Cat Eye Syndrome critical region protein isoform 2 [Homo sapiens]
haloacid dehalogenase-like hydrolase domain-containing 5 protein( domain architecture ID 712250)
haloacid dehalogenase-like hydrolase domain-containing 5 (HDHD5) protein is a member of the haloacid dehalogenase superfamily of enzymes, which are involved in the degradation of halogenated compounds.
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
CECR5 super family | cl28371 | HAD-superfamily class IIA hydrolase, TIGR01456, CECR5; This hypothetical equivalog is a member ... |
47-360 | 0e+00 | ||||||
HAD-superfamily class IIA hydrolase, TIGR01456, CECR5; This hypothetical equivalog is a member of the Class IIA subfamily of the haloacid dehalogenase superfamily of aspartate-nucleophile hydrolases. The sequences modelled by this equivalog are all eukaryotes. One sequence (GP|13344995) is called "Cat Eye Syndrome critical region protein 5" (CECR5). This gene has been cloned from a pericentromere region of human chromosome 22 believed to be the location of the gene or genes responsible for Cat Eye Syndrome. This is one of a number of candidate genes. The Schizosaccharomyces pombe sequence (EGAD|138276) is annotated as "phosphatidyl synthase," however this is due entirely to a C-terminal region of the protein (outside the region of similarity of this model) which is highly homologous to a family of CDP-alcohol phosphatidyltransferases. (Thus, the annotation of GP|4226073 from C. elegans as similar to phosphatidyl synthase, is a mistake as this gene does not contain the C-terminal portion). The physical connection of the phosphatidyl synthase and the HAD-superfamily hydrolase domain in S. pombe may, however, be an important clue to the substrate for the hydrolases in this equivalog. The actual alignment was detected with superfamily member TIGR01456: Pssm-ID: 200106 [Multi-domain] Cd Length: 321 Bit Score: 515.97 E-value: 0e+00
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
CECR5 | TIGR01456 | HAD-superfamily class IIA hydrolase, TIGR01456, CECR5; This hypothetical equivalog is a member ... |
47-360 | 0e+00 | ||||||
HAD-superfamily class IIA hydrolase, TIGR01456, CECR5; This hypothetical equivalog is a member of the Class IIA subfamily of the haloacid dehalogenase superfamily of aspartate-nucleophile hydrolases. The sequences modelled by this equivalog are all eukaryotes. One sequence (GP|13344995) is called "Cat Eye Syndrome critical region protein 5" (CECR5). This gene has been cloned from a pericentromere region of human chromosome 22 believed to be the location of the gene or genes responsible for Cat Eye Syndrome. This is one of a number of candidate genes. The Schizosaccharomyces pombe sequence (EGAD|138276) is annotated as "phosphatidyl synthase," however this is due entirely to a C-terminal region of the protein (outside the region of similarity of this model) which is highly homologous to a family of CDP-alcohol phosphatidyltransferases. (Thus, the annotation of GP|4226073 from C. elegans as similar to phosphatidyl synthase, is a mistake as this gene does not contain the C-terminal portion). The physical connection of the phosphatidyl synthase and the HAD-superfamily hydrolase domain in S. pombe may, however, be an important clue to the substrate for the hydrolases in this equivalog. Pssm-ID: 200106 [Multi-domain] Cd Length: 321 Bit Score: 515.97 E-value: 0e+00
|
||||||||||
HAD_like | cd07511 | uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar ... |
47-364 | 7.66e-48 | ||||||
uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar to the uncharacterized human CECR5 (cat eye syndrome critical region protein 5); This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319814 Cd Length: 136 Bit Score: 159.86 E-value: 7.66e-48
|
||||||||||
Hydrolase_6 | pfam13344 | Haloacid dehalogenase-like hydrolase; This family is part of the HAD superfamily. |
49-152 | 1.25e-24 | ||||||
Haloacid dehalogenase-like hydrolase; This family is part of the HAD superfamily. Pssm-ID: 433132 Cd Length: 101 Bit Score: 97.15 E-value: 1.25e-24
|
||||||||||
NagD | COG0647 | Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; |
48-323 | 2.95e-17 | ||||||
Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; Pssm-ID: 440412 [Multi-domain] Cd Length: 259 Bit Score: 80.92 E-value: 2.95e-17
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
CECR5 | TIGR01456 | HAD-superfamily class IIA hydrolase, TIGR01456, CECR5; This hypothetical equivalog is a member ... |
47-360 | 0e+00 | ||||||
HAD-superfamily class IIA hydrolase, TIGR01456, CECR5; This hypothetical equivalog is a member of the Class IIA subfamily of the haloacid dehalogenase superfamily of aspartate-nucleophile hydrolases. The sequences modelled by this equivalog are all eukaryotes. One sequence (GP|13344995) is called "Cat Eye Syndrome critical region protein 5" (CECR5). This gene has been cloned from a pericentromere region of human chromosome 22 believed to be the location of the gene or genes responsible for Cat Eye Syndrome. This is one of a number of candidate genes. The Schizosaccharomyces pombe sequence (EGAD|138276) is annotated as "phosphatidyl synthase," however this is due entirely to a C-terminal region of the protein (outside the region of similarity of this model) which is highly homologous to a family of CDP-alcohol phosphatidyltransferases. (Thus, the annotation of GP|4226073 from C. elegans as similar to phosphatidyl synthase, is a mistake as this gene does not contain the C-terminal portion). The physical connection of the phosphatidyl synthase and the HAD-superfamily hydrolase domain in S. pombe may, however, be an important clue to the substrate for the hydrolases in this equivalog. Pssm-ID: 200106 [Multi-domain] Cd Length: 321 Bit Score: 515.97 E-value: 0e+00
|
||||||||||
HAD-SF-IIA | TIGR01460 | Haloacid Dehalogenase Superfamily Class (subfamily) IIA; This model represents one structural ... |
49-335 | 5.75e-77 | ||||||
Haloacid Dehalogenase Superfamily Class (subfamily) IIA; This model represents one structural subclass of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The classes are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Class I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Class II consists of sequences in which the capping domain is found between the second and third motifs. Class III sequences have no capping domain in iether of these positions. The Class IIA capping domain is predicted by PSI-PRED to consist of a mixed alpha-beta fold with the basic pattern: Helix-Helix-Helix-Sheet-Helix-Loop-Sheet-Helix-Sheet-Helix. Presently, this subfamily encompasses a single equivalog model (TIGR01452) for the eukaryotic phosphoglycolate phosphatase, as well as four hypothetical equivalogs covering closely related sequences (TIGR01456 and TIGR01458 in eukaryotes, TIGR01457 in gram positive bacteria and TIGR01459 in gram negative bacteria). The Escherishia coli NagD gene and the Bacillus subtilus AraL gene are members of this subfamily but are not members of the any of the presently defined equivalogs within it. NagD is part of the NAG operon responsible for N-acetylglucosamine metabolism. The function of this gene is unknown. Genes from several organisms have been annotated as NagD, or NagD-like. However, without data on the presence of other members of this pathway, (such as in the case of Yersinia pestis) these assignments should not be given great weight. The AraL gene is similar: it is part of the L-arabinose operon, but the function is unknown. A gene from Halobacterium has been annotated as AraL, but no other Ara operon genes have been annotated. Many of the genes in this subfamily have been annotated as "pNPPase" "4-nitrophenyl phosphatase" or "NPPase". These all refer to the same activity versus a common lab test compound used to determine phosphatase activity. There is no evidence that this activity is physiologically relevant. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273637 [Multi-domain] Cd Length: 236 Bit Score: 238.77 E-value: 5.75e-77
|
||||||||||
HAD_like | cd07511 | uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar ... |
47-364 | 7.66e-48 | ||||||
uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar to the uncharacterized human CECR5 (cat eye syndrome critical region protein 5); This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319814 Cd Length: 136 Bit Score: 159.86 E-value: 7.66e-48
|
||||||||||
Hydrolase_6 | pfam13344 | Haloacid dehalogenase-like hydrolase; This family is part of the HAD superfamily. |
49-152 | 1.25e-24 | ||||||
Haloacid dehalogenase-like hydrolase; This family is part of the HAD superfamily. Pssm-ID: 433132 Cd Length: 101 Bit Score: 97.15 E-value: 1.25e-24
|
||||||||||
NagD | COG0647 | Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; |
48-323 | 2.95e-17 | ||||||
Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; Pssm-ID: 440412 [Multi-domain] Cd Length: 259 Bit Score: 80.92 E-value: 2.95e-17
|
||||||||||
HAD_Pase_UmpH-like | cd07530 | UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide ... |
48-119 | 1.32e-06 | ||||||
UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide phosphatase and Mycobacterium tuberculosis Rv1692 glycerol 3-phosphate phosphatase; Escherichia coli UmpH/NagD is a ribonucleoside tri-, di-, and monophosphatase with a preference for purines, it shows peak activity with UMP and functions in UMP-degradation. It is also an effective phosphatase with AMP, GMP and CMP. Mycobacterium tuberculosis phosphatase, Rv1692 is a glycerol 3-phosphate phosphatase. Rv1692 is the final enzyme involved in glycerophospholipid recycling/catabolism. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319832 [Multi-domain] Cd Length: 247 Bit Score: 49.13 E-value: 1.32e-06
|
||||||||||
HAD_PPase | cd07509 | inorganic pyrophosphatase similar to a human phospholysine phosphohistidine inorganic ... |
48-119 | 3.23e-05 | ||||||
inorganic pyrophosphatase similar to a human phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP); LHPP hydrolyzes nitrogen-phosphorus bonds in phospholysine, phosphohistidine and imidodiphosphate as well as oxygen-phosphorus bonds in inorganic pyrophosphate in vitro. This family also includes human haloacid dehalogenase like hydrolase domain containing 2 protine (HDHD2) a phosphatase which may be involved in polygenic hypertension. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319812 [Multi-domain] Cd Length: 248 Bit Score: 44.96 E-value: 3.23e-05
|
||||||||||
HAD_Pase_UmpH-like | cd07508 | haloacid dehalogenase-like superfamily phosphatases, UmpH/NagD family; Phosphatases in this ... |
48-152 | 2.35e-03 | ||||||
haloacid dehalogenase-like superfamily phosphatases, UmpH/NagD family; Phosphatases in this UmpH/NagD family include Escherichia coli UmpH UMP phosphatase/NagD nucleotide phosphatase , Mycobacterium tuberculosis Rv1692 glycerol 3-phosphate phosphatase, human PGP phosphoglycolate phosphatase, Schizosaccharomyces pombe PHO2 p-nitrophenylphosphatase, Bacillus AraL a putative sugar phosphatase, and Plasmodium falciparum para nitrophenyl phosphate phosphatase PNPase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319811 [Multi-domain] Cd Length: 270 Bit Score: 39.66 E-value: 2.35e-03
|
||||||||||
Blast search parameters | ||||
|