RNA fingerprint protein 35, partial [Lygosoma isodactylum]
G protein-coupled receptor family protein( domain architecture ID 705710)
G protein-coupled receptor family protein is a seven-transmembrane G protein-coupled receptor (7TM-GPCR) family protein which typically transmits an extracellular signal into the cell by the conformational rearrangement of the 7TM helices and by the subsequent binding and activation of an intracellular heterotrimeric G protein; GPCR ligands include light-sensitive compounds, odors, pheromones, hormones, and neurotransmitters
List of domain hits
Name | Accession | Description | Interval | E-value | |||
7tm_GPCRs super family | cl28897 | seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ... |
1-136 | 3.39e-59 | |||
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. The actual alignment was detected with superfamily member cd15011: Pssm-ID: 475119 Cd Length: 256 Bit Score: 186.89 E-value: 3.39e-59
|
|||||||
Name | Accession | Description | Interval | E-value | |||
7tmA_GPR149 | cd15011 | G protein-coupled receptor 149, member of the class A family of seven-transmembrane G ... |
1-136 | 3.39e-59 | |||
G protein-coupled receptor 149, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR149 is predominantly expressed in the ovary and is present at low levels in the brain and the digestive tract (stomach and small intestine). GPR149-null mice are viable and have normal maturation of the ovarian follicle, but show enhanced fertility and ovulation. Additionally, the null mice showed increased expression levels of growth differentiation factor 9 (Gdf9) in oocytes, and upregulated expression of cyclin D2, a downstream target of FSH (follicle-stimulating hormone) receptor signaling pathways that promotes granulosa cell proliferation. GPR149 is an orphan receptor with no known endogenous ligand as yet identified. Although categorized as a member of the class A GPCRs, GPR149 lacks the first two charged amino acids of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of class A receptors which is important for efficient G protein-coupled signal transduction. Moreover, the transmembrane domains and carboxyl terminus of GPR149 show low similarities to other GPCRs. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320139 Cd Length: 256 Bit Score: 186.89 E-value: 3.39e-59
|
|||||||
Name | Accession | Description | Interval | E-value | |||
7tmA_GPR149 | cd15011 | G protein-coupled receptor 149, member of the class A family of seven-transmembrane G ... |
1-136 | 3.39e-59 | |||
G protein-coupled receptor 149, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR149 is predominantly expressed in the ovary and is present at low levels in the brain and the digestive tract (stomach and small intestine). GPR149-null mice are viable and have normal maturation of the ovarian follicle, but show enhanced fertility and ovulation. Additionally, the null mice showed increased expression levels of growth differentiation factor 9 (Gdf9) in oocytes, and upregulated expression of cyclin D2, a downstream target of FSH (follicle-stimulating hormone) receptor signaling pathways that promotes granulosa cell proliferation. GPR149 is an orphan receptor with no known endogenous ligand as yet identified. Although categorized as a member of the class A GPCRs, GPR149 lacks the first two charged amino acids of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of class A receptors which is important for efficient G protein-coupled signal transduction. Moreover, the transmembrane domains and carboxyl terminus of GPR149 show low similarities to other GPCRs. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320139 Cd Length: 256 Bit Score: 186.89 E-value: 3.39e-59
|
|||||||
7tm_GPCRs | cd14964 | seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ... |
1-158 | 6.06e-06 | |||
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. Pssm-ID: 410628 [Multi-domain] Cd Length: 267 Bit Score: 45.88 E-value: 6.06e-06
|
|||||||
7tmA_TXA2_R | cd15143 | thromboxane A2 receptor, member of the class A family of seven-transmembrane G protein-coupled ... |
19-131 | 1.48e-04 | |||
thromboxane A2 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; The thromboxane receptor, also known as the prostanoid TP receptor, is a class A G-protein coupled receptor whose endogenous ligand is thromboxane A2 (TXA2). TXA2 is the major product of cyclooxygenase metabolite of arachidonic acid that found predominantly in platelets and stimulates platelet aggregation, Ca2+ influx into platelets, and also causes vasoconstriction. TXA2 has been shown to be involved in immune regulation, angiogenesis and metastasis, among many others. Activation of TXA2 receptor is coupled to G(q) and G(13), resulting in the activations of phospholipase C and RhoGEF, respectively. TXA2 receptor is widely distributed in the body and is abundantly expressed in thymus and spleen. Pssm-ID: 320271 [Multi-domain] Cd Length: 296 Bit Score: 41.73 E-value: 1.48e-04
|
|||||||
7tmA_Melanopsin-like | cd15083 | vertebrate melanopsins and related opsins, member of the class A family of seven-transmembrane ... |
54-125 | 5.71e-04 | |||
vertebrate melanopsins and related opsins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represent the Gq-coupled rhodopsin subfamily consists of melanopsins, insect photoreceptors R1-R6, invertebrate Gq opsins as well as their closely related opsins. Melanopsins (also called Opsin-4) are the primary photoreceptor molecules for non-visual functions such as the photo-entrainment of the circadian rhythm and pupillary constriction in mammals. Mammalian melanopsins are expressed only in the inner retina, whereas non-mammalian vertebrate melanopsins are localized in various extra-retinal tissues such as iris, brain, pineal gland, and skin. The outer photoreceptors (R1-R6) are the insect Drosophila equivalent to the vertebrate rods and are responsible for image formation and motion detection. The invertebrate G(q) opsins includes the arthropod and mollusk visual opsins as well as invertebrate melanopsins, which are also found in vertebrates. Arthropods possess color vision by the use of multiple opsins sensitive to different light wavelengths. Members of this subfamily belong to the class A of the G protein-coupled receptors and have seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. Pssm-ID: 320211 [Multi-domain] Cd Length: 291 Bit Score: 40.01 E-value: 5.71e-04
|
|||||||
7tmA_Retinal_GPR | cd15072 | retinal G protein coupled receptor, member of the class A family of seven-transmembrane G ... |
69-137 | 1.43e-03 | |||
retinal G protein coupled receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represents the retinal G-protein coupled receptor (RGR) found exclusively in retinal pigment epithelium (RPE) and Muller cells. RGR is a member of the class A rhodopsin-like receptor family. As with other opsins, RGR binds all-trans retinal and contains a conserved lysine reside on the seventh helix. RGR functions as a photoisomerase to catalyze the conversion of all-trans-retinal to 11-cis-retinal. Two mutations in RGR gene are found in patients with retinitis pigmentosa, indicating that RGR is essential to the visual process. Pssm-ID: 320200 [Multi-domain] Cd Length: 260 Bit Score: 38.49 E-value: 1.43e-03
|
|||||||
7tmA_Prostanoid_R | cd14981 | G protein-coupled receptors for prostanoids, member of the class A family of ... |
15-125 | 5.16e-03 | |||
G protein-coupled receptors for prostanoids, member of the class A family of seven-transmembrane G protein-coupled receptors; Prostanoids are the cyclooxygenase (COX) metabolites of arachidonic acid, which include the prostaglandins (PGD2, PGE2, PGF2alpha), prostacyclin (PGI2), and thromboxane A2 (TxA2). These five major bioactive prostanoids acts as mediators or modulators in a wide range of physiological and pathophysiological processes within the kidney and play important roles in inflammation, platelet aggregation, and vasoconstriction/relaxation, among many others. They act locally by preferentially interacting with G protein-coupled receptors designated DP, EP. FP, IP, and TP, respectively. The phylogenetic tree suggests that the prostanoid receptors can be grouped into two major branches: G(s)-coupled (DP1, EP2, EP4, and IP) and G(i)- (EP3) or G(q)-coupled (EP1, FP, and TP), forming three clusters. Pssm-ID: 320112 [Multi-domain] Cd Length: 288 Bit Score: 37.23 E-value: 5.16e-03
|
|||||||
Blast search parameters | ||||
|