NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|156215907|gb|EDO36855|]
View 

predicted protein [Nematostella vectensis]

Protein Classification

cleavage and polyadenylation specificity factor subunit 6( domain architecture ID 10190445)

cleavage and polyadenylation specificity factor subunit 6 (CPSF6, also called CFIm68) is a component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM_CFIm68 cd12643
RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or ...
103-179 6.17e-48

RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or CPSF6) and similar proteins; This subgroup corresponds to the RRM of CFIm68. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. Two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. The family includes CFIm68, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF6), or cleavage and polyadenylation specificity factor 68 kDa subunit (CPSF68), or protein HPBRII-4/7. CFIm68 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. The N-terminal RRM of CFIm68 mediates the interaction with CFIm25. It also serves to enhance RNA binding and facilitate RNA looping.


:

Pssm-ID: 410048 [Multi-domain]  Cd Length: 77  Bit Score: 159.90  E-value: 6.17e-48
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 156215907 103 PLYVGNLTWWTTDQQLTEALQECGVTDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTP 179
Cdd:cd12643    1 ALYVGNLTWWTTDEDLTEALHSIGVNDLLEIKFFENRANGQSKGFALIVVGSEASSRKLMDKLPKKELHGQNPVVTP 77
 
Name Accession Description Interval E-value
RRM_CFIm68 cd12643
RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or ...
103-179 6.17e-48

RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or CPSF6) and similar proteins; This subgroup corresponds to the RRM of CFIm68. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. Two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. The family includes CFIm68, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF6), or cleavage and polyadenylation specificity factor 68 kDa subunit (CPSF68), or protein HPBRII-4/7. CFIm68 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. The N-terminal RRM of CFIm68 mediates the interaction with CFIm25. It also serves to enhance RNA binding and facilitate RNA looping.


Pssm-ID: 410048 [Multi-domain]  Cd Length: 77  Bit Score: 159.90  E-value: 6.17e-48
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 156215907 103 PLYVGNLTWWTTDQQLTEALQECGVTDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTP 179
Cdd:cd12643    1 ALYVGNLTWWTTDEDLTEALHSIGVNDLLEIKFFENRANGQSKGFALIVVGSEASSRKLMDKLPKKELHGQNPVVTP 77
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
104-180 1.51e-10

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 57.42  E-value: 1.51e-10
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECG-VTDLINIKffdNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTPA 180
Cdd:COG0724    4 IYVGNLPYSVTEEDLRELFSEYGeVTSVKLIT---DRETGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEA 78
RRM smart00360
RNA recognition motif;
104-177 2.06e-10

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 56.83  E-value: 2.06e-10
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 156215907   104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVV 177
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFG--KVESVRLVRDKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
104-210 5.08e-07

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 49.27  E-value: 5.08e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTPATkq 183
Cdd:PLN03134  37 LFIGGLSWGTDDASLRDAFAHFG--DVVDAKVIVDRETGRSRGFGFVNFNDEGAATAAISEMDGKELNGRHIRVNPAN-- 112
                         90       100
                 ....*....|....*....|....*..
gi 156215907 184 hlhEFEAQHRAKAPGTAFQGGGDPYQG 210
Cdd:PLN03134 113 ---DRPSAPRAYGGGGGYSGGGGGYGG 136
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
104-172 7.40e-05

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 41.06  E-value: 7.40e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 156215907  104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFdNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEG 172
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFG--PIKSIRLV-RDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGG 66
 
Name Accession Description Interval E-value
RRM_CFIm68 cd12643
RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or ...
103-179 6.17e-48

RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or CPSF6) and similar proteins; This subgroup corresponds to the RRM of CFIm68. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. Two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. The family includes CFIm68, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF6), or cleavage and polyadenylation specificity factor 68 kDa subunit (CPSF68), or protein HPBRII-4/7. CFIm68 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. The N-terminal RRM of CFIm68 mediates the interaction with CFIm25. It also serves to enhance RNA binding and facilitate RNA looping.


Pssm-ID: 410048 [Multi-domain]  Cd Length: 77  Bit Score: 159.90  E-value: 6.17e-48
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 156215907 103 PLYVGNLTWWTTDQQLTEALQECGVTDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTP 179
Cdd:cd12643    1 ALYVGNLTWWTTDEDLTEALHSIGVNDLLEIKFFENRANGQSKGFALIVVGSEASSRKLMDKLPKKELHGQNPVVTP 77
RRM_CFIm68_CFIm59 cd12372
RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or ...
104-179 9.22e-26

RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or CPSF6), pre-mRNA cleavage factor Im 59 kDa subunit (CFIm59 or CPSF7), and similar proteins; This subfamily corresponds to the RRM of cleavage factor Im (CFIm) subunits. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. Two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. Structurally related CFIm68 and CFIm59, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF7), or cleavage and polyadenylation specificity factor 59 kDa subunit (CPSF59), are functionally redundant. Both contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. Their N-terminal RRM mediates the interaction with CFIm25, and also serves to enhance RNA binding and facilitate RNA looping.


Pssm-ID: 409807 [Multi-domain]  Cd Length: 76  Bit Score: 100.08  E-value: 9.22e-26
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGVTDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTP 179
Cdd:cd12372    1 LYVGNLQWWTTDEDLEGACASFGVVDVKEIKFFEHKANGKSKGYAYVEFASPAAAAAVKEKLEKREFNGRPCVVTP 76
RRM_CFIm59 cd12644
RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 59 kDa subunit (CFIm59 or ...
104-190 6.19e-25

RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 59 kDa subunit (CFIm59 or CPSF7) and similar proteins; This subgroup corresponds to the RRM of CFIm59. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. The two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. The family includes CFIm59, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF7), or cleavage and polyadenylation specificity factor 59 kDa subunit (CPSF59). CFIm59 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. The N-terminal RRM of CFIm59 mediates the interaction with CFIm25. It also serves to enhance RNA binding and facilitate RNA looping.


Pssm-ID: 410049 [Multi-domain]  Cd Length: 90  Bit Score: 98.35  E-value: 6.19e-25
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGVTDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTPATKQ 183
Cdd:cd12644    4 VYVGNFSWWTTDQDLINLIRSLGVKDVVELKFAENRANGQSKGYAEVVVASENSVHLLLELLPGKKLNGEKVDVRLATRQ 83

                 ....*..
gi 156215907 184 HLHEFEA 190
Cdd:cd12644   84 NLSQFEA 90
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
104-180 1.51e-10

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 57.42  E-value: 1.51e-10
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECG-VTDLINIKffdNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTPA 180
Cdd:COG0724    4 IYVGNLPYSVTEEDLRELFSEYGeVTSVKLIT---DRETGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEA 78
RRM smart00360
RNA recognition motif;
104-177 2.06e-10

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 56.83  E-value: 2.06e-10
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 156215907   104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVV 177
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFG--KVESVRLVRDKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
104-180 4.29e-09

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 52.94  E-value: 4.29e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECG-VTDlINIKFfdNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTPA 180
Cdd:cd21608    2 LYVGNLSWDTTEDDLRDLFSEFGeVES-AKVIT--DRETGRSRGFGFVTFSTAEAAEAAIDALNGKELDGRSIVVNEA 76
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
104-173 1.75e-08

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 51.65  E-value: 1.75e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGVTDLINIKFfdNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQ 173
Cdd:cd21609    2 LYVGNIPRNVTSEELAKIFEEAGTVEIAEVMY--DRYTGRSRGFGFVTMGSVEDAKAAIEKLNGTEVGGR 69
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
104-180 2.48e-07

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 47.90  E-value: 2.48e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECG-VTDlinIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTPA 180
Cdd:cd12399    1 LYVGNLPYSASEEQLKSLFGQFGaVFD---VKLPMDRETKRPRGFGFVELQEEESAEKAIAKLDGTDFMGRTIRVNEA 75
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
104-173 3.19e-07

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 47.66  E-value: 3.19e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRtNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQ 173
Cdd:cd00590    1 LFVGNLPPDTTEEDLRELFSKFG--EVVSVRIVRDR-DGKSKGFAFVEFESPEDAEKALEALNGTELGGR 67
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
104-210 5.08e-07

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 49.27  E-value: 5.08e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVVTPATkq 183
Cdd:PLN03134  37 LFIGGLSWGTDDASLRDAFAHFG--DVVDAKVIVDRETGRSRGFGFVNFNDEGAATAAISEMDGKELNGRHIRVNPAN-- 112
                         90       100
                 ....*....|....*....|....*..
gi 156215907 184 hlhEFEAQHRAKAPGTAFQGGGDPYQG 210
Cdd:PLN03134 113 ---DRPSAPRAYGGGGGYSGGGGGYGG 136
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
104-172 6.08e-07

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 47.02  E-value: 6.08e-07
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEG 172
Cdd:cd12448    1 LFVGNLPFSATQDALYEAFSQHG--SIVSVRLPTDRETGQPKGFGYVDFSTIDSAEAAIDALGGEYIDG 67
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
104-160 4.12e-06

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 44.70  E-value: 4.12e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIEL----GSDKSIEM 160
Cdd:cd12450    2 LFVGNLSWSATQDDLENFFSDCG--EVVDVRIAMDRDDGRSKGFGHVEFasaeSAQKALEK 60
RRM2_PHIP1 cd12272
RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting ...
105-160 5.82e-06

RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; The CD corresponds to the RRM2 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409715 [Multi-domain]  Cd Length: 73  Bit Score: 43.93  E-value: 5.82e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 156215907 105 YVGNLTWWTTDQQLTEALQECGVtdLINIKFFDNRTNGQSKGFAMIELGSDKSIEM 160
Cdd:cd12272    3 YIGNLAWDIDEDDLRELFAECCE--ITNVRLHTDKETGEFKGYGHVEFADEESLDA 56
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
105-159 5.93e-06

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 44.22  E-value: 5.93e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 156215907 105 YVGNLTWWTTDQQLTEALQECGVTDLINIKFfdNRTNGQSKGFAMIELGSDKSIE 159
Cdd:cd12306    3 YVGNVDYGTTPEELQAHFKSCGTINRVTILC--DKFTGQPKGFAYIEFVDKSSVE 55
RRM2_NUCLs cd12451
RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This ...
113-180 2.03e-05

RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM2 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409885 [Multi-domain]  Cd Length: 79  Bit Score: 42.78  E-value: 2.03e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 156215907 113 TTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTErLPKFDIEGQNPVVTPA 180
Cdd:cd12451   15 TIRDELREHFGECG--EVTNVRIPTDRETGELKGFAYIEFSTKEAKEKALE-LNGSDIAGGNLVVDEA 79
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
104-159 6.20e-05

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 41.05  E-value: 6.20e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIELGSDKSIE 159
Cdd:cd12400    3 LFVGNLPYDTTAEDLKEHFKKAG--EPPSVRLLTDKKTGKSKGCAFVEFDNQKALQ 56
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
104-172 7.40e-05

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 41.06  E-value: 7.40e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 156215907  104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFdNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEG 172
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFG--PIKSIRLV-RDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGG 66
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
104-151 1.34e-04

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 40.19  E-value: 1.34e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIE 151
Cdd:cd12398    3 VFVGNIPYDATEEQLKEIFSEVG--PVVSFRLVTDRETGKPKGYGFCE 48
RRM_II_PABPN1 cd12550
RNA recognition motif in type II polyadenylate-binding protein 2 (PABP-2) and similar proteins; ...
104-160 4.13e-04

RNA recognition motif in type II polyadenylate-binding protein 2 (PABP-2) and similar proteins; This subgroup corresponds to the RRM of PABP-2, also termed poly(A)-binding protein 2, or nuclear poly(A)-binding protein 1 (PABPN1), or poly(A)-binding protein II (PABII), which is a ubiquitously expressed type II nuclear poly(A)-binding protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. Although PABP-2 binds poly(A) with high affinity and specificity as type I poly(A)-binding proteins, it contains only one highly conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is responsible for the poly(A) binding. In addition, PABP-2 possesses an acidic N-terminal domain that is essential for the stimulation of PAP, and an arginine-rich C-terminal domain.


Pssm-ID: 409966 [Multi-domain]  Cd Length: 76  Bit Score: 39.02  E-value: 4.13e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGVTDLINIkfFDNRTNGQSKGFAMIELGSDKSIEM 160
Cdd:cd12550    2 VYVGNVDYGATAEELEAHFHGCGSVNRVTI--LCDKFSGHPKGFAYIEFADKESVRT 56
RRM2_NCL cd12404
RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to ...
104-177 8.56e-04

RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409838 [Multi-domain]  Cd Length: 77  Bit Score: 38.18  E-value: 8.56e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 156215907 104 LYVGNLTWWTTDQQLTEALqecgvTDLINIKFFDNRTnGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQNPVV 177
Cdd:cd12404    6 LFVKNLPYSTTQDELKEVF-----EDAVDIRIPMGRD-GRSKGIAYIEFKSEAEAEKALEEKQGTEVDGRSIVV 73
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
104-173 1.61e-03

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 37.41  E-value: 1.61e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIELGSDKSIEMVTERLPKFDIEGQ 173
Cdd:cd12447    2 LFVGGLSWNVDDPWLKKEFEKYG--GVISARVITDRGSGRSKGYGYVDFATPEAAQKALAAMSGKEIDGR 69
RRM1_Hrp1p cd12577
RNA recognition motif 1 (RRM1) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
104-164 1.99e-03

RNA recognition motif 1 (RRM1) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition, steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway. It binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409991 [Multi-domain]  Cd Length: 76  Bit Score: 37.09  E-value: 1.99e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECG-VTDLINIKffdNRTNGQSKGFAMIELGSDKSIEMVTER 164
Cdd:cd12577    1 MFIGGLNWDTTEEGLRDYFSQFGtVVDCTIMK---DSATGRSRGFGFLTFEDPSSVNEVMKK 59
RRM1_SECp43_like cd12344
RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
104-151 7.68e-03

RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM1 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409780 [Multi-domain]  Cd Length: 82  Bit Score: 35.36  E-value: 7.68e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGVTdLINIKFFDNRTNGQSKGFAMIE 151
Cdd:cd12344    2 LWMGDLEPWMDEAYISSCFAKTGEE-VVSVKIIRNKQTGKSAGYCFVE 48
RRM2_U2AF65 cd12231
RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
104-151 8.31e-03

RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; This subfamily corresponds to the RRM2 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409678 [Multi-domain]  Cd Length: 77  Bit Score: 35.32  E-value: 8.31e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGvtdliNIKFFD---NRTNGQSKGFAMIE 151
Cdd:cd12231    3 LFIGGLPNYLNEDQVKELLQSFG-----KLKAFNlvkDSATGLSKGYAFCE 48
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
104-151 8.41e-03

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 35.11  E-value: 8.41e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGvtDLINIKFFDNRTNGQSKGFAMIE 151
Cdd:cd12397    1 LFVGNLSFETTEEDLRKHFAPAG--KIRKVRMATFEDSGKCKGFAFVD 46
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
104-161 9.00e-03

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 35.07  E-value: 9.00e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 156215907 104 LYVGNLTWWTTDQQLTEALQECGVTDLINIKffDNRTNGQSKGFAMIELGSDKSIEMV 161
Cdd:cd12321    2 LIVLGLPWKTTEQDLKEYFSTFGEVLMVQVK--KDPKTGRSKGFGFVRFASYETQVKV 57
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH