RNA polymerase sigma-54 factor is responsible for the expression of enzymes involved in arginine catabolism; sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released
RNA polymerase sigma-54 factor; A sigma factor is a DNA-binding protein protein that binds to ...
11-462
3.22e-142
RNA polymerase sigma-54 factor; A sigma factor is a DNA-binding protein protein that binds to the DNA-directed RNA polymerase core to produce the holoenzyme capable of initiating transcription at specific sites. Different sigma factors act in vegetative growth, heat shock, extracytoplasmic functions (ECF), etc. This model represents the clade of sigma factors called sigma-54, or RpoN (unrelated to sigma 70-type factors such as RpoD/SigA). RpoN is responsible for enhancer-dependent transcription, and its presence characteristically is associated with varied panels of activators, most of which are enhancer-binding proteins (but see Brahmachary, et al., ). RpoN may be responsible for transcription of nitrogen fixation genes, flagellins, pilins, etc., and synonyms for the gene symbol rpoN, such as ntrA, reflect these observations [Transcription, Transcription factors]
Pssm-ID: 274109 Cd Length: 429 Bit Score: 414.00 E-value: 3.22e-142
Sigma-54 factor, core binding domain; This domain makes a direct interaction with the core RNA ...
96-285
3.87e-69
Sigma-54 factor, core binding domain; This domain makes a direct interaction with the core RNA polymerase, to form an enhancer dependent holoenzyme. The centre of this domain contains a very weak similarity to a helix-turn-helix motif which may represent the other DNA binding domain.
Pssm-ID: 461501 [Multi-domain] Cd Length: 182 Bit Score: 218.09 E-value: 3.87e-69
RNA polymerase sigma-54 factor; A sigma factor is a DNA-binding protein protein that binds to ...
11-462
3.22e-142
RNA polymerase sigma-54 factor; A sigma factor is a DNA-binding protein protein that binds to the DNA-directed RNA polymerase core to produce the holoenzyme capable of initiating transcription at specific sites. Different sigma factors act in vegetative growth, heat shock, extracytoplasmic functions (ECF), etc. This model represents the clade of sigma factors called sigma-54, or RpoN (unrelated to sigma 70-type factors such as RpoD/SigA). RpoN is responsible for enhancer-dependent transcription, and its presence characteristically is associated with varied panels of activators, most of which are enhancer-binding proteins (but see Brahmachary, et al., ). RpoN may be responsible for transcription of nitrogen fixation genes, flagellins, pilins, etc., and synonyms for the gene symbol rpoN, such as ntrA, reflect these observations [Transcription, Transcription factors]
Pssm-ID: 274109 Cd Length: 429 Bit Score: 414.00 E-value: 3.22e-142
Sigma-54 factor, core binding domain; This domain makes a direct interaction with the core RNA ...
96-285
3.87e-69
Sigma-54 factor, core binding domain; This domain makes a direct interaction with the core RNA polymerase, to form an enhancer dependent holoenzyme. The centre of this domain contains a very weak similarity to a helix-turn-helix motif which may represent the other DNA binding domain.
Pssm-ID: 461501 [Multi-domain] Cd Length: 182 Bit Score: 218.09 E-value: 3.87e-69
Sigma-54, DNA binding domain; This DNA binding domain is based on peptide fragmentation data. ...
300-463
1.67e-58
Sigma-54, DNA binding domain; This DNA binding domain is based on peptide fragmentation data. This domain is proximal to DNA in the promoter/holoenzyme complex. Furthermore this region contains a putative helix-turn-helix motif. At the C-terminus, there is a highly conserved region known as the RpoN box and is the signature of the sigma-54 proteins.
Pssm-ID: 428004 [Multi-domain] Cd Length: 159 Bit Score: 189.78 E-value: 1.67e-58
Sigma-54 factor, Activator interacting domain (AID); The sigma-54 holoenzyme is an enhancer ...
12-50
8.54e-16
Sigma-54 factor, Activator interacting domain (AID); The sigma-54 holoenzyme is an enhancer dependent form of the RNA polymerase. The AID is necessary for activator interaction. In addition, the AID also inhibits transcription initiation in the sigma-54 holoenzyme prior to interaction with the activator.
Pssm-ID: 459755 [Multi-domain] Cd Length: 39 Bit Score: 70.81 E-value: 8.54e-16
CRISPR-associated protein Csa3, CARF domain [Defense mechanisms]; CRISPR-associated protein ...
347-464
3.31e-03
CRISPR-associated protein Csa3, CARF domain [Defense mechanisms]; CRISPR-associated protein Csa3, CARF domain is part of the Pathway/BioSystem: CRISPR-Cas system
Pssm-ID: 442641 [Multi-domain] Cd Length: 325 Bit Score: 39.45 E-value: 3.31e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options