sulfate adenylyltransferase, small subunit; Metabolic assimilation of sulfur from inorganic ...
19-312
5.37e-175
sulfate adenylyltransferase, small subunit; Metabolic assimilation of sulfur from inorganic sulfate, requires sulfate activation by coupling to a nucleoside, for the production of high-energy nucleoside phosphosulfates. This pathway appears to be similar in all prokaryotic organisms. Activation is first achieved through sulfation of sulfate with ATP by sulfate adenylyltransferase (ATP sulfurylase) to produce 5'-phosphosulfate (APS), coupled by GTP hydrolysis. Subsequently, APS is phosphorylated by an APS kinase to produce 3'-phosphoadenosine-5'-phosphosulfate (PAPS). In Escherichia coli, ATP sulfurylase is a heterodimer composed of two subunits encoded by cysD and cysN, with APS kinase encoded by cysC. These genes are located in a unidirectionally transcribed gene cluster, and have been shown to be required for the synthesis of sulfur-containing amino acids. Homologous to this E.coli activation pathway are nodPQH gene products found among members of the Rhizobiaceae family. These gene products have been shown to exhibit ATP sulfurase and APS kinase activity, yet are involved in Nod factor sulfation, and sulfation of other macromolecules. [Central intermediary metabolism, Sulfur metabolism]
Pssm-ID: 131094 Cd Length: 294 Bit Score: 485.78 E-value: 5.37e-175
Sulfate adenylyltransferase subunit 2; Sulfate adenylyltransferase subunits 1 and 2 form ATP ...
18-229
1.84e-130
Sulfate adenylyltransferase subunit 2; Sulfate adenylyltransferase subunits 1 and 2 form ATP sulfurylase (ATPS) that catalyzes the adenylation of sulfate producing adenosine 5'-phosphosulfate (APS) and diphosphate, the first enzymatic step in the sulfur assimilation pathway. APS synthesis involves the formation of a high-energy phosphoric-sulfuric acid anhydride bond driven by GTP hydrolysis by CysN, coupled to ATP hydrolysis by CysD. CysD belongs to the ATP pyrophosphatase (ATP PPase) family of proteins, members of which include PAPS reductase, GMP synthetase, asparagine synthetase, and NAD(+) synthetase. This subunit is responsible for directly forming APS under control of the G protein. A modified version of the P loop (PP-loop), the fingerprint peptide of mononucleotide-binding proteins, is present in the active site of the protein, which appears to be a positively charged cleft containing a number of conserved arginine and lysine residues.
Pssm-ID: 467511 Cd Length: 214 Bit Score: 369.90 E-value: 1.84e-130
3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS reductase)/FAD synthetase or ...
17-270
9.73e-73
3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS reductase)/FAD synthetase or related enzyme [Amino acid transport and metabolism, Coenzyme transport and metabolism]; 3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS reductase)/FAD synthetase or related enzyme is part of the Pathway/BioSystem: Cysteine biosynthesis
Pssm-ID: 439945 [Multi-domain] Cd Length: 232 Bit Score: 223.96 E-value: 9.73e-73
Phosphoadenosine phosphosulfate reductase family; This domain is found in phosphoadenosine ...
39-267
8.96e-60
Phosphoadenosine phosphosulfate reductase family; This domain is found in phosphoadenosine phosphosulfate (PAPS) reductase enzymes or PAPS sulfotransferase. PAPS reductase is part of the adenine nucleotide alpha hydrolases superfamily also including N type ATP PPases and ATP sulphurylases. The enzyme uses thioredoxin as an electron donor for the reduction of PAPS to phospho-adenosine-phosphate (PAP). It is also found in NodP nodulation protein P from Rhizobium which has ATP sulfurylase activity (sulfate adenylate transferase).
Pssm-ID: 396201 [Multi-domain] Cd Length: 173 Bit Score: 188.66 E-value: 8.96e-60
sulfate adenylyltransferase, small subunit; Metabolic assimilation of sulfur from inorganic ...
19-312
5.37e-175
sulfate adenylyltransferase, small subunit; Metabolic assimilation of sulfur from inorganic sulfate, requires sulfate activation by coupling to a nucleoside, for the production of high-energy nucleoside phosphosulfates. This pathway appears to be similar in all prokaryotic organisms. Activation is first achieved through sulfation of sulfate with ATP by sulfate adenylyltransferase (ATP sulfurylase) to produce 5'-phosphosulfate (APS), coupled by GTP hydrolysis. Subsequently, APS is phosphorylated by an APS kinase to produce 3'-phosphoadenosine-5'-phosphosulfate (PAPS). In Escherichia coli, ATP sulfurylase is a heterodimer composed of two subunits encoded by cysD and cysN, with APS kinase encoded by cysC. These genes are located in a unidirectionally transcribed gene cluster, and have been shown to be required for the synthesis of sulfur-containing amino acids. Homologous to this E.coli activation pathway are nodPQH gene products found among members of the Rhizobiaceae family. These gene products have been shown to exhibit ATP sulfurase and APS kinase activity, yet are involved in Nod factor sulfation, and sulfation of other macromolecules. [Central intermediary metabolism, Sulfur metabolism]
Pssm-ID: 131094 Cd Length: 294 Bit Score: 485.78 E-value: 5.37e-175
Sulfate adenylyltransferase subunit 2; Sulfate adenylyltransferase subunits 1 and 2 form ATP ...
18-229
1.84e-130
Sulfate adenylyltransferase subunit 2; Sulfate adenylyltransferase subunits 1 and 2 form ATP sulfurylase (ATPS) that catalyzes the adenylation of sulfate producing adenosine 5'-phosphosulfate (APS) and diphosphate, the first enzymatic step in the sulfur assimilation pathway. APS synthesis involves the formation of a high-energy phosphoric-sulfuric acid anhydride bond driven by GTP hydrolysis by CysN, coupled to ATP hydrolysis by CysD. CysD belongs to the ATP pyrophosphatase (ATP PPase) family of proteins, members of which include PAPS reductase, GMP synthetase, asparagine synthetase, and NAD(+) synthetase. This subunit is responsible for directly forming APS under control of the G protein. A modified version of the P loop (PP-loop), the fingerprint peptide of mononucleotide-binding proteins, is present in the active site of the protein, which appears to be a positively charged cleft containing a number of conserved arginine and lysine residues.
Pssm-ID: 467511 Cd Length: 214 Bit Score: 369.90 E-value: 1.84e-130
3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS reductase)/FAD synthetase or ...
17-270
9.73e-73
3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS reductase)/FAD synthetase or related enzyme [Amino acid transport and metabolism, Coenzyme transport and metabolism]; 3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS reductase)/FAD synthetase or related enzyme is part of the Pathway/BioSystem: Cysteine biosynthesis
Pssm-ID: 439945 [Multi-domain] Cd Length: 232 Bit Score: 223.96 E-value: 9.73e-73
Phosphoadenosine phosphosulfate reductase family; This domain is found in phosphoadenosine ...
39-267
8.96e-60
Phosphoadenosine phosphosulfate reductase family; This domain is found in phosphoadenosine phosphosulfate (PAPS) reductase enzymes or PAPS sulfotransferase. PAPS reductase is part of the adenine nucleotide alpha hydrolases superfamily also including N type ATP PPases and ATP sulphurylases. The enzyme uses thioredoxin as an electron donor for the reduction of PAPS to phospho-adenosine-phosphate (PAP). It is also found in NodP nodulation protein P from Rhizobium which has ATP sulfurylase activity (sulfate adenylate transferase).
Pssm-ID: 396201 [Multi-domain] Cd Length: 173 Bit Score: 188.66 E-value: 8.96e-60
uncharacterized phosphoadenosine phosphosulfate reductase-like proteins, similar to ...
26-219
1.62e-16
uncharacterized phosphoadenosine phosphosulfate reductase-like proteins, similar to Escherichia coli YbdN; This subgroup contains Escherichia coli YbdN and other phosphoadenosine phosphosulfate (PAPS) reductase (or PAPS sulfotransferase EC 1.8.4.8)-like proteins. PAPS reductase is part of the adenine nucleotide alpha hydrolases superfamily also including N-type ATP PPases and ATP sulfurylases. A highly modified version of the P loop, the fingerprint peptide of mononucleotide-binding proteins, is present in the active site of the protein, which appears to be a positively charged cleft containing a number of conserved arginine and lysine residues. Although PAPS reductase has no ATPase activity, it shows a striking similarity to the structure of the ATP pyrophosphatase (ATP PPase) domain of GMP synthetase, indicating that both enzyme families have evolved from a common ancestral nucleotide-binding fold. The enzyme uses thioredoxin as an electron donor for the reduction of PAPS to phospho-adenosine-phosphate (PAP).
Pssm-ID: 467512 [Multi-domain] Cd Length: 206 Bit Score: 76.66 E-value: 1.62e-16
Phosphoadenylyl-sulfate reductase (thioredoxin); Phosphoadenosine phosphosulfate (PAPS) reductase (or PAPS sulfotransferase EC 1.8.4.8) is part of the adenine nucleotide alpha hydrolase superfamily that also includes N-type ATP PPases and ATP sulfurylases. A highly modified version of the P loop, the fingerprint peptide of mononucleotide-binding proteins, is present in the active site of the protein, which appears to be a positively charged cleft containing a number of conserved arginine and lysine residues. Although PAPS reductase has no ATPase activity, it shows a striking similarity to the structure of the ATP pyrophosphatase (ATP PPase) domain of GMP synthetase, indicating that both enzyme families have evolved from a common ancestral nucleotide-binding fold. The enzyme uses thioredoxin as an electron donor for the reduction of PAPS to phospho-adenosine-phosphate (PAP).
Pssm-ID: 467510 [Multi-domain] Cd Length: 183 Bit Score: 63.77 E-value: 3.38e-12
phosophoadenylyl-sulfate reductase (thioredoxin); This enzyme, involved in the assimilation of ...
41-219
4.54e-08
phosophoadenylyl-sulfate reductase (thioredoxin); This enzyme, involved in the assimilation of inorganic sulfate, is designated cysH in Bacteria and MET16 in Saccharomyces cerevisiae. Synonyms include phosphoadenosine phosphosulfate reductase, PAPS reductase, and PAPS reductase, thioredoxin-dependent. In a reaction requiring reduced thioredoxin and NADPH, it converts 3(prime)-phosphoadenylylsulfate (PAPS) to sulfite and adenosine 3(prime),5(prime) diphosphate (PAP). A related family of plant enzymes, scoring below the trusted cutoff, differs in having a thioredoxin-like C-terminal domain, not requiring thioredoxin, and in having a preference for 5(prime)-adenylylsulfate (APS) over PAPS. [Central intermediary metabolism, Sulfur metabolism]
Pssm-ID: 129526 Cd Length: 212 Bit Score: 52.48 E-value: 4.54e-08
phosphoadenosine phosphosulfate reductase, thioredoxin dependent; Requiring thioredoxin as an ...
41-219
5.65e-08
phosphoadenosine phosphosulfate reductase, thioredoxin dependent; Requiring thioredoxin as an electron donor, phosphoadenosine phosphosulfate reductase catalyzes the reduction of 3'-phosphoadenylylsulfate (PAPS) to sulfite and phospho-adenosine-phosphate (PAP). Found in enterobacteria, cyanobacteria, and yeast, PAPS reductase is related to a group of plant (TIGR00424) and bacterial (TIGR02055) enzymes preferring 5'-adenylylsulfate (APS) over PAPS as a substrate for reduction to sulfite. [Central intermediary metabolism, Sulfur metabolism]
Pssm-ID: 131112 Cd Length: 226 Bit Score: 52.53 E-value: 5.65e-08
FAD synthase; FAD synthase (FMN:ATP adenylyl transferase (FMNAT); FAD pyrophosphorylase; Flavin adenine dinucleotide synthase (FADS); EC 2.7.7.2) is involved in the biochemical pathway for converting riboflavin into FAD. By sequence comparison, bacterial and eukaryotic FMNAT enzymes belong to two different protein superfamilies and apparently utilize different sets of active-site residues to accomplish the same chemistry. This subfamily includes eukaryotic FMNATs, which are members of the 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase-like family belonging to the adenine nucleotide alpha hydrolase superfamily, which has conserved motifs different from those of nucleotidylyl transferases.
Pssm-ID: 467513 [Multi-domain] Cd Length: 179 Bit Score: 50.21 E-value: 1.77e-07
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options