lysosomal dipeptide transporter MFSD1 isoform 2 [Homo sapiens]
major facilitator superfamily domain-containing protein 1( domain architecture ID 13023811)
major facilitator superfamily domain-containing protein 1 (MFSD1) is also called smooth muscle cell-associated protein 4 (SMAP-4) in humans and is a putative solute carrier transporter affected by nutrient intake
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
MFS_MFSD1 | cd17340 | Major facilitator superfamily domain-containing protein 1; Human major facilitator superfamily ... |
49-388 | 0e+00 | ||||||
Major facilitator superfamily domain-containing protein 1; Human major facilitator superfamily domain-containing protein 1 (MFSD1) is also called smooth muscle cell-associated protein 4 (SMAP-4). The function of MFSD1 is still unknown. Its expression is affected by altered nutrient intake. During starvation, expression of MFSD1 is downregulated in anterior brain sections in mice while it is upregulated in the brainstem. In mice raised on high-fat diet, MFSD1 is specifically downregulated in brainstem and hypothalamus. MFSD1 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. : Pssm-ID: 340898 [Multi-domain] Cd Length: 394 Bit Score: 509.89 E-value: 0e+00
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
MFS_MFSD1 | cd17340 | Major facilitator superfamily domain-containing protein 1; Human major facilitator superfamily ... |
49-388 | 0e+00 | ||||||
Major facilitator superfamily domain-containing protein 1; Human major facilitator superfamily domain-containing protein 1 (MFSD1) is also called smooth muscle cell-associated protein 4 (SMAP-4). The function of MFSD1 is still unknown. Its expression is affected by altered nutrient intake. During starvation, expression of MFSD1 is downregulated in anterior brain sections in mice while it is upregulated in the brainstem. In mice raised on high-fat diet, MFSD1 is specifically downregulated in brainstem and hypothalamus. MFSD1 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340898 [Multi-domain] Cd Length: 394 Bit Score: 509.89 E-value: 0e+00
|
||||||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
83-388 | 7.25e-23 | ||||||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 99.57 E-value: 7.25e-23
|
||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
80-364 | 4.31e-16 | ||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 79.00 E-value: 4.31e-16
|
||||||||||
2A0114 | TIGR00893 | D-galactonate transporter; [Transport and binding proteins, Carbohydrates, organic alcohols, ... |
104-377 | 7.04e-09 | ||||||
D-galactonate transporter; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273326 [Multi-domain] Cd Length: 399 Bit Score: 57.35 E-value: 7.04e-09
|
||||||||||
PRK08633 | PRK08633 | 2-acyl-glycerophospho-ethanolamine acyltransferase; Validated |
282-385 | 9.76e-04 | ||||||
2-acyl-glycerophospho-ethanolamine acyltransferase; Validated Pssm-ID: 236315 [Multi-domain] Cd Length: 1146 Bit Score: 41.45 E-value: 9.76e-04
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
MFS_MFSD1 | cd17340 | Major facilitator superfamily domain-containing protein 1; Human major facilitator superfamily ... |
49-388 | 0e+00 | ||||||
Major facilitator superfamily domain-containing protein 1; Human major facilitator superfamily domain-containing protein 1 (MFSD1) is also called smooth muscle cell-associated protein 4 (SMAP-4). The function of MFSD1 is still unknown. Its expression is affected by altered nutrient intake. During starvation, expression of MFSD1 is downregulated in anterior brain sections in mice while it is upregulated in the brainstem. In mice raised on high-fat diet, MFSD1 is specifically downregulated in brainstem and hypothalamus. MFSD1 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340898 [Multi-domain] Cd Length: 394 Bit Score: 509.89 E-value: 0e+00
|
||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
49-374 | 1.87e-26 | ||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 109.44 E-value: 1.87e-26
|
||||||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
83-388 | 7.25e-23 | ||||||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 99.57 E-value: 7.25e-23
|
||||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
86-388 | 1.03e-17 | ||||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 84.15 E-value: 1.03e-17
|
||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
83-361 | 1.08e-17 | ||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 83.87 E-value: 1.08e-17
|
||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
80-364 | 4.31e-16 | ||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 79.00 E-value: 4.31e-16
|
||||||||||
MelB | COG2211 | Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; |
140-378 | 1.18e-15 | ||||||
Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; Pssm-ID: 441813 [Multi-domain] Cd Length: 447 Bit Score: 78.41 E-value: 1.18e-15
|
||||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
86-388 | 1.73e-14 | ||||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 74.53 E-value: 1.73e-14
|
||||||||||
MFS_ExuT_GudP_like | cd17319 | Hexuronate transporter, Glucarate transporter, and similar transporters of the Major ... |
51-388 | 2.06e-11 | ||||||
Hexuronate transporter, Glucarate transporter, and similar transporters of the Major Facilitator Superfamily; This family is composed of predominantly bacterial transporters for hexuronate (ExuT), glucarate (GudP), galactarate (GarP), and galactonate (DgoT). They mediate the uptake of these compounds into the cell. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340877 [Multi-domain] Cd Length: 358 Bit Score: 64.90 E-value: 2.06e-11
|
||||||||||
MFS_SV2_like | cd17316 | Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the ... |
227-388 | 3.70e-10 | ||||||
Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the Major Facilitator Superfamily; This family is composed of metazoan synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters including those that transport inorganic phosphate (Pht), aromatic compounds (PcaK and related proteins), proline/betaine (ProP), alpha-ketoglutarate (KgtP), citrate (CitA), shikimate (ShiA), and cis,cis-muconate (MucK), among others. SV2 is a transporter-like protein that serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. Also included in this family is synaptic vesicle 2 (SV2)-related protein (SVOP) and similar proteins. SVOP is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. The SV2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340874 [Multi-domain] Cd Length: 353 Bit Score: 61.08 E-value: 3.70e-10
|
||||||||||
MFS_MJ1317_like | cd17370 | MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed ... |
202-384 | 2.05e-09 | ||||||
MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed of Methanocaldococcus jannaschii MFS-type transporter MJ1317, Mycobacterium bovis protein Mb2288, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340928 [Multi-domain] Cd Length: 371 Bit Score: 58.71 E-value: 2.05e-09
|
||||||||||
2A0114 | TIGR00893 | D-galactonate transporter; [Transport and binding proteins, Carbohydrates, organic alcohols, ... |
104-377 | 7.04e-09 | ||||||
D-galactonate transporter; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273326 [Multi-domain] Cd Length: 399 Bit Score: 57.35 E-value: 7.04e-09
|
||||||||||
MFS_NepI_like | cd17324 | Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ... |
184-387 | 4.47e-08 | ||||||
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 54.86 E-value: 4.47e-08
|
||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
230-378 | 1.92e-07 | ||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 52.81 E-value: 1.92e-07
|
||||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
228-378 | 2.23e-07 | ||||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 52.56 E-value: 2.23e-07
|
||||||||||
MFS_MelB_like | cd17332 | Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major ... |
165-378 | 2.50e-07 | ||||||
Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major Facilitator Superfamily; This family is composed of Salmonella enterica Na+/melibiose symporter MelB, Major Facilitator Superfamily domain-containing proteins, MFSD2 and MFSD12, and other sugar transporters. MelB catalyzes the electrogenic symport of galactosides with Na+, Li+ or H+. The MFSD2 subfamily is composed of two vertebrate members, MFSD2A and MFSD2B. MFSD2A is more commonly called sodium-dependent lysophosphatidylcholine symporter 1 (NLS1). It is an LPC symporter that plays an essential role for blood-brain barrier formation and function. Inactivating mutations in MFSD2A cause a lethal microcephaly syndrome. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. MelB-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340890 [Multi-domain] Cd Length: 424 Bit Score: 52.61 E-value: 2.50e-07
|
||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
256-388 | 2.58e-07 | ||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 52.43 E-value: 2.58e-07
|
||||||||||
MFS_MMR_MDR_like | cd17321 | Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance ... |
83-376 | 6.52e-07 | ||||||
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340879 [Multi-domain] Cd Length: 370 Bit Score: 51.02 E-value: 6.52e-07
|
||||||||||
FucP | COG0738 | Fucose permease [Carbohydrate transport and metabolism]; |
72-388 | 7.31e-07 | ||||||
Fucose permease [Carbohydrate transport and metabolism]; Pssm-ID: 440501 [Multi-domain] Cd Length: 391 Bit Score: 51.01 E-value: 7.31e-07
|
||||||||||
CynX | COG2807 | Cyanate permease [Inorganic ion transport and metabolism]; |
81-377 | 1.33e-06 | ||||||
Cyanate permease [Inorganic ion transport and metabolism]; Pssm-ID: 442057 [Multi-domain] Cd Length: 399 Bit Score: 50.26 E-value: 1.33e-06
|
||||||||||
MFS_YfcJ_like | cd17489 | Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ... |
277-378 | 1.69e-06 | ||||||
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 49.90 E-value: 1.69e-06
|
||||||||||
MelB | COG2211 | Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; |
250-377 | 1.77e-06 | ||||||
Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; Pssm-ID: 441813 [Multi-domain] Cd Length: 447 Bit Score: 49.90 E-value: 1.77e-06
|
||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
225-378 | 3.24e-06 | ||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 48.82 E-value: 3.24e-06
|
||||||||||
MFS_arabinose_efflux_permease_like | cd17473 | Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; ... |
81-388 | 5.51e-06 | ||||||
Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; This family includes a group of putative arabinose efflux permease family transporters, such as alpha proteobacterium quinolone resistance protein NorA (characterized Staphylococcus aureus Quinolone resistance protein NorA belongs to a different group), Desulfovibrio dechloracetivorans bacillibactin exporter, Vibrio aerogenes antiseptic resistance protein. The biological function of those transporters remain unclear. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341026 [Multi-domain] Cd Length: 374 Bit Score: 48.34 E-value: 5.51e-06
|
||||||||||
MFS_MMR_MDR_like | cd17504 | Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) ... |
214-375 | 8.13e-06 | ||||||
Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of putative multidrug resistance (MDR) transporters including Chlamydia trachomatis antiseptic resistance protein QacA_2, and Serratia sp. DD3 Bmr3. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341047 [Multi-domain] Cd Length: 371 Bit Score: 47.57 E-value: 8.13e-06
|
||||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
227-387 | 8.58e-06 | ||||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 47.57 E-value: 8.58e-06
|
||||||||||
MFS_MT3072_like | cd17475 | Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072 and similar ... |
87-377 | 1.42e-05 | ||||||
Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072 and similar transporters of the Major Facilitator Superfamily; This family includes the Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072. It belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341028 [Multi-domain] Cd Length: 378 Bit Score: 46.85 E-value: 1.42e-05
|
||||||||||
MFS_MdtH_MDR_like | cd17329 | Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the ... |
227-381 | 2.08e-05 | ||||||
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MdtH and similar multidrug resistance (MDR) transporters from bacteria and archaea, many of which remain uncharacterized. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtH confers resistance to norfloxacin and enoxacin. MdtH-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340887 [Multi-domain] Cd Length: 376 Bit Score: 46.45 E-value: 2.08e-05
|
||||||||||
MFS_FEN2_like | cd17327 | Pantothenate transporter FEN2 and similar transporters of the Major Facilitator Superfamily; ... |
51-368 | 2.23e-05 | ||||||
Pantothenate transporter FEN2 and similar transporters of the Major Facilitator Superfamily; This family is composed of Saccharomyces cerevisiae pantothenate transporter FEN2 (or fenpropimorph resistance protein 2) and similar proteins from fungi and bacteria including fungal vitamin H transporter, allantoate permease, and high-affinity nicotinic acid transporter, as well as Pseudomonas putida phthalate transporter and nicotinate degradation protein T (nicT). These proteins are involved in the uptake into the cell of specific substrates such as pathothenate, biotin, allantoate, and nicotinic acid, among others. The FEN2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340885 [Multi-domain] Cd Length: 406 Bit Score: 46.47 E-value: 2.23e-05
|
||||||||||
MFS_NRT2_like | cd17341 | Plant Nitrate transporter NRT2 family and Bacterial Nitrate/Nitrite transporters of the Major ... |
74-388 | 2.27e-05 | ||||||
Plant Nitrate transporter NRT2 family and Bacterial Nitrate/Nitrite transporters of the Major Facilitator Superfamily; This family is composed of plant NRT2 family high-affinity nitrate transporters as well as nitrate and nitrite transporters from bacteria including Bacillus subtilis nitrate transporter NasA and nitrite extrusion protein NarK, Staphylococcus aureus NarT, Synechococcus sp. nitrate permease NapA, Mycobacterium tuberculosis NarK2 and nitrite extrusion protein NarU. NRT2 family proteins are involved in the uptake of nitrate by plant roots from the soil through the high-affinity transport system (HATS). There are seven Arabidopsis thaliana NRT2 proteins, called AtNRT2:1 to AtNRT2:7. The NRT2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340899 [Multi-domain] Cd Length: 384 Bit Score: 46.09 E-value: 2.27e-05
|
||||||||||
MFS_MCT_SLC16 | cd17352 | Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily of transporters; ... |
175-377 | 7.17e-05 | ||||||
Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily of transporters; The animal Monocarboxylate transporter (MCT) family is also called Solute carrier family 16 (SLC16 or SLC16A). It is composed of 14 members, MCT1-14. MCTs play an integral role in cellular metabolism via lactate transport and have been implicated in metabolic synergy in tumors. MCT1-4 are proton-coupled transporters that facilitate the transport across the plasma membrane of monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and ketone bodies such as acetoacetate, beta-hydroxybutyrate and acetate. MCT8 and MCT10 are transporters which stimulate the cellular uptake of thyroid hormones such as thyroxine (T4), triiodothyronine (T3), reverse triiodothyronine (rT3) and diidothyronine (T2). MCT10 also functions as a sodium-independent transporter that mediates the uptake or efflux of aromatic acids. Many members are orphan transporters whose substrates are yet to be determined. The MCT family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340910 [Multi-domain] Cd Length: 361 Bit Score: 44.47 E-value: 7.17e-05
|
||||||||||
MFS_YcaD_like | cd17477 | YcaD and similar transporters of the Major Facilitator Superfamily; This family is composed of ... |
49-388 | 1.19e-04 | ||||||
YcaD and similar transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MFS-type transporter YcaD, Bacillus subtilis MFS-type transporter YfkF, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341030 [Multi-domain] Cd Length: 360 Bit Score: 44.09 E-value: 1.19e-04
|
||||||||||
MFS_FsR | cd17478 | Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; ... |
251-386 | 1.74e-04 | ||||||
Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; Fosmidomycin resistance protein (FsR) confers resistance against fosmidomycin. It shows sequence similarity with the bacterial drug-export proteins that mediate resistance to tetracycline and chloramphenicol. This FsR family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341031 [Multi-domain] Cd Length: 365 Bit Score: 43.31 E-value: 1.74e-04
|
||||||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
228-378 | 2.99e-04 | ||||||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 42.95 E-value: 2.99e-04
|
||||||||||
PRK08633 | PRK08633 | 2-acyl-glycerophospho-ethanolamine acyltransferase; Validated |
282-385 | 9.76e-04 | ||||||
2-acyl-glycerophospho-ethanolamine acyltransferase; Validated Pssm-ID: 236315 [Multi-domain] Cd Length: 1146 Bit Score: 41.45 E-value: 9.76e-04
|
||||||||||
MFS_MFSD3 | cd17485 | Major facilitator superfamily domain containing 3 protein; Major facilitator superfamily ... |
75-388 | 1.38e-03 | ||||||
Major facilitator superfamily domain containing 3 protein; Major facilitator superfamily domain containing 3 protein (MFSD3) is a predicted acetyl-CoA transporter. As an atypical putative membrane-bound solute carrier (SLC), MFSD3 is most likely to be functionally active in the plasma membrane and not in any intracellular organelles. MFSD3 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341038 [Multi-domain] Cd Length: 386 Bit Score: 40.67 E-value: 1.38e-03
|
||||||||||
MFS_MdtH_MDR_like | cd17329 | Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the ... |
74-388 | 1.87e-03 | ||||||
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MdtH and similar multidrug resistance (MDR) transporters from bacteria and archaea, many of which remain uncharacterized. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtH confers resistance to norfloxacin and enoxacin. MdtH-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340887 [Multi-domain] Cd Length: 376 Bit Score: 40.29 E-value: 1.87e-03
|
||||||||||
MFS_KgtP | cd17367 | Alpha-ketoglutarate permease of the Major Facilitator Superfamily of transporters; This ... |
188-332 | 3.00e-03 | ||||||
Alpha-ketoglutarate permease of the Major Facilitator Superfamily of transporters; This subfamily includes Escherichia coli alpha-ketoglutarate permease (KgtP) and similar proteins. KgtP is a constitutively expressed proton symporter that functions in the uptake of alpha-ketoglutarate across the boundary membrane. Also included is a putative transporter from Pseudomonas aeruginosa named dicarboxylic acid transporter PcaT. The KgtP subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340925 [Multi-domain] Cd Length: 407 Bit Score: 39.59 E-value: 3.00e-03
|
||||||||||
MFS_FsR | cd17478 | Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; ... |
81-377 | 4.11e-03 | ||||||
Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; Fosmidomycin resistance protein (FsR) confers resistance against fosmidomycin. It shows sequence similarity with the bacterial drug-export proteins that mediate resistance to tetracycline and chloramphenicol. This FsR family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341031 [Multi-domain] Cd Length: 365 Bit Score: 39.08 E-value: 4.11e-03
|
||||||||||
FucP | COG0738 | Fucose permease [Carbohydrate transport and metabolism]; |
227-375 | 4.42e-03 | ||||||
Fucose permease [Carbohydrate transport and metabolism]; Pssm-ID: 440501 [Multi-domain] Cd Length: 391 Bit Score: 39.07 E-value: 4.42e-03
|
||||||||||
MFS_MdfA_MDR_like | cd17320 | Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major ... |
81-388 | 4.85e-03 | ||||||
Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as MdfA (also called chloramphenicol resistance pump Cmr), EmrD, MdtM, MdtL, bicyclomycin resistance protein (also called sulfonamide resistance protein), and the uncharacterized inner membrane transport protein YdhC. EmrD is a proton-dependent secondary transporter, first identified as an efflux pump for uncouplers of oxidative phosphorylation. It expels a range of drug molecules and amphipathic compounds across the inner membrane of E. coli. Similarly, MdfA is a secondary multidrug transporter that exports a broad spectrum of structurally and electrically dissimilar toxic compounds. These MDR transporters are drug/H+ antiporters (DHA) belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340878 [Multi-domain] Cd Length: 379 Bit Score: 39.10 E-value: 4.85e-03
|
||||||||||
MFS_ARN_like | cd17322 | Yeast ARN family of Siderophore iron transporters and similar proteins of the Major ... |
226-376 | 6.49e-03 | ||||||
Yeast ARN family of Siderophore iron transporters and similar proteins of the Major Facilitator Superfamily; The ARN family of siderophore iron transporters includes ARN1 (or ferrichrome permease), ARN2 (or triacetylfusarinine C transporter 1 or TAF1), ARN3 (or siderophore iron transporter 1 or SIT1 or ferrioxamine B permease) and ARN4 (or Enterobactin permease or ENB1). They specifically recognize siderophore-iron chelates are expressed under conditions of iron deprivation. They facilitate the uptake of both hydroxamate- and catecholate-type siderophores. This group also includes glutathione exchanger 1 (Gex1p) and Gex2p, which are proton/glutathione antiporters that import glutathione from the vacuole and exports it through the plasma membrane. The ARN family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340880 [Multi-domain] Cd Length: 514 Bit Score: 38.83 E-value: 6.49e-03
|
||||||||||
MFS_SLC46_TetA_like | cd17330 | Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and ... |
227-388 | 6.67e-03 | ||||||
Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of the eukaryotic proteins MFSD9, MFSD10, MFSD14, and SLC46 family proteins, as well as bacterial multidrug resistance (MDR) transporters such as tetracycline resistance protein TetA and multidrug resistance protein MdtG. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. TetA proteins confer resistance to tetracycline while MdtG confers resistance to fosfomycin and deoxycholate. The Solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3), the best-studied of which is SLC46A1, which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. MFSD10 facilitates the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs) and confers resistance to such NSAIDs. The SLC46/TetA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340888 [Multi-domain] Cd Length: 349 Bit Score: 38.33 E-value: 6.67e-03
|
||||||||||
MFS_CsbX | cd17337 | CsbX family of the Major Facilitator Superfamily of transporters; The CsbX family is composed ... |
238-361 | 6.73e-03 | ||||||
CsbX family of the Major Facilitator Superfamily of transporters; The CsbX family is composed of Bacillus subtilis CsbX protein (also named alpha-ketoglutarate permease), Klebsiella pneumoniae D-arabinitol transporter (DalT), and similar proteins. The csbX gene is a sigmaB-controlled gene that is expressed during the stationary phase of cell growth. DalT is a pentose-specific ion symporter for D-arabinitol uptake. Most members of this family remain uncharacterized. The CsbX family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340895 [Multi-domain] Cd Length: 388 Bit Score: 38.64 E-value: 6.73e-03
|
||||||||||
Blast search parameters | ||||
|