a protein interacting module, of semaphorin 3C (Sema3C); Sema3C is a secreted semaphorin expressed in and adjacent to cardiac neural crest cells, and causes impaired migration of neural crest cells to the developing cardiac outflow tract, resulting in the interruption of the aortic arch and persistent truncus arteriosus. It has been proposed that Sema3C acts as a guidance molecule, regulating migration of neural crest cells that express semaphorin receptors such as plexin A2. Sema3C may also participate in tumor progression. The cleavage of Sema3C induced by ADAMTS1 promotes the migration of breast cancer cells. Sema3C is a member of the class 3 semaphorin family of secreted proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200512 [Multi-domain] Cd Length: 470 Bit Score: 240.56 E-value: 4.41e-72
The Sema domain, a protein interacting module, of semaphorin 3E (Sema3E); Sema3E is a secreted ...
2-398
1.05e-69
The Sema domain, a protein interacting module, of semaphorin 3E (Sema3E); Sema3E is a secreted molecule implicated in axonal path finding and inhibition of developmental and postischemic angiogenesis. It is also highly expressed in metastatic cancer cells. Sema3E signaling, through its high affinity functional receptor Plexin D1, drives cancer cell invasiveness and metastatic spreading. Sema3E is a member of the class 3 semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200514 [Multi-domain] Cd Length: 471 Bit Score: 234.36 E-value: 1.05e-69
The Sema domain, a protein interacting module, of semaphorin 6D (Sema6D); Sema6D is expressed ...
2-394
1.10e-69
The Sema domain, a protein interacting module, of semaphorin 6D (Sema6D); Sema6D is expressed predominantly in the nervous system during embryogenesis and it uses Plexin-A1 as a receptor. It displays repellent activity for dorsal root ganglion axons. Sema6D also acts as a regulator of late phase primary immune responses. In addition, Sema6D is overexpressed in gastric carcinoma, indicating that it may have an important role in the occurrence and development of the cancer. Sema6D is a member of the class 6 semaphorin family of proteins, which are membrane associated semaphorins. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200530 [Multi-domain] Cd Length: 465 Bit Score: 234.15 E-value: 1.10e-69
The Sema domain, a protein interacting module, of semaphorin 2A (Sema2A); Sema2A, a secreted ...
12-379
6.45e-67
The Sema domain, a protein interacting module, of semaphorin 2A (Sema2A); Sema2A, a secreted semaphorin, signals through its receptor plexin B (PlexB) to regulate central and peripheral axon pathfinding. In the Drosophila embryo, Sema2A secreted by oenocytes interacts with PlexB to guide sensory axons. Sema2A is a member of the semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200499 [Multi-domain] Cd Length: 452 Bit Score: 226.54 E-value: 6.45e-67
Sema domain; The Sema domain occurs in semaphorins, which are a large family of secreted and ...
205-375
9.71e-67
Sema domain; The Sema domain occurs in semaphorins, which are a large family of secreted and transmembrane proteins, some of which function as repellent signals during axon guidance. Sema domains also occur in the hepatocyte growth factor receptor and Swiss:P51805
Pssm-ID: 460197 [Multi-domain] Cd Length: 180 Bit Score: 216.75 E-value: 9.71e-67
The Sema domain, a protein interacting module, of semaphorins 6A (Sema6A); In the cerebellum, ...
2-394
1.31e-66
The Sema domain, a protein interacting module, of semaphorins 6A (Sema6A); In the cerebellum, Sema6A-plexin A2 signaling modulates granule cell migration by controlling centrosome positioning. Besides plexin A2, plexin A4 is also found to be a receptor of Sema6A. Interactions between plexin A2, plexin A4, and Sema6A control lamina-restricted projection of hippocampal mossy fibers. It is required for the clustering of boundary cap cells at the PNS/CNS interface and thus, prevents motoneurons from streaming out of the ventral spinal cord. At the dorsal root entry site, it organizes the segregation of dorsal roots. Sema6A may also be involved in axonal pathfinding processes in the periinfarct and homotopic contralateral cortex. Sema6A is a member of the class 6 semaphorin family of proteins, which are membrane associated semaphorins. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200527 [Multi-domain] Cd Length: 466 Bit Score: 226.06 E-value: 1.31e-66
The Sema domain, a protein interacting module, of semaphorin 5C (sema5C); In Drosophila, ...
3-394
6.09e-64
The Sema domain, a protein interacting module, of semaphorin 5C (sema5C); In Drosophila, Sema5C was identified as an early development gene, which is expressed in stage 2 embryos with a striped pattern emerging at later stages. Sema5c may play a role in odor-guided behavior and in tumorigenesis. Sema5C belongs to class 5 semaphorin family of proteins, which are transmembrane glycoproteins characterized by unique thrombospondin specific repeats in the extracellular region of the protein. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200526 [Multi-domain] Cd Length: 433 Bit Score: 217.73 E-value: 6.09e-64
The Sema domain, a protein interacting module, semaphorin 6E (sema6E); Sema6E is expressed ...
2-394
1.40e-60
The Sema domain, a protein interacting module, semaphorin 6E (sema6E); Sema6E is expressed predominantly in the nervous system during embryogenesis. It binds Plexin A1 and might utilize it as a receptor to repel axons of specific types during development. Sema6E acts as a repellent to dorsal root ganglion axons as well as sympathetic axons. Sema6E is a member of the class 6 semaphorin family of proteins, which are membrane associated semaphorins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200531 [Multi-domain] Cd Length: 462 Bit Score: 209.58 E-value: 1.40e-60
The Sema domain, a protein interacting module, of semaphorin 6C (Sema6C, also called ...
2-394
8.48e-56
The Sema domain, a protein interacting module, of semaphorin 6C (Sema6C, also called semaphorin Y); Sema6C is highly expressed in adult brain and skeletal muscle and it shows growth cone collapsing activity. It may play a role in the maintenance and remodelling of neuronal connections. In adult skeletal muscle, this role includes prevention of motor neuron sprouting and uncontrolled motor neuron growth. The expression of Sema6C in adult skeletal muscle is down-regulated following denervation. Sema6C is a member of the class 6 semaphorin family of proteins, which are membrane associated semaphorins. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200529 [Multi-domain] Cd Length: 465 Bit Score: 196.85 E-value: 8.48e-56
The Sema domain, a protein interacting module, of semaphorin 7A (Sema7A, also called CD108); ...
11-394
9.44e-56
The Sema domain, a protein interacting module, of semaphorin 7A (Sema7A, also called CD108); Sema7A plays regulatory roles in both immune and nervous systems. Unlike other semaphorins, which act as repulsive guidance cues, Sema7A enhances central and peripheral axon growth and is required for proper axon tract formation during embryonic development. Sema7A also plays a critical role in the negative regulation of T cell activation and function. Sema7A is a membrane-anchored member of the semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module.
Pssm-ID: 200504 [Multi-domain] Cd Length: 414 Bit Score: 195.45 E-value: 9.44e-56
The Sema domain, a protein interacting module, of semaphorins and plexins; Both semaphorins ...
4-394
7.55e-55
The Sema domain, a protein interacting module, of semaphorins and plexins; Both semaphorins and plexins have a Sema domain on their N-termini. Plexins function as receptors for the semaphorins. Evolutionarily, plexins may be the ancestor of semaphorins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems, and cancer. Semaphorins can be divided into 7 classes. Vertebrates have members in classes 3-7, whereas classes 1 and 2 are known only in invertebrates. Class 2 and 3 semaphorins are secreted; classes 1 and 4 through 6 are transmembrane proteins; and class 7 is membrane associated via glycosylphosphatidylinositol (GPI) linkage. Plexins are a large family of transmembrane proteins, which are divided into four types (A-D) according to sequence similarity. In vertebrates, type A plexins serve as co-receptors for neuropilins to mediate the signalling of class 3 semaphorins. Plexins serve as direct receptors for several other members of the semaphorin family: class 6 semaphorins signal through type A plexins and class 4 semaphorins through type B plexins. This family also includes the MET and RON receptor tyrosine kinases. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves to recognize and bind receptors.
Pssm-ID: 200495 [Multi-domain] Cd Length: 392 Bit Score: 192.03 E-value: 7.55e-55
The Sema domain, a protein interacting module, of Plexin A2; Plexin A2 serves as a receptor ...
129-424
7.45e-13
The Sema domain, a protein interacting module, of Plexin A2; Plexin A2 serves as a receptor for class 6 semaphorins. Interactions between Plexin A2, A4 and semaphorins 6A and 6B control the lamina-restricted projection of hippocampal mossy fibers. Sema6B also repels the growth of mossy fibers in a Plexin A4 dependent manner. Plexin A2 does not suppress Sema6B function. In addition, studies have shown that Plexin A2 may be related to anxiety and other psychiatric disorders. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module.
Pssm-ID: 200533 [Multi-domain] Cd Length: 515 Bit Score: 71.50 E-value: 7.45e-13
Plexin repeat; A cysteine rich repeat found in several different extracellular receptors. The ...
397-441
7.83e-10
Plexin repeat; A cysteine rich repeat found in several different extracellular receptors. The function of the repeat is unknown. Three copies of the repeat are found Plexin. Two copies of the repeat are found in mahogany protein. A related C. elegans protein contains four copies of the repeat. The Met receptor contains a single copy of the repeat. The Pfam alignment shows 6 conserved cysteine residues that may form three conserved disulphide bridges, whereas some members show 8 conserved cysteines. The pattern of conservation suggests that cysteines 5 and 7 (that are not absolutely conserved) form a disulphide bridge (Personal observation. A Bateman).
Pssm-ID: 396154 [Multi-domain] Cd Length: 52 Bit Score: 54.64 E-value: 7.83e-10
The Sema domain, a protein interacting module, of Plexins and MET-like receptor tyrosine ...
129-384
1.07e-09
The Sema domain, a protein interacting module, of Plexins and MET-like receptor tyrosine kinases; Plexins form a conserved family of transmembrane receptors for semaphorins and may be the ancestor of semaphorins. Ligand binding activates signal transduction pathways controlling axon guidance in the nervous system and other developmental processes including cell migration and morphogenesis, immune function, and tumor progression. Plexins are divided into four types (A-D) according to sequence similarity. In vertebrates, type A Plexins serve as the co-receptors for neuropilins to mediate the signalling of class 3 semaphorins except Sema3E, which signals through Plexin D1. Plexins serve as direct receptors for several other members of the semaphorin family: class 6 semaphorins signal through type A plexins and class 4 semaphorins through type B. Plexin C1 serves as the receptor of Sema7A and plays regulation roles in both immune and nervous systems. This family also includes the Met and RON receptor tyrosine kinases. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module.
Pssm-ID: 200497 [Multi-domain] Cd Length: 401 Bit Score: 60.81 E-value: 1.07e-09
The Sema domain, a protein interacting module, of Plexin B2; Plexin B2 serves as the receptor ...
129-394
1.20e-08
The Sema domain, a protein interacting module, of Plexin B2; Plexin B2 serves as the receptor of Sema4C and Sema4G. By signaling the effect of Sema4C and Sema4G, the plexin B2 receptor plays important roles in neural tube closure and cerebellar granule cell development. Mice lacking Plexin B2 demonstrated defects in closure of the neural tube and disorganization of the embryonic brain. In developing kidney, Sema4C-Plexin B2 signaling modulates ureteric branching. Plexin B2 is expressed both in the pretubular aggregates and the ureteric epithelium in the developing kidney. Deletion of Plexin B2 results in renal hypoplasia and occasional double ureters. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module.
Pssm-ID: 200537 [Multi-domain] Cd Length: 449 Bit Score: 57.86 E-value: 1.20e-08
Immunoglobulin (Ig)-like domain of the class IV semaphorin Sema4B; The members here are ...
467-539
5.51e-08
Immunoglobulin (Ig)-like domain of the class IV semaphorin Sema4B; The members here are composed of the immunoglobulin (Ig)-like domain of Sema4B and similar proteins. Sema4B is a Class IV semaphorin. Semaphorins are classified based on structural features additional to the Sema domain. Sema4B has extracellular Sema and Ig domains, a transmembrane domain, and a short cytoplasmic domain. Sema4B has been shown to preferentially regulate the development of the postsynaptic specialization at the glutamatergic synapses. This cytoplasmic domain includes a PDZ-binding motif upon which the synaptic localization of Sem4B is dependent. Sema4B is a ligand of CLCP1. CLCP1 was identified in an expression profiling analysis, which compared a highly metastic lung cancer subline with its low metastic parental line. Sema4B was shown to promote CLCP1 endocytosis and their interaction is a potential target for therapeutic intervention of metastasis.
Pssm-ID: 409456 Cd Length: 86 Bit Score: 50.52 E-value: 5.51e-08
The Sema domain, a protein interacting module, of Plexin A4; Plexin A4 forms a receptor ...
31-399
1.13e-07
The Sema domain, a protein interacting module, of Plexin A4; Plexin A4 forms a receptor complex with neuropilins (NRPs) and transduces signals for class 3 semaphorins in the nervous system. It regulates facial nerve development by functioning as a receptor for Sema3A/NRP1. Both plexins A3 and A4 are essential for normal sympathetic development. They function both cooperatively, to regulate the migration of sympathetic neurons, and differentially, to guide sympathetic axons. Plexin A4 is also expressed in lymphoid tissues and functions in the immune system. It negatively regulates T lymphocyte responses. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module.
Pssm-ID: 200535 [Multi-domain] Cd Length: 473 Bit Score: 54.57 E-value: 1.13e-07
The Sema domain, a protein interacting module, of Plexin A; Plexins serve as receptors of ...
31-394
1.87e-07
The Sema domain, a protein interacting module, of Plexin A; Plexins serve as receptors of semaphorins and may be the ancestor of semaphorins. Members of the Plexin A subfamily are receptors for Sema1s, Sema3s, and Sema6s, and they mediate diverse biological functions including axon guidance, cardiovascular development, and immune function. Guanylyl cyclase Gyc76C and Off-track kinase (OTK), a putative receptor tyrosine kinase, modulate Sema1a-Plexin A mediated axon repulsion. Sema3s do not interact directly with plexin A receptors, but instead bind Neuropilin-1 or Neuropilin-2 toactivate neuropilin-plexin A holoreceptor complexes. In contrast to Sema3s, Sema6s do not require neuropilins for plexin A binding. In the complex, plexin As serve as signal-transducing subunits. An increasing number of molecules that interact with the intracellular region of Plexin A have been identified; among them are IgCAMs (in axon guidance events) and Trem2-DAP12 (in immune responses). The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module.
Pssm-ID: 200505 [Multi-domain] Cd Length: 470 Bit Score: 54.06 E-value: 1.87e-07
The Sema domain, a protein interacting module, of Plexin A3; Plexin-A3 forms a receptor ...
115-394
1.02e-06
The Sema domain, a protein interacting module, of Plexin A3; Plexin-A3 forms a receptor complex with neuropilin-2 and transduces signals for class 3 semaphorins in the nervous system. Both plexins A3 and A4 are essential for normal sympathetic neuron development. They function cooperatively to regulate the migration of sympathetic neurons, and differentially to guide sympathetic axons. Both plexins A3 and A4 are not required for guiding neural crest precursors prior to reaching the sympathetic anlagen. Plexin A3 is a major driving force for intraspinal motor growth cone guidance. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module.
Pssm-ID: 200534 [Multi-domain] Cd Length: 469 Bit Score: 51.86 E-value: 1.02e-06
The Sema domain, a protein interacting module, of semaphorins and plexins; Both semaphorins ...
161-429
6.45e-06
The Sema domain, a protein interacting module, of semaphorins and plexins; Both semaphorins and plexins have a Sema domain on their N-termini. Plexins function as receptors for the semaphorins. Evolutionarily, plexins may be the ancestor of semaphorins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems, and cancer. Semaphorins can be divided into 7 classes. Vertebrates have members in classes 3-7, whereas classes 1 and 2 are known only in invertebrates. Class 2 and 3 semaphorins are secreted; classes 1 and 4 through 6 are transmembrane proteins; and class 7 is membrane associated via glycosylphosphatidylinositol (GPI) linkage. Plexins are a large family of transmembrane proteins, which are divided into four types (A-D) according to sequence similarity. In vertebrates, type A plexins serve as co-receptors for neuropilins to mediate the signalling of class 3 semaphorins. Plexins serve as direct receptors for several other members of the semaphorin family: class 6 semaphorins signal through type A plexins and class 4 semaphorins through type B plexins. This family also includes the MET and RON receptor tyrosine kinases. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves to recognize and bind receptors.
Pssm-ID: 200495 [Multi-domain] Cd Length: 392 Bit Score: 49.13 E-value: 6.45e-06
The Sema domain, a protein interacting module, of Plexin B; Plexins, which contain semaphorin ...
104-394
7.29e-06
The Sema domain, a protein interacting module, of Plexin B; Plexins, which contain semaphorin domains, function as receptors of semaphorins and may be the ancestors of semaphorins. There are three members of the Plexin B subfamily, namely B1, B2 and B3. Plexins B1, B2 and B3 are receptors for Sema4D, Sema4C and Sema4G, and Sema5A, respectively. The activation of plexin B1 by Sema4D produces an acute collapse of axonal growth cones in hippocampal and retinal neurons over the early stages of neurite outgrowth and promotes branching and complexity. By signaling the effect of Sema4C and Sema4G, the plexin B2 receptor is critically involved in neural tube closure and cerebellar granule cell development. Plexin B3, the receptor of Sema5A, is a highly potent stimulator of neurite outgrowth of primary murine cerebellar neurons. Plexin B3 has been linked to verbal performance and white matter volume in human brain. Small GTPases play important roles in plexin B signaling. Plexin B1 activates Rho through Rho-specific guanine nucleotide exchange factors, leading to neurite retraction. Plexin B1 possesses an intrinsic GTPase-activating protein activity for R-Ras and induces growth cone collapse through R-Ras inactivation. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module.
Pssm-ID: 200506 [Multi-domain] Cd Length: 440 Bit Score: 48.77 E-value: 7.29e-06
The Sema domain, a protein interacting module, of Plexin B3; Plexin B3 is the receptor of ...
104-396
2.56e-05
The Sema domain, a protein interacting module, of Plexin B3; Plexin B3 is the receptor of semaphorin 5A. It is a highly potent stimulator of neurite outgrowth of primary murine cerebellar neurons. Plexin B3 has been linked to verbal performance and white matter volume in human brain. Furthermore, Sema5A and plexin B3 have been implicated in the progression of various types of cancer. They play an important role in the invasion and metastasis of gastric carcinoma. The stimulation of plexin B3 by Sema5A binding in human glioma cells results in the inhibition of cell migration and invasion. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module.
Pssm-ID: 200538 [Multi-domain] Cd Length: 434 Bit Score: 47.11 E-value: 2.56e-05
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options