beta-myosin heavy chain [Homo sapiens]
List of domain hits
Name | Accession | Description | Interval | E-value | |||
Motor_domain super family | cl22853 | Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the ... |
1-64 | 1.02e-24 | |||
Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the P-loop NTPase family and provide the driving force in myosin and kinesin mediated processes. Some of the names do not match with what is given in the sequence list. This is because they are based on the current nomenclature by Kollmar/Sebe-Pedros. The actual alignment was detected with superfamily member cd01377: Pssm-ID: 473979 [Multi-domain] Cd Length: 662 Bit Score: 102.54 E-value: 1.02e-24
|
|||||||
Myosin_tail_1 super family | cl37647 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
38-176 | 3.10e-16 | |||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. The actual alignment was detected with superfamily member pfam01576: Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 77.91 E-value: 3.10e-16
|
|||||||
MutS2 super family | cl34171 | dsDNA-specific endonuclease/ATPase MutS2 [Replication, recombination and repair]; |
112-248 | 2.81e-05 | |||
dsDNA-specific endonuclease/ATPase MutS2 [Replication, recombination and repair]; The actual alignment was detected with superfamily member COG1193: Pssm-ID: 440806 [Multi-domain] Cd Length: 784 Bit Score: 45.13 E-value: 2.81e-05
|
|||||||
Name | Accession | Description | Interval | E-value | ||||
MYSc_class_II | cd01377 | class II myosins, motor domain; Myosin motor domain in class II myosins. Class II myosins, ... |
1-64 | 1.02e-24 | ||||
class II myosins, motor domain; Myosin motor domain in class II myosins. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. Thus, myosin II has two heads. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276951 [Multi-domain] Cd Length: 662 Bit Score: 102.54 E-value: 1.02e-24
|
||||||||
Myosin_head | pfam00063 | Myosin head (motor domain); |
1-64 | 3.46e-18 | ||||
Myosin head (motor domain); Pssm-ID: 395017 [Multi-domain] Cd Length: 674 Bit Score: 83.48 E-value: 3.46e-18
|
||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
38-176 | 3.10e-16 | ||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 77.91 E-value: 3.10e-16
|
||||||||
MYSc | smart00242 | Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical ... |
1-99 | 1.99e-15 | ||||
Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical interaction between myosin and actin. The core of the myosin structure is similar in fold to that of kinesin. Pssm-ID: 214580 [Multi-domain] Cd Length: 677 Bit Score: 75.27 E-value: 1.99e-15
|
||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
53-249 | 1.22e-11 | ||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 64.19 E-value: 1.22e-11
|
||||||||
COG5022 | COG5022 | Myosin heavy chain [General function prediction only]; |
2-38 | 2.19e-11 | ||||
Myosin heavy chain [General function prediction only]; Pssm-ID: 227355 [Multi-domain] Cd Length: 1463 Bit Score: 63.56 E-value: 2.19e-11
|
||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
29-246 | 3.04e-10 | ||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 60.07 E-value: 3.04e-10
|
||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
84-234 | 1.07e-05 | ||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 45.92 E-value: 1.07e-05
|
||||||||
MutS2 | COG1193 | dsDNA-specific endonuclease/ATPase MutS2 [Replication, recombination and repair]; |
112-248 | 2.81e-05 | ||||
dsDNA-specific endonuclease/ATPase MutS2 [Replication, recombination and repair]; Pssm-ID: 440806 [Multi-domain] Cd Length: 784 Bit Score: 45.13 E-value: 2.81e-05
|
||||||||
Name | Accession | Description | Interval | E-value | |||||
MYSc_class_II | cd01377 | class II myosins, motor domain; Myosin motor domain in class II myosins. Class II myosins, ... |
1-64 | 1.02e-24 | |||||
class II myosins, motor domain; Myosin motor domain in class II myosins. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. Thus, myosin II has two heads. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276951 [Multi-domain] Cd Length: 662 Bit Score: 102.54 E-value: 1.02e-24
|
|||||||||
MYSc_Myh3 | cd14913 | class II myosin heavy chain 3, motor domain; Myosin motor domain of fetal skeletal muscle ... |
1-42 | 1.19e-20 | |||||
class II myosin heavy chain 3, motor domain; Myosin motor domain of fetal skeletal muscle myosin heavy chain 3 (MYHC-EMB, MYHSE1, HEMHC, SMHCE) in tetrapods including mammals, lizards, and frogs. This gene is a member of the MYH family and encodes a protein with an IQ domain and a myosin head-like domain. Mutations in this gene have been associated with two congenital contracture (arthrogryposis) syndromes, Freeman-Sheldon syndrome and Sheldon-Hall syndrome. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276878 [Multi-domain] Cd Length: 668 Bit Score: 90.88 E-value: 1.19e-20
|
|||||||||
MYSc_Myh7 | cd14917 | class II myosin heavy chain 7, motor domain; Myosin motor domain of beta (or slow) type I ... |
1-42 | 6.40e-20 | |||||
class II myosin heavy chain 7, motor domain; Myosin motor domain of beta (or slow) type I cardiac muscle myosin heavy chain 7 (also called CMH1, MPD1, and CMD1S). Muscle myosin is a hexameric protein containing 2 heavy chain subunits, 2 alkali light chain subunits, and 2 regulatory light chain subunits. It is expressed predominantly in normal human ventrical and in skeletal muscle tissues rich in slow-twitch type I muscle fibers. Changes in the relative abundance of this protein and the alpha (or fast) heavy subunit of cardiac myosin correlate with the contractile velocity of cardiac muscle. Its expression is also altered during thyroid hormone depletion and hemodynamic overloading. Mutations in this gene are associated with familial hypertrophic cardiomyopathy, myosin storage myopathy, dilated cardiomyopathy, and Laing early-onset distal myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276881 [Multi-domain] Cd Length: 668 Bit Score: 88.62 E-value: 6.40e-20
|
|||||||||
MYSc_Myh6 | cd14916 | class II myosin heavy chain 6, motor domain; Myosin motor domain of alpha (or fast) cardiac ... |
1-40 | 2.65e-19 | |||||
class II myosin heavy chain 6, motor domain; Myosin motor domain of alpha (or fast) cardiac muscle myosin heavy chain 6. Cardiac muscle myosin is a hexamer consisting of two heavy chain subunits, two light chain subunits, and two regulatory subunits. This gene encodes the alpha heavy chain subunit of cardiac myosin. Mutations in this gene cause familial hypertrophic cardiomyopathy and atrial septal defect. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276880 [Multi-domain] Cd Length: 670 Bit Score: 87.04 E-value: 2.65e-19
|
|||||||||
Myosin_head | pfam00063 | Myosin head (motor domain); |
1-64 | 3.46e-18 | |||||
Myosin head (motor domain); Pssm-ID: 395017 [Multi-domain] Cd Length: 674 Bit Score: 83.48 E-value: 3.46e-18
|
|||||||||
MYSc_Myh7b | cd14927 | class II myosin heavy chain 7b, motor domain; Myosin motor domain of cardiac muscle, beta ... |
1-42 | 4.60e-18 | |||||
class II myosin heavy chain 7b, motor domain; Myosin motor domain of cardiac muscle, beta myosin heavy chain 7b (also called KIAA1512, dJ756N5.1, MYH14, MHC14). MYH7B is a slow-twitch myosin. Mutations in this gene result in one form of autosomal dominant hearing impairment. Multiple transcript variants encoding different isoforms have been found for this gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276953 [Multi-domain] Cd Length: 676 Bit Score: 83.08 E-value: 4.60e-18
|
|||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
38-176 | 3.10e-16 | |||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 77.91 E-value: 3.10e-16
|
|||||||||
MYSc_Myh8 | cd14918 | class II myosin heavy chain 8, motor domain; Myosin motor domain of perinatal skeletal muscle ... |
1-42 | 5.46e-16 | |||||
class II myosin heavy chain 8, motor domain; Myosin motor domain of perinatal skeletal muscle myosin heavy chain 8 (also called MyHC-peri, MyHC-pn). Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. A mutation in this gene results in trismus-pseudocamptodactyly syndrome. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276882 [Multi-domain] Cd Length: 668 Bit Score: 77.08 E-value: 5.46e-16
|
|||||||||
MYSc_Myh13 | cd14923 | class II myosin heavy chain 13, motor domain; Myosin motor domain of skeletal muscle myosin ... |
1-42 | 7.09e-16 | |||||
class II myosin heavy chain 13, motor domain; Myosin motor domain of skeletal muscle myosin heavy chain 13 (also called MyHC-eo) in mammals, chicken, and green anole. Myh13 is a myosin whose expression is restricted primarily to the extrinsic eye muscles which are specialized for function in eye movement. Class II myosins, also called conventional myosins, are the myosin type responsible for producing muscle contraction in muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276887 [Multi-domain] Cd Length: 671 Bit Score: 76.65 E-value: 7.09e-16
|
|||||||||
MYSc_Myh1_insects_crustaceans | cd14909 | class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle ... |
1-42 | 1.27e-15 | |||||
class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle myosin heavy chain 1 (also called MYHSA1, MYHa, MyHC-2X/D, MGC133384) in insects and crustaceans. Myh1 is a type I skeletal muscle myosin that in Humans is encoded by the MYH1 gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276874 Cd Length: 666 Bit Score: 76.03 E-value: 1.27e-15
|
|||||||||
MYSc_Myh2_insects_mollusks | cd14911 | class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle ... |
1-43 | 1.60e-15 | |||||
class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle myosin heavy chain 2 (also called MYH2A, MYHSA2, MyHC-IIa, MYHas8, MyHC-2A) in insects and mollusks. This gene encodes a member of the class II or conventional myosin heavy chains, and functions in skeletal muscle contraction. Mutations in this gene results in inclusion body myopathy-3 and familial congenital myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276876 [Multi-domain] Cd Length: 674 Bit Score: 75.79 E-value: 1.60e-15
|
|||||||||
MYSc | smart00242 | Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical ... |
1-99 | 1.99e-15 | |||||
Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical interaction between myosin and actin. The core of the myosin structure is similar in fold to that of kinesin. Pssm-ID: 214580 [Multi-domain] Cd Length: 677 Bit Score: 75.27 E-value: 1.99e-15
|
|||||||||
MYSc_Myh1_mammals | cd14910 | class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle ... |
1-42 | 3.02e-15 | |||||
class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle myosin heavy chain 1 (also called MYHSA1, MYHa, MyHC-2X/D, MGC133384) in mammals. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276875 [Multi-domain] Cd Length: 671 Bit Score: 74.77 E-value: 3.02e-15
|
|||||||||
MYSc_Myh4 | cd14915 | class II myosin heavy chain 4, motor domain; Myosin motor domain of skeletal muscle myosin ... |
1-42 | 3.03e-15 | |||||
class II myosin heavy chain 4, motor domain; Myosin motor domain of skeletal muscle myosin heavy chain 4 (also called MYH2B, MyHC-2B, MyHC-IIb). Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276879 [Multi-domain] Cd Length: 671 Bit Score: 74.77 E-value: 3.03e-15
|
|||||||||
MYSc_Myh2_mammals | cd14912 | class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle ... |
1-42 | 4.08e-15 | |||||
class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle myosin heavy chain 2 (also called MYH2A, MYHSA2, MyHC-IIa, MYHas8, MyHC-2A) in mammals. Mutations in this gene results in inclusion body myopathy-3 and familial congenital myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276877 [Multi-domain] Cd Length: 673 Bit Score: 74.38 E-value: 4.08e-15
|
|||||||||
MYSc_Myh15_mammals | cd14929 | class II myosin heavy chain 15, motor domain; Myosin motor domain of sarcomeric myosin heavy ... |
1-38 | 1.08e-14 | |||||
class II myosin heavy chain 15, motor domain; Myosin motor domain of sarcomeric myosin heavy chain 15 in mammals (also called KIAA1000) . MYH15 is a slow-twitch myosin. Myh15 is a ventricular myosin heavy chain. Myh15 is absent in embryonic and fetal muscles and is found in orbital layer of extraocular muscles at birth. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276892 [Multi-domain] Cd Length: 662 Bit Score: 73.47 E-value: 1.08e-14
|
|||||||||
MYSc_Myh10 | cd14920 | class II myosin heavy chain 10, motor domain; Myosin motor domain of non-muscle myosin heavy ... |
1-43 | 5.61e-14 | |||||
class II myosin heavy chain 10, motor domain; Myosin motor domain of non-muscle myosin heavy chain 10 (also called NMMHCB). Mutations in this gene have been associated with May-Hegglin anomaly and developmental defects in brain and heart. Multiple transcript variants encoding different isoforms have been found for this gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276952 [Multi-domain] Cd Length: 673 Bit Score: 71.20 E-value: 5.61e-14
|
|||||||||
MYSc | cd00124 | Myosin motor domain superfamily; Myosin motor domain. The catalytic (head) domain has ATPase ... |
1-72 | 4.97e-13 | |||||
Myosin motor domain superfamily; Myosin motor domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276950 [Multi-domain] Cd Length: 633 Bit Score: 68.39 E-value: 4.97e-13
|
|||||||||
MYSc_Myh16 | cd14934 | class II myosin heavy chain 16, motor domain; Myosin motor domain of myosin heavy chain 16 ... |
1-42 | 9.04e-13 | |||||
class II myosin heavy chain 16, motor domain; Myosin motor domain of myosin heavy chain 16 pseudogene (also called MHC20, MYH16, and myh5), encoding a sarcomeric myosin heavy chain expressed in nonhuman primate masticatory muscles, is inactivated in humans. This cd contains Myh16 in mammals. MYH16 has intermediate fibres between that of slow type 1 and fast 2B fibres, but exert more force than any other fibre type examined. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Some of the data used for this classification were produced by the CyMoBase team at the Max-Planck-Institute for Biophysical Chemistry. The sequence names are composed of the species abbreviation followed by the protein abbreviation and optional protein classifier and variant designations. Pssm-ID: 276896 [Multi-domain] Cd Length: 659 Bit Score: 67.75 E-value: 9.04e-13
|
|||||||||
MYSc_Myh18 | cd14932 | class II myosin heavy chain 18, motor domain; Myosin motor domain of muscle myosin heavy chain ... |
1-43 | 9.64e-13 | |||||
class II myosin heavy chain 18, motor domain; Myosin motor domain of muscle myosin heavy chain 18. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276895 [Multi-domain] Cd Length: 676 Bit Score: 67.36 E-value: 9.64e-13
|
|||||||||
MYSc_Myh14_mammals | cd14930 | class II myosin heavy chain 14 motor domain; Myosin motor domain of non-muscle myosin heavy ... |
5-43 | 2.02e-12 | |||||
class II myosin heavy chain 14 motor domain; Myosin motor domain of non-muscle myosin heavy chain 14 (also called FLJ13881, KIAA2034, MHC16, MYH17). Its members include mammals, chickens, and turtles. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Some of the data used for this classification were produced by the CyMoBase team at the Max-Planck-Institute for Biophysical Chemistry. The sequence names are composed of the species abbreviation followed by the protein abbreviation and optional protein classifier and variant designations. Pssm-ID: 276893 [Multi-domain] Cd Length: 670 Bit Score: 66.66 E-value: 2.02e-12
|
|||||||||
MYSc_Myh11 | cd14921 | class II myosin heavy chain 11, motor domain; Myosin motor domain of smooth muscle myosin ... |
1-43 | 3.41e-12 | |||||
class II myosin heavy chain 11, motor domain; Myosin motor domain of smooth muscle myosin heavy chain 11 (also called SMMHC, SMHC). The gene product is a subunit of a hexameric protein that consists of two heavy chain subunits and two pairs of non-identical light chain subunits. It functions as a major contractile protein, converting chemical energy into mechanical energy through the hydrolysis of ATP. The gene encoding a human ortholog of rat NUDE1 is transcribed from the reverse strand of this gene, and its 3' end overlaps with that of the latter. Inversion of the MYH11 locus is one of the most frequent chromosomal aberrations found in acute myeloid leukemia. Alternative splicing generates isoforms that are differentially expressed, with ratios changing during muscle cell maturation. Mutations in MYH11 have been described in individuals with thoracic aortic aneurysms leading to acute aortic dissections with patent ductus arteriosus. MYH11 mutations are also thought to contribute to human colorectal cancer and are also associated with Peutz-Jeghers syndrome. The mutations found in human intestinal neoplasia result in unregulated proteins with constitutive motor activity, similar to the mutant myh11 zebrafish. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276885 [Multi-domain] Cd Length: 673 Bit Score: 65.81 E-value: 3.41e-12
|
|||||||||
MYSc_Myh19 | cd15896 | class II myosin heavy chain19, motor domain; Myosin motor domain of muscle myosin heavy chain ... |
1-43 | 8.58e-12 | |||||
class II myosin heavy chain19, motor domain; Myosin motor domain of muscle myosin heavy chain 19. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276899 [Multi-domain] Cd Length: 675 Bit Score: 64.70 E-value: 8.58e-12
|
|||||||||
MYSc_Myh9 | cd14919 | class II myosin heavy chain 9, motor domain; Myosin motor domain of non-muscle myosin heavy ... |
1-43 | 1.02e-11 | |||||
class II myosin heavy chain 9, motor domain; Myosin motor domain of non-muscle myosin heavy chain 9 (also called NMMHCA, NMHC-II-A, MHA, FTNS, EPSTS, and DFNA17). Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. The encoded protein is a myosin IIA heavy chain that contains an IQ domain and a myosin head-like domain which is involved in several important functions, including cytokinesis, cell motility and maintenance of cell shape. Defects in this gene have been associated with non-syndromic sensorineural deafness autosomal dominant type 17, Epstein syndrome, Alport syndrome with macrothrombocytopenia, Sebastian syndrome, Fechtner syndrome and macrothrombocytopenia with progressive sensorineural deafness. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276883 [Multi-domain] Cd Length: 670 Bit Score: 64.34 E-value: 1.02e-11
|
|||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
53-249 | 1.22e-11 | |||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 64.19 E-value: 1.22e-11
|
|||||||||
COG5022 | COG5022 | Myosin heavy chain [General function prediction only]; |
2-38 | 2.19e-11 | |||||
Myosin heavy chain [General function prediction only]; Pssm-ID: 227355 [Multi-domain] Cd Length: 1463 Bit Score: 63.56 E-value: 2.19e-11
|
|||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
29-246 | 3.04e-10 | |||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 60.07 E-value: 3.04e-10
|
|||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
36-248 | 6.69e-10 | |||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 59.18 E-value: 6.69e-10
|
|||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
42-246 | 1.56e-08 | |||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 55.18 E-value: 1.56e-08
|
|||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
34-249 | 3.10e-08 | |||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 54.17 E-value: 3.10e-08
|
|||||||||
MYSc_Myo11 | cd01384 | class XI myosin, motor domain; These plant-specific type XI myosin are involved in organelle ... |
2-64 | 4.79e-08 | |||||
class XI myosin, motor domain; These plant-specific type XI myosin are involved in organelle transport. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Pssm-ID: 276835 Cd Length: 647 Bit Score: 53.45 E-value: 4.79e-08
|
|||||||||
MYSc_Myo8 | cd01383 | class VIII myosin, motor domain; These plant-specific type VIII myosins has been associated ... |
2-38 | 7.30e-08 | |||||
class VIII myosin, motor domain; These plant-specific type VIII myosins has been associated with endocytosis, cytokinesis, cell-to-cell coupling and gating at plasmodesmata. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. It also contains IQ domains Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276834 Cd Length: 647 Bit Score: 52.70 E-value: 7.30e-08
|
|||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
36-231 | 1.12e-07 | |||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 52.37 E-value: 1.12e-07
|
|||||||||
MYSc_Myo3 | cd01379 | class III myosin, motor domain; Myosin III has been shown to play a role in the vision process ... |
2-42 | 2.17e-07 | |||||
class III myosin, motor domain; Myosin III has been shown to play a role in the vision process in insects and in hearing in mammals. Myosin III, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. They are characterized by an N-terminal protein kinase domain and several IQ domains. Some members also contain WW, SH2, PH, and Y-phosphatase domains. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276830 [Multi-domain] Cd Length: 633 Bit Score: 51.51 E-value: 2.17e-07
|
|||||||||
MYSc_Myo36 | cd14897 | class XXXVI myosin, motor domain; This class of molluscan myosins contains a motor domain ... |
2-65 | 2.93e-07 | |||||
class XXXVI myosin, motor domain; This class of molluscan myosins contains a motor domain followed by a GlcAT-I (Beta1,3-glucuronyltransferase I) domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276862 [Multi-domain] Cd Length: 635 Bit Score: 50.84 E-value: 2.93e-07
|
|||||||||
MYSc_Myo42 | cd14903 | class XLII myosin, motor domain; The class XLII myosins are comprised of Stramenopiles. Not ... |
1-38 | 3.41e-07 | |||||
class XLII myosin, motor domain; The class XLII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276868 [Multi-domain] Cd Length: 658 Bit Score: 50.93 E-value: 3.41e-07
|
|||||||||
MYSc_Myo39 | cd14900 | class XXXIX myosin, motor domain; The class XXXIX myosins are found in Stramenopiles. Not much ... |
1-38 | 5.16e-07 | |||||
class XXXIX myosin, motor domain; The class XXXIX myosins are found in Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276865 Cd Length: 627 Bit Score: 50.30 E-value: 5.16e-07
|
|||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
36-246 | 1.04e-06 | |||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 49.28 E-value: 1.04e-06
|
|||||||||
MYSc_Myo5 | cd01380 | class V myosin, motor domain; Myo5, also called heavy chain 12, myoxin, are dimeric myosins ... |
2-38 | 1.09e-06 | |||||
class V myosin, motor domain; Myo5, also called heavy chain 12, myoxin, are dimeric myosins that transport a variety of intracellular cargo processively along actin filaments, such as melanosomes, synaptic vesicles, vacuoles, and mRNA. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. It also contains a IQ domain and a globular DIL domain. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. The protein encoded by this gene is abundant in melanocytes and nerve cells. Mutations in this gene cause Griscelli syndrome type-1 (GS1), Griscelli syndrome type-3 (GS3) and neuroectodermal melanolysosomal disease, or Elejalde disease. Multiple alternatively spliced transcript variants encoding different isoforms have been reported, but the full-length nature of some variants has not been determined. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Note that the Dictyostelium myoVs are not contained in this child group. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276831 [Multi-domain] Cd Length: 629 Bit Score: 49.08 E-value: 1.09e-06
|
|||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
49-239 | 1.09e-06 | |||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 49.28 E-value: 1.09e-06
|
|||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
36-258 | 1.11e-06 | |||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 49.16 E-value: 1.11e-06
|
|||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
37-242 | 1.33e-06 | |||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 48.61 E-value: 1.33e-06
|
|||||||||
MYSc_Myo31 | cd14892 | class XXXI myosin, motor domain; Class XXXI myosins have a very long neck region consisting of ... |
4-50 | 1.56e-06 | |||||
class XXXI myosin, motor domain; Class XXXI myosins have a very long neck region consisting of 17 IQ motifs and 2 tandem ANK repeats that are separated by a PH domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276857 [Multi-domain] Cd Length: 656 Bit Score: 48.60 E-value: 1.56e-06
|
|||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
91-250 | 7.79e-06 | |||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 46.97 E-value: 7.79e-06
|
|||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
84-234 | 1.07e-05 | |||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 45.92 E-value: 1.07e-05
|
|||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
44-245 | 1.27e-05 | |||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 46.21 E-value: 1.27e-05
|
|||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
35-250 | 1.92e-05 | |||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 45.43 E-value: 1.92e-05
|
|||||||||
MYSc_Myo18 | cd01386 | class XVIII myosin, motor domain; Many members of this class contain a N-terminal PDZ domain ... |
1-72 | 2.61e-05 | |||||
class XVIII myosin, motor domain; Many members of this class contain a N-terminal PDZ domain which is commonly found in proteins establishing molecular complexes. The motor domain itself does not exhibit ATPase activity, suggesting that it functions as an actin tether protein. It also has two IQ domains that probably bind light chains or related calmodulins and a C-terminal tail with two sections of coiled-coil domains, which are thought to mediate homodimerization. The function of these myosins are largely unknown. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276837 [Multi-domain] Cd Length: 689 Bit Score: 44.99 E-value: 2.61e-05
|
|||||||||
MutS2 | COG1193 | dsDNA-specific endonuclease/ATPase MutS2 [Replication, recombination and repair]; |
112-248 | 2.81e-05 | |||||
dsDNA-specific endonuclease/ATPase MutS2 [Replication, recombination and repair]; Pssm-ID: 440806 [Multi-domain] Cd Length: 784 Bit Score: 45.13 E-value: 2.81e-05
|
|||||||||
MYSc_Myo7 | cd01381 | class VII myosin, motor domain; These monomeric myosins have been associated with functions in ... |
1-38 | 3.23e-05 | |||||
class VII myosin, motor domain; These monomeric myosins have been associated with functions in sensory systems such as vision and hearing. Mammalian myosin VII has a tail with 2 MyTH4 domains, 2 FERM domains, and a SH3 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276832 Cd Length: 648 Bit Score: 44.55 E-value: 3.23e-05
|
|||||||||
GumC | COG3206 | Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; |
56-250 | 3.43e-05 | |||||
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442439 [Multi-domain] Cd Length: 687 Bit Score: 44.62 E-value: 3.43e-05
|
|||||||||
MYSc_Myo40 | cd14901 | class XL myosin, motor domain; The class XL myosins are comprised of Stramenopiles. Not much ... |
1-74 | 3.79e-05 | |||||
class XL myosin, motor domain; The class XL myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276866 [Multi-domain] Cd Length: 655 Bit Score: 44.39 E-value: 3.79e-05
|
|||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
39-248 | 5.20e-05 | |||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 43.99 E-value: 5.20e-05
|
|||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
36-253 | 5.20e-05 | |||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 44.29 E-value: 5.20e-05
|
|||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
63-256 | 5.63e-05 | |||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 44.14 E-value: 5.63e-05
|
|||||||||
MYSc_Myo41 | cd14902 | class XLI myosin, motor domain; The class XLI myosins are comprised of Stramenopiles. Not much ... |
1-102 | 6.25e-05 | |||||
class XLI myosin, motor domain; The class XLI myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276867 [Multi-domain] Cd Length: 716 Bit Score: 43.73 E-value: 6.25e-05
|
|||||||||
MYSc_Myo22 | cd14883 | class XXII myosin, motor domain; These myosins possess an extended neck with multiple IQ ... |
2-42 | 6.53e-05 | |||||
class XXII myosin, motor domain; These myosins possess an extended neck with multiple IQ motifs such as found in class V, VIII, XI, and XIII myosins. These myosins are defined by two tandem MyTH4 and FERM domains. The apicomplexan, but not diatom myosins contain 4-6 WD40 repeats near the end of the C-terminal tail which suggests a possible function of these myosins in signal transduction and transcriptional regulation. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276849 [Multi-domain] Cd Length: 661 Bit Score: 43.85 E-value: 6.53e-05
|
|||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
53-246 | 7.41e-05 | |||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 43.77 E-value: 7.41e-05
|
|||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
37-232 | 8.44e-05 | |||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 43.52 E-value: 8.44e-05
|
|||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
37-232 | 8.58e-05 | |||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 43.75 E-value: 8.58e-05
|
|||||||||
CwlO1 | COG3883 | Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function ... |
69-247 | 1.06e-04 | |||||
Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function unknown]; Pssm-ID: 443091 [Multi-domain] Cd Length: 379 Bit Score: 42.89 E-value: 1.06e-04
|
|||||||||
MYSc_Myo15 | cd01387 | class XV mammal-like myosin, motor domain; The class XV myosins are monomeric. In vertebrates, ... |
1-42 | 1.10e-04 | |||||
class XV mammal-like myosin, motor domain; The class XV myosins are monomeric. In vertebrates, myosin XV appears to be expressed in sensory tissue and play a role in hearing. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to the head domain are 2 MyTH4 domain, a FERM domain, and a SH3 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276838 [Multi-domain] Cd Length: 657 Bit Score: 43.20 E-value: 1.10e-04
|
|||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
42-248 | 1.94e-04 | |||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 42.36 E-value: 1.94e-04
|
|||||||||
46 | PHA02562 | endonuclease subunit; Provisional |
38-253 | 2.11e-04 | |||||
endonuclease subunit; Provisional Pssm-ID: 222878 [Multi-domain] Cd Length: 562 Bit Score: 42.31 E-value: 2.11e-04
|
|||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
74-246 | 2.51e-04 | |||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 41.67 E-value: 2.51e-04
|
|||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
44-246 | 3.04e-04 | |||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 41.97 E-value: 3.04e-04
|
|||||||||
MYSc_Myo10 | cd14873 | class X myosin, motor domain; Myosin X is an unconventional myosin motor that functions as a ... |
2-57 | 3.35e-04 | |||||
class X myosin, motor domain; Myosin X is an unconventional myosin motor that functions as a monomer. In mammalian cells, the motor is found to localize to filopodia. Myosin X walks towards the barbed ends of filaments and is thought to walk on bundles of actin, rather than single filaments, a unique behavior. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to the head domain are a variable number of IQ domains, 2 PH domains, a MyTH4 domain, and a FERM domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276840 [Multi-domain] Cd Length: 651 Bit Score: 41.70 E-value: 3.35e-04
|
|||||||||
CwlO1 | COG3883 | Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function ... |
40-241 | 3.96e-04 | |||||
Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function unknown]; Pssm-ID: 443091 [Multi-domain] Cd Length: 379 Bit Score: 41.35 E-value: 3.96e-04
|
|||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
57-250 | 4.05e-04 | |||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 41.29 E-value: 4.05e-04
|
|||||||||
GumC | COG3206 | Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; |
81-253 | 4.28e-04 | |||||
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442439 [Multi-domain] Cd Length: 687 Bit Score: 41.16 E-value: 4.28e-04
|
|||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
93-180 | 7.33e-04 | |||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 40.54 E-value: 7.33e-04
|
|||||||||
MYSc_Myo29 | cd14890 | class XXIX myosin, motor domain; Class XXIX myosins are comprised of Stramenopiles and have ... |
1-68 | 7.64e-04 | |||||
class XXIX myosin, motor domain; Class XXIX myosins are comprised of Stramenopiles and have very long tail domains consisting of three IQ motifs, short coiled-coil regions, up to 18 CBS domains, a PB1 domain, and a carboxy-terminal transmembrane domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276855 [Multi-domain] Cd Length: 662 Bit Score: 40.53 E-value: 7.64e-04
|
|||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
53-215 | 8.16e-04 | |||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 40.27 E-value: 8.16e-04
|
|||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
36-234 | 8.42e-04 | |||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 40.51 E-value: 8.42e-04
|
|||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
43-170 | 8.61e-04 | |||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 40.54 E-value: 8.61e-04
|
|||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
111-250 | 8.85e-04 | |||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 40.31 E-value: 8.85e-04
|
|||||||||
MYSc_Myo16 | cd14878 | class XVI myosin, motor domain; These XVI type myosins are also known as Neuronal ... |
2-69 | 8.86e-04 | |||||
class XVI myosin, motor domain; These XVI type myosins are also known as Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 3/NYAP3. Myo16 is thought to play a regulatory role in cell cycle progression and has been recently implicated in Schizophrenia. Class XVI myosins are characterized by an N-terminal ankyrin repeat domain and some with chitin synthase domains that arose independently from the ones in the class XVII fungal myosins. They bind protein phosphatase 1 catalytic subunits 1alpha/PPP1CA and 1gamma/PPP1CC. Human Myo16 interacts with ACOT9, ARHGAP26 and PIK3R2 and with components of the WAVE1 complex, CYFIP1 and NCKAP1. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276844 [Multi-domain] Cd Length: 656 Bit Score: 40.18 E-value: 8.86e-04
|
|||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
65-221 | 1.05e-03 | |||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 39.52 E-value: 1.05e-03
|
|||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
25-204 | 1.19e-03 | |||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 39.90 E-value: 1.19e-03
|
|||||||||
MYSc_Myo1 | cd01378 | class I myosin, motor domain; Myosin I generates movement at the leading edge in cell motility, ... |
1-45 | 1.20e-03 | |||||
class I myosin, motor domain; Myosin I generates movement at the leading edge in cell motility, and class I myosins have been implicated in phagocytosis and vesicle transport. Myosin I, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. There are 5 myosin subclasses with subclasses c/h, d/g, and a/b have an IQ domain and a TH1 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276829 Cd Length: 652 Bit Score: 39.84 E-value: 1.20e-03
|
|||||||||
MAD | pfam05557 | Mitotic checkpoint protein; This family consists of several eukaryotic mitotic checkpoint ... |
88-246 | 1.23e-03 | |||||
Mitotic checkpoint protein; This family consists of several eukaryotic mitotic checkpoint (Mitotic arrest deficient or MAD) proteins. The mitotic spindle checkpoint monitors proper attachment of the bipolar spindle to the kinetochores of aligned sister chromatids and causes a cell cycle arrest in prometaphase when failures occur. Multiple components of the mitotic spindle checkpoint have been identified in yeast and higher eukaryotes. In S.cerevisiae, the existence of a Mad1-dependent complex containing Mad2, Mad3, Bub3 and Cdc20 has been demonstrated. Pssm-ID: 461677 [Multi-domain] Cd Length: 660 Bit Score: 39.72 E-value: 1.23e-03
|
|||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
37-247 | 1.34e-03 | |||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 40.12 E-value: 1.34e-03
|
|||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
36-256 | 1.47e-03 | |||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 39.67 E-value: 1.47e-03
|
|||||||||
MYSc_Myo43 | cd14904 | class XLIII myosin, motor domain; The class XLIII myosins are comprised of Stramenopiles. Not ... |
2-30 | 1.81e-03 | |||||
class XLIII myosin, motor domain; The class XLIII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276869 Cd Length: 653 Bit Score: 39.54 E-value: 1.81e-03
|
|||||||||
PRK05771 | PRK05771 | V-type ATP synthase subunit I; Validated |
38-235 | 1.82e-03 | |||||
V-type ATP synthase subunit I; Validated Pssm-ID: 235600 [Multi-domain] Cd Length: 646 Bit Score: 39.14 E-value: 1.82e-03
|
|||||||||
MYSc_Myo28 | cd14889 | class XXVIII myosin, motor domain; These myosins are found in fish, chicken, and mollusks. The ... |
1-40 | 2.00e-03 | |||||
class XXVIII myosin, motor domain; These myosins are found in fish, chicken, and mollusks. The tail regions of these class-XXVIII myosins consist of an IQ motif, a short coiled-coil region, and an SH2 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276854 Cd Length: 659 Bit Score: 39.12 E-value: 2.00e-03
|
|||||||||
MYSc_Myo47 | cd14908 | class XLVII myosin, motor domain; The class XLVII myosins are comprised of Stramenopiles. Not ... |
6-42 | 2.20e-03 | |||||
class XLVII myosin, motor domain; The class XLVII myosins are comprised of Stramenopiles. Not much is known about this myosin class. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276873 [Multi-domain] Cd Length: 682 Bit Score: 39.12 E-value: 2.20e-03
|
|||||||||
PRK02224 | PRK02224 | DNA double-strand break repair Rad50 ATPase; |
34-252 | 2.30e-03 | |||||
DNA double-strand break repair Rad50 ATPase; Pssm-ID: 179385 [Multi-domain] Cd Length: 880 Bit Score: 39.25 E-value: 2.30e-03
|
|||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
111-257 | 2.70e-03 | |||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 38.74 E-value: 2.70e-03
|
|||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
36-253 | 3.60e-03 | |||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 38.34 E-value: 3.60e-03
|
|||||||||
PRK02224 | PRK02224 | DNA double-strand break repair Rad50 ATPase; |
36-246 | 4.10e-03 | |||||
DNA double-strand break repair Rad50 ATPase; Pssm-ID: 179385 [Multi-domain] Cd Length: 880 Bit Score: 38.48 E-value: 4.10e-03
|
|||||||||
CALCOCO1 | pfam07888 | Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are ... |
36-211 | 4.12e-03 | |||||
Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are similar to the coiled-coil transcriptional coactivator protein coexpressed by Mus musculus (CoCoA/CALCOCO1). This protein binds to a highly conserved N-terminal domain of p160 coactivators, such as GRIP1, and thus enhances transcriptional activation by a number of nuclear receptors. CALCOCO1 has a central coiled-coil region with three leucine zipper motifs, which is required for its interaction with GRIP1 and may regulate the autonomous transcriptional activation activity of the C-terminal region. Pssm-ID: 462303 [Multi-domain] Cd Length: 488 Bit Score: 38.34 E-value: 4.12e-03
|
|||||||||
ClpA | COG0542 | ATP-dependent Clp protease, ATP-binding subunit ClpA [Posttranslational modification, protein ... |
69-180 | 4.44e-03 | |||||
ATP-dependent Clp protease, ATP-binding subunit ClpA [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440308 [Multi-domain] Cd Length: 836 Bit Score: 38.14 E-value: 4.44e-03
|
|||||||||
MYSc_Myo9 | cd01385 | class IX myosin, motor domain; Myosin IX is a processive single-headed motor, which might play ... |
2-42 | 5.30e-03 | |||||
class IX myosin, motor domain; Myosin IX is a processive single-headed motor, which might play a role in signalling. It has a N-terminal RA domain, an IQ domain, a C1_1 domain, and a RhoGAP domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276836 [Multi-domain] Cd Length: 690 Bit Score: 37.74 E-value: 5.30e-03
|
|||||||||
PRK11281 | PRK11281 | mechanosensitive channel MscK; |
56-245 | 5.53e-03 | |||||
mechanosensitive channel MscK; Pssm-ID: 236892 [Multi-domain] Cd Length: 1113 Bit Score: 37.97 E-value: 5.53e-03
|
|||||||||
GumC | COG3206 | Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; |
36-180 | 6.22e-03 | |||||
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442439 [Multi-domain] Cd Length: 687 Bit Score: 37.69 E-value: 6.22e-03
|
|||||||||
PRK05771 | PRK05771 | V-type ATP synthase subunit I; Validated |
37-206 | 8.16e-03 | |||||
V-type ATP synthase subunit I; Validated Pssm-ID: 235600 [Multi-domain] Cd Length: 646 Bit Score: 37.21 E-value: 8.16e-03
|
|||||||||
PRK01156 | PRK01156 | chromosome segregation protein; Provisional |
39-253 | 8.73e-03 | |||||
chromosome segregation protein; Provisional Pssm-ID: 100796 [Multi-domain] Cd Length: 895 Bit Score: 37.19 E-value: 8.73e-03
|
|||||||||
MYSc_Myo34 | cd14895 | class XXXIV myosin, motor domain; Class XXXIV myosins are composed of an IQ motif, a short ... |
6-64 | 9.08e-03 | |||||
class XXXIV myosin, motor domain; Class XXXIV myosins are composed of an IQ motif, a short coiled-coil region, 5 tandem ANK repeats, and a carboxy-terminal FYVE domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276860 [Multi-domain] Cd Length: 704 Bit Score: 37.24 E-value: 9.08e-03
|
|||||||||
ClpA | COG0542 | ATP-dependent Clp protease, ATP-binding subunit ClpA [Posttranslational modification, protein ... |
44-142 | 9.28e-03 | |||||
ATP-dependent Clp protease, ATP-binding subunit ClpA [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440308 [Multi-domain] Cd Length: 836 Bit Score: 37.37 E-value: 9.28e-03
|
|||||||||
mukB | PRK04863 | chromosome partition protein MukB; |
65-243 | 9.30e-03 | |||||
chromosome partition protein MukB; Pssm-ID: 235316 [Multi-domain] Cd Length: 1486 Bit Score: 37.24 E-value: 9.30e-03
|
|||||||||
Blast search parameters | ||||
|