VOC family protein [Bifidobacterium adolescentis]
VOC family protein( domain architecture ID 10001243)
vicinal oxygen chelate (VOC) family protein uses a metal center to coordinate a substrate, intermediate, or transition state through vicinal oxygen atoms
List of domain hits
Name | Accession | Description | Interval | E-value | |||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
12-130 | 3.17e-20 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; : Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 79.65 E-value: 3.17e-20
|
|||||||
Name | Accession | Description | Interval | E-value | |||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
12-130 | 3.17e-20 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 79.65 E-value: 3.17e-20
|
|||||||
VOC | cd06587 | vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ... |
14-128 | 6.87e-15 | |||
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. Pssm-ID: 319898 [Multi-domain] Cd Length: 112 Bit Score: 65.62 E-value: 6.87e-15
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
14-128 | 4.54e-13 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 61.31 E-value: 4.54e-13
|
|||||||
PRK11478 | PRK11478 | VOC family protein; |
13-130 | 3.13e-04 | |||
VOC family protein; Pssm-ID: 183156 [Multi-domain] Cd Length: 129 Bit Score: 37.95 E-value: 3.13e-04
|
|||||||
Name | Accession | Description | Interval | E-value | |||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
12-130 | 3.17e-20 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 79.65 E-value: 3.17e-20
|
|||||||
VOC | cd06587 | vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ... |
14-128 | 6.87e-15 | |||
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. Pssm-ID: 319898 [Multi-domain] Cd Length: 112 Bit Score: 65.62 E-value: 6.87e-15
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
14-128 | 4.54e-13 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 61.31 E-value: 4.54e-13
|
|||||||
MMCE | cd07249 | Methylmalonyl-CoA epimerase (MMCE); MMCE, also called methylmalonyl-CoA racemase (EC 5.1.99.1) ... |
13-130 | 1.08e-11 | |||
Methylmalonyl-CoA epimerase (MMCE); MMCE, also called methylmalonyl-CoA racemase (EC 5.1.99.1) interconverts (2R)-methylmalonyl-CoA and (2S)-methylmalonyl-CoA. MMCE has been found in bacteria, archaea, and in animals. In eukaryotes, MMCE is an essential enzyme in a pathway that converts propionyl-CoA to succinyl-CoA, and is important in the breakdown of odd-chain length fatty acids, branched-chain amino acids, and other metabolites. In bacteria, MMCE participates in the reverse pathway for propionate fermentation, glyoxylate regeneration, and the biosynthesis of polyketide antibiotics. MMCE is closely related to glyoxalase I and type I extradiol dioxygenases. Pssm-ID: 319912 [Multi-domain] Cd Length: 127 Bit Score: 57.59 E-value: 1.08e-11
|
|||||||
VOC | COG3324 | Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function ... |
19-130 | 2.26e-09 | |||
Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function prediction only]; Pssm-ID: 442553 [Multi-domain] Cd Length: 119 Bit Score: 51.56 E-value: 2.26e-09
|
|||||||
PhnB | COG2764 | Zn-dependent glyoxalase, PhnB family [Energy production and conversion]; |
18-130 | 4.36e-09 | |||
Zn-dependent glyoxalase, PhnB family [Energy production and conversion]; Pssm-ID: 442048 [Multi-domain] Cd Length: 118 Bit Score: 50.62 E-value: 4.36e-09
|
|||||||
VOC_Bs_YwkD_like | cd08352 | vicinal oxygen chelate (VOC) family protein Bacillus subtilis YwkD and similar proteins; ... |
12-128 | 1.10e-08 | |||
vicinal oxygen chelate (VOC) family protein Bacillus subtilis YwkD and similar proteins; uncharacterized subfamily of vicinal oxygen chelate (VOC) family contains Bacillus subtilis YwkD and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319940 [Multi-domain] Cd Length: 123 Bit Score: 49.85 E-value: 1.10e-08
|
|||||||
CatE | COG2514 | Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; |
10-128 | 1.02e-07 | |||
Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 442004 [Multi-domain] Cd Length: 141 Bit Score: 47.65 E-value: 1.02e-07
|
|||||||
Glyoxalase_3 | pfam13468 | Glyoxalase-like domain; This domain is related to the Glyoxalase domain pfam00903. |
12-116 | 1.31e-07 | |||
Glyoxalase-like domain; This domain is related to the Glyoxalase domain pfam00903. Pssm-ID: 433233 Cd Length: 175 Bit Score: 47.72 E-value: 1.31e-07
|
|||||||
VOC_like | cd07264 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
20-130 | 1.63e-07 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319925 [Multi-domain] Cd Length: 118 Bit Score: 46.56 E-value: 1.63e-07
|
|||||||
VOC_like | cd08353 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
12-130 | 1.97e-07 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319941 Cd Length: 142 Bit Score: 46.80 E-value: 1.97e-07
|
|||||||
BLMA_like | cd08349 | Bleomycin binding protein (BLMA) and similar proteins; BLMA also called Bleomycin resistance ... |
21-130 | 2.78e-07 | |||
Bleomycin binding protein (BLMA) and similar proteins; BLMA also called Bleomycin resistance protein, confers Bm resistance by directly binding to Bm. Bm is a glycopeptide antibiotic produced naturally by actinomycetes. It is a potent anti-cancer drug, which acts as a strong DNA-cutting agent, thereby causing cell death. BLMA is produced by actinomycetes to protect themselves against their own lethal compound. BLMA has two identically-folded subdomains, with the same alpha/beta fold; these two halves have no sequence similarity. BLMAs are dimers and each dimer binds to two Bm molecules at the Bm-binding pockets formed at the dimer interface; two Bm molecules are bound per dimer. BLMA belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. As for the larger superfamily, this family contains members with or without domain swapping. Pssm-ID: 319937 [Multi-domain] Cd Length: 114 Bit Score: 45.68 E-value: 2.78e-07
|
|||||||
Glyoxalase_4 | pfam13669 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
13-97 | 7.82e-06 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 463951 [Multi-domain] Cd Length: 109 Bit Score: 41.88 E-value: 7.82e-06
|
|||||||
VOC_like | cd07263 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
21-130 | 1.60e-05 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping Pssm-ID: 319924 [Multi-domain] Cd Length: 120 Bit Score: 41.13 E-value: 1.60e-05
|
|||||||
VOC_like | cd07245 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
12-128 | 1.04e-04 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319909 [Multi-domain] Cd Length: 117 Bit Score: 39.22 E-value: 1.04e-04
|
|||||||
PRK11478 | PRK11478 | VOC family protein; |
13-130 | 3.13e-04 | |||
VOC family protein; Pssm-ID: 183156 [Multi-domain] Cd Length: 129 Bit Score: 37.95 E-value: 3.13e-04
|
|||||||
VOC_BsCatE_like_C | cd16359 | C-terminal of Bacillus subtilis CatE like protein, a vicinal oxygen chelate subfamily; ... |
19-67 | 8.42e-04 | |||
C-terminal of Bacillus subtilis CatE like protein, a vicinal oxygen chelate subfamily; Uncharacterized subfamily of vicinal oxygen chelate (VOC) superfamily contains Bacillus subtilis CatE and similar proteins. CatE is proposed to function as Catechol-2,3-dioxygenase. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319966 Cd Length: 110 Bit Score: 36.58 E-value: 8.42e-04
|
|||||||
SgaA_N_like | cd07247 | N-terminal domain of Streptomyces griseus SgaA and similar domains; SgaA suppresses the growth ... |
19-94 | 1.94e-03 | |||
N-terminal domain of Streptomyces griseus SgaA and similar domains; SgaA suppresses the growth disturbances caused by high osmolarity and a high concentration of A-factor, a microbial hormone, during the early growth phase in Streptomyces griseus. A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) controls morphological differentiation and secondary metabolism in Streptomyces griseus. It is a chemical signaling molecule that at a very low concentration acts as a switch for yellow pigment production, aerial mycelium formation, streptomycin production, and streptomycin resistance. The structure and amino acid sequence of SgaA are closely related to a group of antibiotics resistance proteins, including bleomycin resistance protein, mitomycin resistance protein, and fosfomycin resistance proteins. SgaA might also function as a streptomycin resistance protein. Pssm-ID: 319911 [Multi-domain] Cd Length: 114 Bit Score: 35.70 E-value: 1.94e-03
|
|||||||
GLOD5 | cd07253 | Human glyoxalase domain-containing protein 5 and similar proteins; Uncharacterized subfamily ... |
20-67 | 8.79e-03 | |||
Human glyoxalase domain-containing protein 5 and similar proteins; Uncharacterized subfamily of VOC family contains human glyoxalase domain-containing protein 5 and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319916 [Multi-domain] Cd Length: 123 Bit Score: 33.74 E-value: 8.79e-03
|
|||||||
Blast search parameters | ||||
|